
The Class II Phosphatidylinositol 3-Phosphate Kinase PIK3C2A
Promotes Shigella flexneri Dissemination through Formation of
Vacuole-Like Protrusions

Ana-Maria Dragoi, Hervé Agaisse

Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, USA

Intracellular pathogens such as Shigella flexneri and Listeria monocytogenes achieve dissemination in the intestinal epithelium
by displaying actin-based motility in the cytosol of infected cells. As they reach the cell periphery, motile bacteria form plasma
membrane protrusions that resolve into vacuoles in adjacent cells, through a poorly understood mechanism. Here, we report on
the role of the class II phosphatidylinositol 3-phosphate kinase PIK3C2A in S. flexneri dissemination. Time-lapse microscopy
revealed that PIK3C2A was required for the resolution of protrusions into vacuoles through the formation of an intermediate
membrane-bound compartment that we refer to as a vacuole-like protrusion (VLP). Genetic rescue of PIK3C2A depletion with
RNA interference (RNAi)-resistant cDNA constructs demonstrated that VLP formation required the activity of PIK3C2A in pri-
mary infected cells. PIK3C2A expression was required for production of phosphatidylinositol 3-phosphate [PtdIns(3)P] at the
plasma membrane surrounding protrusions. PtdIns(3)P production was not observed in the protrusions formed by L. monocy-
togenes, whose dissemination did not rely on PIK3C2A. PIK3C2A-mediated PtdIns(3)P production in S. flexneri protrusions
was regulated by host cell tyrosine kinase signaling and relied on the integrity of the S. flexneri type 3 secretion system (T3SS).
We suggest a model of S. flexneri dissemination in which the formation of VLPs is mediated by the PIK3C2A-dependent produc-
tion of the signaling lipid PtdIns(3)P in the protrusion membrane, which relies on the T3SS-dependent activation of tyrosine
kinase signaling in protrusions.

Shigella flexneri and Listeria monocytogenes are food-borne
pathogens that display the ability to invade nonphagocytic

cells, such as epithelial cells, and spread from primary infected
cells to adjacent cells (1–4). This dissemination process is sup-
ported by actin-based motility in primary infected cells (5, 6),
which leads to the formation of membrane protrusions that proj-
ect into adjacent cells, as motile bacteria reach the cell periphery
(7, 8). The resolution of protrusions into vacuoles from which the
pathogen escapes allows the bacteria to gain access to the cytosolic
compartment of adjacent cells, thereby achieving cell-to-cell
spread (7, 8). The mechanisms supporting L. monocytogenes and S.
flexneri cytosolic motility are fairly well understood (9). Both
pathogens achieve actin-based motility by recruiting to their sur-
face a major nucleator of actin polymerization in eukaryotic cells,
the ARP2/3 complex (10, 11). The expansion of the actin network
formed at the bacterial surface generates forces that propel the
bacterium throughout the cytosolic compartment (5, 6). In cells,
the activity of the ARP2/3 complex is regulated by nucleation-
promoting factors of the N-WASP/WAVE family (12, 13). S. flex-
neri engages the ARP2/3 complex through expression of IcsA (2,
14), a bacterial adaptor that recruits and activates N-WASP (15,
16). L. monocytogenes does not engage the ARP2/3 complex
through N-WASP recruitment but through expression of ActA
(17, 18), a bacterial factor that displays structural and regulatory
mimicry with N-WASP (19–21).

In contrast to the mechanisms supporting cytosolic motility,
the mechanisms supporting the formation and resolution of
membrane protrusions are poorly understood. The sequence of
events occurring during bacterial spread has been documented
using time-lapse microscopy of epithelial cells infected with L.
monocytogenes (22, 23). As motile bacteria encounter cell-cell
junctions, they form protrusions that first elongate for a short

period of time and then exist as nonelongating protrusions for an
extended period of time, until resolution into vacuoles occurs. In
addition to the ARP2/3-dependent assembly machinery and the
AIP1/cofilin-dependent disassembly machinery (23), several
studies have revealed the importance of various cellular compo-
nents in bacterial dissemination. These include the cell-cell adhe-
sion protein E-cadherin (24), the gap junction protein connexin
26 (25), the myosin light chain kinase and its target myosin II (26,
27), myosin 10 (28), the membrane-cytoskeleton linker ezrin
(29), the dynamin binding protein Tuba (30), and actin nuclea-
tors of the formin family (31, 32). Recent studies have also re-
vealed the importance of cellular signaling in bacterial dissemina-
tion (33–36). The massive accumulation of phosphotyrosine
residues in protrusions suggested a role for tyrosine kinase signal-
ing in S. flexneri dissemination (33). Accordingly, the tyrosine
kinase inhibitor imatinib strongly impairs the accumulation of
phosphotyrosine residues in protrusions, which results in severe
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defects in the resolution of protrusions into vacuoles (33). Inter-
estingly, the integrity of the S. flexneri type 3 secretion system
(T3SS) was required for tyrosine kinase signaling in protrusions
and efficient resolution of protrusions into vacuoles (37). In ad-
dition to tyrosine kinase signaling, a role for phosphoinositol 3-ki-
nase (PI3K)/AKT signaling in S. flexneri dissemination was pro-
posed on the basis of the observation that the pan-PI3K inhibitors
strongly inhibit the formation of S. flexneri infection foci (36). As
inhibiting PI3K kinases did not impair protrusion formation, the
authors proposed a role for PI3K signaling in vacuole formation
through endocytosis of protrusions by adjacent cells (36).

Here, we investigated the mechanisms supporting the resolu-
tion of protrusions into vacuoles during S. flexneri dissemination.
We uncovered that the resolution process relies on the formation
of intermediate structures that we refer to as vacuole-like protru-
sions (VLPs). On the basis of our results, we propose a model of S.
flexneri dissemination in which the formation of VLPs is mediated
by the PIK3C2A-dependent production of the signaling lipid
phosphatidylinositol 3-phosphate [PtdIns(3)P] in the protrusion
membrane, which relies on the T3SS-dependent activation of ty-
rosine kinase signaling in protrusions.

MATERIALS AND METHODS
Cell lines and bacterial strains. HT-29 cells (ATCC HTB-38) were cul-
tured at 37°C with 5% CO2 in McCoy’s 5A medium (Gibco) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS) (Invitrogen).
The wild-type Shigella flexneri strain used in this study is serotype 2a
2457T (38). The isogenic MxiG S. flexneri mutant strain was described
previously (37). The Listeria monocytogenes strain used in this study is
10403S (39).

DNA constructs and cell transfection. HT-29 cell lines stably express-
ing cyan fluorescent protein (CFP) membrane, yellow fluorescent protein
(YFP) membrane, or green fluorescent protein (GFP) membrane markers
were generated using the pLB vector from Addgene (Addgene plasmid
11619) as previously described (33). PIK3C2A was cloned into the XhoI
and SmaI sites of the pDsRed-monomer C1 vector (Clontech). The
PIK3C2Ares construct was constructed by swapping the AccI-NheI DNA
fragment from the original GFP construct (40) into the pDsRed-PIK3C2A
construct. Transient plasmid transfections were carried out using the X-
treme gene HP reagent (Roche Applied Science) 48 h prior to the day of
infection.

Immunofluorescence and antibodies. Cells were fixed in phos-
phate-buffered saline (PBS)– 4% formaldehyde (overnight at 4°C) and
permeabilized in PBS-0.5% Triton for staining with antiphosphoty-
rosine (1:500; Cell Signaling) antibody and Alexa Fluor phalloidin
(1:1,000; Invitrogen).

Bacterial infection. S. flexneri was grown overnight in LB broth at
37°C with agitation. Twenty microliters of stationary-phase culture was
used to inoculate 2 ml of LB, and the bacteria were grown to exponential
phase for approximately 3 h at 37°C. Cells were infected with S. flexneri
expressing GFP, CFP, or red fluorescent protein (RFP) under the control
of an isopropyl-�-D-thiogalactopyranoside (IPTG)-inducible promoter.
Infection was initiated by centrifuging the plate at 1,000 rpm for 5 min,
and internalization of the bacteria was allowed to proceed for 1 h at 37°C
before gentamicin (50 �M final concentration) was added in order to kill
the extracellular bacteria. Two hours before the infection was stopped,
IPTG (4 mM final concentration) was added to the medium to induce
GFP, CFP, or RFP expression. For quantification of protrusion formation,
VLP formation, and vacuole resolution, infected cells were incubated at
37°C for 4 h and fixed in PBS-4% formaldehyde at 4°C overnight. For S.
flexneri focus size analysis, infected cells were incubated at 37°C for 8 h.
For PI3K and tyrosine kinase inhibition, LY294002 (10 �M) and imatinib
(100 nM) were added 1.5 h postinfection. Dimethyl sulfoxide (DMSO)

was used as a control for LY294002 treatment (1:1,000) and imatinib
treatment (1:1,000).

Protrusion, VLP, and vacuole imaging. For time-lapse microscopy,
HT-29 cells were grown on 35-mm imaging dishes at 37°C in 5% CO2

(MatTek, Ashland, MA). Cells were infected with S. flexneri and imaged
with a Nikon TE2000 spinning disc confocal microscope driven by the
Volocity software package (Improvision). For analysis of protrusion-to-
vacuole resolution and vacuole escape, Z-stacks were captured 2.5 h
postinfection every 5 min for at least 160 min. For clarity, the Z plans
corresponding to the basal plasma membrane were subsequently ex-
cluded from the merged Z-stacks. Protrusions were defined as plasma
membrane extensions that formed as a result of bacteria reaching the cell
cortex and projecting into adjacent cells. Vacuole-like protrusions (VLPs)
were defined as an intermediate step between protrusions and vacuoles,
characterized by a continuous membrane lining around the bacteria and a
membranous tether �0.4 �m in width that derived from the former pro-
trusion neck. Vacuoles were defined as membrane-bound compartments
that derived from VLPs after disappearance of the membranous tether. As
opposed to VLPs, vacuoles were therefore no longer connected to the
primary infected cell. Free bacteria were defined as bacteria that were
previously observed in vacuoles but were no longer surrounded by a con-
tinuous lining of the plasma membrane.

siRNA and quantitative real-time PCR. Cells were transfected by re-
verse transfection with Dharmafect1 and individual small interfering
RNAs (siRNAs) (D1, D2, D3, and D4; 50 nM final concentration) or a
pool of the four silencing reagents (12.5 nM each, 50 nM total) or siRNA
buffer alone (mock) and incubated for 72 h in a 384-well format or a
24-well plate format. Experiments for PIK3C2A knockdown (KD) were
performed with a pool of silencing reagents, unless stated otherwise. For
real-time PCR analysis, total RNA and first-strand cDNA synthesis was
performed using the Cells-to-CT kit from Ambion. mRNA levels were
determined by quantitative real-time PCR using the Universal Probe Li-
brary (Roche Biochemicals, Indianapolis, IN) and LightCycler 480 Probes
Master (Roche Biochemicals, Indianapolis, IN). Thermal cycling was car-
ried out using a Light Cycler 480 instrument (Roche Diagnostics) under
the following conditions: 95°C for 5 min and 45 cycles at 95°C for 10 s and
60°C for 25 s.

Determination of infection focus size. The size of infection foci
formed in HT-29 cells infected with GFP-expressing S. flexneri was deter-
mined in a 384-well plate format. After fixation and 4=,6-diamidino-2-
phenylindole (DAPI) staining, the plates were imaged using a TE2000
automated microscope (Nikon) equipped with a motorized stage (Prior),
motorized filter wheels (Sutter Instrument, Inc.), and a 10� objective
(Nikon) mounted on a piezo focus drive system (Physik Instrumente).
Image acquisition was conducted using MetaMorph 7.1 software (Molec-
ular Devices, Inc.), and image analysis was performed as previously de-
scribed (33).

Quantification of YFP-PX probe enrichment in protrusions. CFP
membrane (Mb)-expressing HT-29 cells were transfected with the
YFP-PX construct and infected with CFP-expressing S. flexneri for 4 h.
Image analyses were performed on fixed samples with the Volocity soft-
ware package (Improvision). The line profile analyses were computed
from 2.0-�m-long lines drawn across each protrusion and across the
plasma membrane next to the protrusion (see example depicted in Fig. 5A
and B). Signal intensities for a given channel were recorded every pixel (at
0.16-�m intervals) along the line. The location of the plasma membrane
was determined as the highest signal intensity along the line correspond-
ing to the CFP channel. The corresponding signal intensities in the YFP
channel were used to determine the enrichment of the YFP-PX probe in
protrusions as the ratio of intensities in protrusions (see Fig. 5B and C, line
2) and at the plasma membrane next to the protrusion (see Fig. 5B and C,
line 1) after subtraction of local background. In the example shown in Fig.
5A and B, signal intensity at the plasma membrane (line 1) was 6,000,
signal intensity at the protrusion membrane (line 2) was 20,000, and local
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background was 2,500. The enrichment in protrusion was (20,000 �
2,500)/(6,000 � 2,500) � 5.

RESULTS

PIK3C2A promotes S. flexneri dissemination. We identified the
class II phosphatidylinositol 3-phosphate kinase (PI3K) family
member PIK3C2A in an RNA interference (RNAi) screen for host
cell kinases required for S. flexneri dissemination in the human
intestinal HT-29 cell line (A.-M. Dragoi and H. Agaisse, unpub-
lished data). To further confirm the specific involvement of
PIK3C2A in S. flexneri dissemination, we followed a validation
strategy that relies on the use of independent siRNA duplexes in

order to establish a strict correlation between the strength of the
observed spreading defect and the silencing efficiency of the cor-
responding siRNA duplexes (41). The approach revealed that
PIK3C2A-targeting duplexes D1 and D4 conferred the strongest
spreading defects (Fig. 1A and B; 50 to 60% reduction in the size of
infection foci), which correlated with the strongest silencing effi-
ciency (Fig. 1C; 94% and 96% decrease in PIK3C2A mRNA ex-
pression for D1 and D4, respectively). We confirmed these genetic
results by showing that, as expected, pan-inhibitors of PI3K activ-
ity, such as LY294002 and wortmannin, interfered with S. flexneri
spread from cell to cell in a dose-dependent manner (see Fig. S1A
and B in the supplemental material). Altogether, these results sug-
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gest a specific role for the class II phosphatidylinositol 3-phos-
phate kinase PIK3C2A in S. flexneri dissemination.

PIK3C2A promotes the resolution of membrane protrusions
into vacuoles. To further understand the role of PIK3C2A in S.
flexneri dissemination, we first examined its potential involve-
ment in cytosolic motility. Depletion of PIK3C2A did not affect
the numbers of bacteria displaying actin tails (see Fig. S2A in the
supplemental material; 64% in mock-treated cells versus 65% in
PIK3C2-depleted cells). Moreover, the velocity of motile bacteria
in the cytosol of PIK3C2A-depleted cells was similar to the veloc-
ity recorded in mock-treated cells (see Fig. S2B). We next investi-
gated the potential involvement of PIK3C2A in protrusion reso-
lution and vacuole formation. We determined whether spreading
bacteria were located in membrane protrusions or in vacuoles or
were free in the cytosol of adjacent cells, by visualizing the plasma
membrane of primary infected cells with a plasma membrane-
targeted version of CFP, as previously described by our group (see
Fig. S3 in reference 33). The numbers of bacteria located in pro-
trusions in PIK3C2A-depleted cells were greater than the numbers
recorded in mock-treated cells (Fig. 1D, mock treated, 38%,
versus PIK3C2A depleted, 78%). In addition, the depletion of

PIK3C2A led to a decrease in the numbers of bacteria located in
vacuoles (Fig. 1D, mock treated, 39%, versus PIK3C2A depleted,
13%) and a decrease in the numbers of bacteria no longer associ-
ated with membrane (free) in the cytosol of adjacent cells (Fig. 1D,
mock treated, 23%, versus PIK3C2A depleted, 9%). These results
suggest that PIK3C2A depletion affects the resolution of S. flexneri
protrusions into vacuoles.

The resolution of S. flexneri protrusions occurs through for-
mation of VLPs. To further understand the process of protrusion
resolution, we investigated the exact sequence of events leading to
vacuole formation. Using time-lapse confocal microscopy (Fig. 2;
also see Movie S1 in the supplemental material), we observed the
formation of S. flexneri membrane protrusions that elongated into
adjacent cells, forming a membrane-bound compartment that re-
mained connected to the primary infected cell through a membra-
nous neck (Fig. 2A, protrusion; see also Movie S1). As protrusions
stopped elongating, their resolution into vacuoles occurred
through the formation of an intermediate membrane-bound
compartment that we refer to as a vacuole-like protrusion (Fig.
2A, VLP and vacuole; see also Movie S1). A distinctive feature of
VLPs was the seemingly continuous lining of the membrane sur-
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rounding the bacteria, typical of vacuoles (Fig. 2A, VLP). Unlike
vacuoles, however, VLPs were still tethered to the primary infected
cells through the protrusion neck that apparently collapsed (Fig.
2A, protrusion and VLP, arrows). The subsequent disappearance
of the membranous tether marked the formation of genuine vac-
uoles (Fig. 2A, vacuole; see also Movie S1). To quantify the pro-
trusion-to-VLP transition, we monitored the protrusion neck
width (PNW), 1 �m distal to the bacterial pole (Fig. 2A, protru-
sion and VLP, arrows). We computed that protrusions displayed a
PNW greater than 0.4 �m, whereas VLPs, which display continu-
ous lining of the membrane surrounding the bacteria, displayed a
PNW less than 0.4 �m (Fig. 1B). In contrast to VLP formation, we
also observed protrusions that failed to transition into the VLP
stage, as determined by PNW measurements (PNW of 	0.4 �m)
(Fig. 2C and D; see also Movie S2 in the supplemental material).
After a period of elongation, these protrusions usually retracted,
bringing the pathogen back to the primary infected cells (Fig. 2C
and D; see also Movie S2). Our tracking data for 30 protrusions in
10 infection foci and systematic quantification of PNW demon-
strated that more than 75% (23/30) of the bacteria that formed a
protrusion transitioned into the VLP stage (Fig. 3A). Importantly,
almost all bacteria (22/23) that transitioned into the VLP stage
ultimately formed a vacuole, from which the pathogen escaped
(Fig. 3A). These results indicate that the commitment to the VLP
stage is essential to the process of protrusion resolution into vac-
uoles.

PIK3C2A promotes VLP formation. To further understand
the role of PIK3C2A in the resolution of protrusions into vacuoles,
we investigated the sequence of events occurring upon S. flexneri
dissemination in PIK3C2A-depleted cells. In sharp contrast with
the situation observed in mock-treated cells, where more than

75% of the bacteria successfully spread from cell to cell (Fig. 3A),
our tracking data revealed that only 30% (9/30) of the bacteria that
formed protrusions successfully spread from cell to cell in
PIK3C2A-depleted cells (Fig. 3B). Strikingly, the vast majority of
the bacteria formed protrusions that did not transition into the
VLP stage and ultimately retracted, bringing the pathogen back to
the primary infected cells (Fig. 3B). Thus, the activity of PIK3C2A
is required for S. flexneri dissemination through VLP formation.
In agreement with our tracking data, examination of fixed samples
to determine the proportion of the formed protrusions and VLPs
demonstrated a strong defect in VLP formation in PIK3C2A-de-
pleted cells (Fig. 4A and B, mock versus PIK3C2A KD). Impor-

Time (min)

Protrusion Vacuole Free bacteriaPrimary infected cell VLP

65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 1600 5 10 15 20 25 30 35 40 45 50 55 60

Time (min)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160

Protrusion Vacuole Free bacteriaPrimary infected cell VLP

A

B

Mock treatment

PIK3C2A depletion

FIG 3 PIK3C2A promotes vacuole-like protrusion (VLP) formation in HT-29 cells. Schematic representation of the dissemination process in mock-treated (A)
or PIK3C2A-depleted (B) HT-29 cells. Each line represents the tracking of one bacterium every 5 min for 160 min, and the progression of the dissemination
process was depicted using the color key displayed at the bottom of the panels: protrusion, light blue; VLP, purple; vacuole, yellow; free bacteria in the cytosol of
adjacent cells, red; retraction to the primary infected cells, dark blue. Thirty bacteria were tracked in 10 independent infection foci.

VLP

Protrusions

PIK3C2A KD 
+

PI3KC2A res
Mock PIK3C2A KD

VLP

Protrusions

VLP

Protrusions

A B C

FIG 4 PIK3C2A is required in primary infected cells for VLP formation in
HT-29 cells. Graphs showing the relative proportion of protrusions (Protru-
sions) and vacuole-like protrusions (VLP) in mock-treated (Mock) (A),
PIK3C2A-depleted (PIK3C2A KD) (B), and PIK3C2A-depleted (C) HT-29
cells transfected with an RNAi-resistant construct (PIK3C2A res). Values rep-
resent the mean of 3 independent experiments. Statistical analysis: PIK3C2A
KD versus Mock (VLP), P � 0.0001; PIK3C2A KD versus PIK3C2A res (VLP),
P � 0.0005; unpaired t test.

Phosphoinositide Signaling in Shigella Dissemination

April 2015 Volume 83 Number 4 iai.asm.org 1699Infection and Immunity

http://iai.asm.org


tantly, transient transfection of a PIK3C2A cDNA construct
(PIK3C2Ares) resistant to RNAi treatment (40) rescued the defect
in VLP formation observed in PIK3C2A-depleted cells (Fig. 4C,
mock and PIK3C2Ares). In addition to providing additional evi-
dence for the specific role of PIK3C2A, these results demonstrate
that PIK3C2A is required in the primary infected cells for efficient
VLP formation.

PIK3C2A is required for PtdIns(3)P production in protru-
sions. As class II phosphatidylinositol 3-kinases generate PtdIns(3)P
in vitro and in vivo (42–44), we next investigated the potential site(s)
of PtdIns(3)P production in cells infected with S. flexneri. To this
end, we used the YFP-PX probe harboring the PX domain of the
p40phox subunit of the superoxide-producing phagocyte NADPH-
oxidase, which specifically binds PtdIns(3)P (45, 46). When trans-
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fected into HT-29 cells, the YFP-PX probe was weakly expressed in
the cytosol and strongly colocalized with vesicular structures, re-
flecting expected production of PtdIns(3)P on a subset of endo-
somes (Fig. 5A, left panel). In addition to this endosomal localiza-
tion, we observed a dramatic recruitment of the YFP-PX probe to
the plasma membrane surrounding bacteria in protrusions (Fig.
5A, left panel, bacteria 1 and 2, and corresponding right panels,
arrowheads), with little recruitment to the plasma membrane next
to the protrusions (Fig. 5A, right panels, asterisks). The massive
recruitment of the YFP-PX probe was dynamic and occurred
within the first minutes of protrusion formation (see Fig. S3 in the
supplemental material, arrowhead). We used computer-assisted
image analyses to quantify the levels of the YFP-PX probe at the
plasma membrane adjacent to protrusions (Fig. 5B and C, line 1)
and at the plasma membrane surrounding protrusions (Fig. 5B
and C, line 2). Statistical analyses showed a 
5-fold enrichment in
the YFP-PX signal recorded at the plasma membrane surrounding
protrusions compared to the levels recorded at the plasma mem-
brane adjacent to the protrusions (Fig. 5D, mock). This was in
contrast with the situation observed in PIK3C2A-depleted cells
where no significant enrichment was observed (Fig. 5D, PIK3C2A
KD). These results indicate that PIK3C2A supports the produc-
tion of PtdIns(3)P at the plasma membrane surrounding S. flex-
neri protrusions.

L. monocytogenes dissemination does not rely on PIK3C2A.
Similarly to S. flexneri, Listeria monocytogenes is an intracellular
bacterial pathogen that invades intestinal epithelial cells and

spreads from cell to cell through formation of membrane protru-
sions. To determine whether the signaling events observed in S.
flexneri protrusions reflected a general property of pathogen-con-
taining protrusions or were specific to S. flexneri-containing pro-
trusions, we compared PtdIns(3)P production in cells infected
with S. flexneri and in cells infected with L. monocytogenes (Fig.
6A). We did not observe any enrichment in the YFP-PX probe in
the protrusion membrane formed by L. monocytogenes (Fig. 6A
and B). We also determined that the sizes of the infection foci
formed by L. monocytogenes were similar in mock-treated and
PIK3C2A-depleted cells (Fig. 6C). These experiments indicate
that the resolution of protrusions into vacuoles through
PIK3C2A-dependent PtdIns(3)P production is a specific feature
of S. flexneri dissemination.

PtdIns(3)P production relies on the S. flexneri T3SS. We have
previously shown that the type 3 secretion system (T3SS) is re-
quired for efficient resolution of S. flexneri protrusions into vacu-
oles (37), and we have now uncovered that the resolution process
correlates with PtdIns(3)P production in protrusions. To test
whether the T3SS may be responsible for PtdIns(3)P production
in S. flexneri protrusions, we used an S. flexneri strain engineered
to express the T3SS component MxiG under the control of an
arabinose-inducible promoter (37). We induced the expression of
MxiG with arabinose prior to infection in order to allow for T3SS-
dependent invasion and then maintained or removed arabinose
for the remaining time of the infection. We found that the YFP-PX
probe was not enriched in S. flexneri protrusions when arabinose
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was removed from the medium (Fig. 7A), suggesting that the pro-
duction of PtdIns(3)P in membrane protrusions relies on the in-
tegrity of the T3SS. As we previously showed that the T3SS is
required for tyrosine kinase signaling in protrusions (33, 37), we
next investigated the potential epistatic relationship between ty-
rosine kinase signaling and PtdIns(3)P production. We found that
imatinib, an inhibitor of tyrosine kinase signaling that abolishes
tyrosine phosphorylation in S. flexneri protrusions (33), also in-
hibited the recruitment of the YFP-PX probe (Fig. 7B). In con-
trast, treatment with the PI3K inhibitor LY294002 failed to inhibit
tyrosine phosphorylation in S. flexneri protrusions (Fig. 7C; also
see Fig. S4 in the supplemental material). These results suggest
that S. flexneri dissemination relies on a signaling cascade involv-
ing T3SS-dependent activation of tyrosine kinase signaling and
PIK3C2A-mediated production of PtdIns(3)P in protrusions
(Fig. 7D).

DISCUSSION

Intracellular pathogens such as Listeria monocytogenes and Shi-
gella flexneri achieve dissemination by displaying actin-based mo-

tility in the cytosol of infected cells. As motile bacteria reach the
plasma membrane of epithelial cells, they form protrusions that
resolve into vacuoles in adjacent cells. Although the cellular pro-
cesses supporting actin-based motility are now fairly well under-
stood, the mechanisms supporting the actual spread from cell to
cell remain poorly characterized. Here, we introduce the no-
tion that S. flexneri spreads from cell to cell through formation of
vacuole-like protrusions (VLPs). VLPs derive from protrusions
that stopped elongating and whose neck underwent total collapse,
leaving a vacuole-like structure that remained tethered to the pri-
mary infected cell through the former protrusion neck (Fig. 2A).

As the shape of membrane protrusions is determined by the un-
derlying actin cytoskeleton, VLP formation most likely reflects a dra-
matic collapse of the actin cytoskeleton in S. flexneri protrusions.
Interestingly, we uncovered a critical role for PIK3C2A and
PtdIns(3)P production in VLP formation. Our cellular imaging
and genetic experiments indicate that PIK3C2A is required in pri-
mary infected cells to generate PtdIns(3)P in the membrane sur-
rounding bacteria in protrusions. We therefore propose that the
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accumulation of PtdIns(3)P at the plasma membrane regulates
the dynamics of the underlying actin cytoskeleton in protrusions.
The role of phosphoinositides, such as PtdIns(4,5)P2 and PtdIns
(3,4,5)P3, in the regulation of cortical actin and plasma mem-
brane extensions has been extensively documented. However,
very few studies have reported on a role for PtdIns(3)P signal-
ing at the plasma membrane in the regulation of the actin
cytoskeleton dynamics in mammalian cells (42, 47). Future
studies will therefore be required to determine the cellular pro-
cesses supporting the PtdIns(3)P-dependent formation of the
VLP and potential regulation of the actin cytoskeleton dynam-
ics in S. flexneri protrusions. We also note that PtdIns(3)P plays a
central role in cellular processes that involve membrane remodel-
ing, such as fusion of endosomes (48). It is thus possible that, in
addition to its potential regulatory role in the dynamics of the
actin cytoskeleton, PtdIns(3)P may also contribute to vacuole for-
mation through remodeling of the plasma membrane in protru-
sions and/or VLPs.

Our analyses using RNAi and related genetic rescues established
that PtdIns(3)P production in S. flexneri protrusions is mediated by
the activity of class II PIK3C2A. Several studies have documented
a role for PIK3C2A-mediated production of PtdIns(3)P in insulin
signaling at the cell cortex, demonstrating a connection between
tyrosine kinase signaling and PIK3C2A activation (42, 47, 49). In
agreement with the notion that tyrosine kinase signaling may
regulate PIK3C2A activation in S. flexneri protrusions, we have
shown previously that the tyrosine kinase inhibitor imatinib pre-
vented protrusion resolution (33), and we now report that ima-
tinib also inhibits PtdIns(3)P production. Moreover, we show that
the PI3K inhibitor LY294002 does not inhibit tyrosine phosphor-
ylation in S. flexneri protrusions, indicating that tyrosine kinase
signaling acts upstream from PIK3C2A-mediated PtdIns(3)P
production. Unlike that of class I PIK3CA, the activity of class II
PIK3C2A is apparently not modulated through the recruitment of
PI3K regulatory subunits, such as p85, to the plasma membrane
upon activation of receptor tyrosine kinases. Thus, the exact
mechanism leading to PIK3C2A activation in response to tyrosine
kinase signaling remains to be determined. Together with our pre-
vious report showing that the bacterial T3SS is required for acti-
vation of tyrosine kinase signaling in protrusions (37), we propose
a model of S. flexneri dissemination in which the T3SS-dependent
activation of tyrosine kinase signaling leads to the PIK3C2A-me-
diated production of PtdIns(3)P, which may regulate cytoskeleton
collapse and VLP formation (Fig. 7D).

In conclusion, our work reveals a critical role for PIK3C2A and
PtdIns(3)P production in S. flexneri dissemination through VLP
formation. In contrast, we showed that L. monocytogenes does not
require PIK3C2A and PtdIns(3)P production for efficient dissem-
ination. Thus, two bacterial pathogens that display similar strate-
gies of actin cytoskeleton-mediated motility in the cytosol of in-
fected cells have evolved strikingly different strategies of spread
from cell to cell through resolution of protrusions into vacuoles.
We note that, in addition to L. monocytogenes and S. flexneri, var-
ious bacterial pathogens, such as Burkholderia spp. and Rickettsia
spp., display the ability to spread from cell to cell (50). Future
studies may thus reveal a previously unappreciated diversity of
strategies evolved by intracellular pathogens to achieve dissemi-
nation.
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