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The Lyme disease spirochete, Borrelia burgdorferi, controls protein expression patterns during its tick-mammal infection cycle.
Earlier studies demonstrated that B. burgdorferi synthesizes 4,5-dihydroxy-2,3-pentanedione (autoinducer-2 [AI-2]) and re-
sponds to AI-2 by measurably changing production of several infection-associated proteins. luxS mutants, which are unable to
produce AI-2, exhibit altered production of several proteins. B. burgdorferi cannot utilize the other product of LuxS, homocys-
teine, indicating that phenotypes of luxS mutants are not due to the absence of that molecule. Although a previous study found
that a luxS mutant was capable of infecting mice, a critical caveat to those results is that bacterial loads were not quantified. To
more precisely determine whether LuxS serves a role in mammalian infection, mice were simultaneously inoculated with con-
genic wild-type and luxS strains, and bacterial numbers were assessed using quantitative PCR. The wild-type bacteria substan-
tially outcompeted the mutants, suggesting that LuxS performs a significant function during mammalian infection. These data
also provide further evidence that nonquantitative infection studies do not necessarily provide conclusive results and that regu-
latory factors may not make all-or-none, black-or-white contributions to infectivity.

Borrelia burgdorferi, the spirochetal agent of Lyme disease, en-
counters numerous environments during the transmission,

dissemination, and colonization stages of its tick-mammal infec-
tious cycle. To facilitate those host-pathogen interactions, the bac-
terium controls production of proteins and other factors through-
out the cycle. Investigations into borrelial gene regulation have
revealed several overlapping regulons, providing this bacterium
with mechanisms to “fine-tune” the expression of genes and pro-
teins to appropriate levels (1–3).

Bacteria use S-adenosylmethionine (SAM) as the methyl do-
nor for methylation reactions (Fig. 1). In many species, including
B. burgdorferi, the resulting by-product, S-adenosylhomocysteine
(SAH), is detoxified by Pfs to S-ribosylhomocysteine (SRH). That
product, in turn, is broken down by LuxS into homocysteine and
4,5-dihydroxy-2,3-pentanedione (DPD) (4–9). Although some
bacterial species are able to recycle homocysteine into methionine,
genetic and biochemical analyses demonstrated that B. burgdorferi
lacks the necessary enzymes and thus cannot use homocysteine (8,
10). Several bacterial species, including the syphilis spirochete,
Treponema pallidum, produce a Pfs enzyme but lack LuxS, indi-
cating that SRH is not inhibitory to bacterial growth (8, 11). These
observations beg the question of why B. burgdorferi possesses a
LuxS enzyme.

The other product of the LuxS-catalyzed reaction, DPD, is also
known as autoinducer-2 (AI-2). That molecule is used in an in-
tercellular signaling mechanism by Vibrio harveyi to control bio-
luminescence (12–15). Salmonella enterica serovar Typhimurium
also possesses a mechanism to detect and respond to AI-2 (12,
16–18). Phenotypic changes have been observed in luxS mutants
of other bacterial species, although, since many of those bacteria
possess a complete activated methyl cycle, it is not always clear
whether the effects of luxS mutations are due to an inability to
produce AI-2 or homocysteine (19).

As noted above, B. burgdorferi cannot use homocysteine, sim-
plifying interpretations of data obtained from borrelial luxS mu-
tants. Comparative analyses of wild-type and luxS mutant B. burg-
dorferi strains demonstrated differences in expression levels of

numerous proteins (7, 20). Moreover, addition of AI-2 to cultured
wild-type and luxS mutant B. burgdorferi strains measurably af-
fected expression levels of several borrelial proteins. These in-
cluded the VlsE, ErpA, and IpLA7 proteins, which are involved in
mammalian infection (4, 7, 20). B. burgdorferi significantly in-
creases luxS transcription during transmission from ticks to mam-
mals (21).

A previous study examined whether a B. burgdorferi luxS mu-
tant is able to infect mice (22). Animals were injected with luxS
bacteria, and then tissues from those mice were incubated in bor-
relial culture medium. Quantification of bacteria in mouse tissues
was not attempted. Despite the limitations of this nonquantitative
approach, the authors interpreted outgrowth of bacteria as an
indication that “a LuxS/AI-2 system is not involved in the overall
mammalian infectious process, or, at the very least, in mammalian
host adaptation by B. burgdorferi” (22). A subsequent study by the
same group, again using nonquantitative methods, demonstrated
that luxS mutant B. burgdorferi can also colonize ticks (23).

To reconcile the effects of AI-2 and luxS deletions on borrelial
gene and protein expression patterns with the ability of luxS-de-
ficient bacteria to infect mice, we used the same wild-type and luxS
strains as in the earlier infection studies, but we performed quan-
titative PCR (qPCR) to measure bacterial loads in mouse tissues.
Detailed analyses indicated that the luxS mutant was significantly
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less infectious than the wild type. Thus, the data on the previously
analyzed luxS mutant actually support the hypothesis that LuxS
provides a significant advantage to B. burgdorferi during mamma-
lian infection.

MATERIALS AND METHODS
Bacteria. The previously described Borrelia burgdorferi strain 297 and an
isogenic luxS mutant, AH309, were provided by Michael Norgard (Uni-
versity of Texas Medical Center) (22, 23). B. burgdorferi cells were cultured
in Barbour-Stoenner-Kelly II (BSK-II) broth at 35°C (24). Bacterial cul-
ture densities were determined by visual enumeration, using dark-field
microscopy and a Petroff-Hausser counting chamber. There were no de-
tectable differences in growth rate or other phenotypes between cultured
strains 297 and AH309.

Mouse infections. All animal studies were performed under a proto-
col approved by the University of Kentucky Institutional Animal Care and
Use Committee and in facilities of the University of Kentucky Division of
Laboratory Animal Resources. BALB/cJ mice were used for all infection
studies because they are as susceptible to B. burgdorferi infection as are
other inbred strains, while being less likely to develop stressful arthritis
than strains such as C3H/HeN (25, 26).

Mid-exponential-phase cultures (approximately 107 bacteria/ml)
were adjusted to a density of 105 spirochetes/ml with sterile phosphate-
buffered saline (PBS). For individual infection studies, cohorts of 8
BALB/cJ mice were injected subcutaneously with 100 �l of either B. burg-
dorferi 297 or AH309, resulting in a dose of 104 spirochetes. For compet-
itive infection studies, 8 BALB/cJ mice were injected subcutaneously with
200 �l of a 1:1 mixture of 105 spirochetes of each strain/ml (i.e., 104

spirochetes of each strain per mouse). After 28 days, mice were eutha-
nized, and hearts, urinary bladders, and ears were collected and snap-
frozen at �80°C.

DNA isolation. For use in PCR specificity studies and as a reference for
quantification studies, total bacterial DNAs were purified from mid-ex-
ponential-phase cultures (approximately 107 bacteria/ml) of strains 297

and AH309 by use of DNeasy blood and tissue kits (Qiagen, Germantown,
MD). For analyses of bacterial loads in mouse tissues, total DNAs were
isolated using a Mo Bio Ultraclean tissue and cell DNA isolation kit (Mo
Bio Laboratories, Carlsbad, CA).

qPCR. Bacterial burdens in mouse tissues were assessed using Idaho
Technologies/BioFire buffers (BioFire Diagnostics, Salt Lake City, UT)
and Platinum Taq polymerase (Life Technologies, Grand Island, NY) with
a CFX96 Touch real-time PCR detection platform (Bio-Rad, Hercules,
CA). Oligonucleotide primers are listed in Table 1. Cycling was performed
as follows: 94°C for 3 min and 40 cycles of 94°C for 10 s followed by 30 s at
60°C. Standard curves for each oligonucleotide pair were generated by
diluting a known quantity of genomic DNA in a series of 10-fold serial
dilutions. Threshold cycle (CT) values obtained for experimental samples
were then plotted against this curve to determine quantities of each target.
Melting curve analyses were performed to assess the presence of single
products. Results were analyzed using CFX Manager software (Bio-Rad).
Data comparisons were analyzed by unpaired two-tailed t tests.

For analyses of tissues from mice infected with a single B. burgdorferi
strain, quantities of the single-copy bacterial flaB gene were compared
with quantities of the single-copy mouse nidogen gene, generating ratios
of bacterial chromosomes/mouse chromosomes (27).

For the competition studies, oligonucleotide primer pairs were de-
signed and validated to be specific for either the wild-type luxS gene of
strain 297 or the inactivated luxS gene of AH309 (Table 1 and Fig. 2). For
detection of the wild-type gene, the 3= primer consisted of a sequence
spanning the site of the insertion in the AH309 locus and therefore could
not amplify DNA from the mutant strain AH309. For detection of the
mutant locus, primers were used which amplified the inserted ermC gene.
Quantities of both amplicons produced from each animal tissue were
determined and compared.

Fold differences were calculated for competition studies by comparing
the CT values of the wild-type and mutant bacteria for each tissue speci-
men. A �CT value of 1 is equivalent to a doubling of starting nucleic acid

FIG 1 Activated methyl pathway of B. burgdorferi. MetK synthesizes S-adenosylmethionine (SAM) from ATP and methionine. SAM then acts as a methyl donor
for many metabolic steps, also producing the by-product S-adenosylhomocysteine (SAH). SAH is toxic, so Pfs cleaves that molecule to produce adenine and
S-ribosylhomocysteine (SRH). SRH is nontoxic, and some bacterial species, such as the spirochete Treponema pallidum, end the pathway at this step. B.
burgdorferi instead uses LuxS to cleave SRH into homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD). Biochemical and genetic analyses demonstrated
that B. burgdorferi lacks the ability to further metabolize homocysteine (7, 10). DPD, also known as autoinducer-2 (AI-2), is secreted by B. burgdorferi into the
environment (7).

TABLE 1 Oligonucleotide primers used for PCR

Purpose Primer name Primer sequence (5= to 3=)a

Detection of mouse chromosomes nido-F CCAGCCACAGAATACCATCC
nido-R GGACATACTCTGCTGCCATC

Detection of B. burgdorferi chromosomes flaB-F GGAGCAAACCAAGATGAAGC
flaB-R TCCTGTTGAACACCCTCTTG

Detection of wild-type luxS luxS-F GAGCACATAGGAGCTACTTTACTT
luxS-R TGAGACTAAGTCAACAAGATC-TTTAC

Detection of AH309 mutant luxS locus ermC-F AAACGCTCATTGGCATTACTTT
ermC-R TGAGCTATTCACTTTAGGTTTAGGA

a The dash in the luxS-R sequence indicates the point of luxS into which the ermC gene was inserted to create mutant strain AH309. Due to the split of the luxS-R target sequence in
AH309, that oligonucleotide cannot serve as a PCR primer for AH309 (see Fig. 2).
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material. Therefore, 2�CT converts the difference in observed CT to the
fold difference for queried DNAs.

RESULTS
Infections with individual bacterial strains. Prior comparisons
of wild-type and luxS B. burgdorferi infectivities examined
whether or not mice became infected but did not quantify bacte-
rial loads of the infected animals (22). To address that deficiency,
cohorts of mice were inoculated with 104 bacteria of either the
wild-type (297) or luxS mutant (AH309) strain. After 28 days,
mice were euthanized and total DNA (bacteria and mouse) was
purified from heart and ear tissues. Bacterial loads in each tissue
were determined by ratios of bacterial genomes to the mouse ge-
nome, assessed by qPCR. Numbers of copies of the B. burgdorferi
flaB locus served as proxies for numbers of bacterial chromo-
somes, and the mouse nidogen locus served as the target to deter-
mined numbers of mouse genomes. Mice infected with AH309
contained slightly larger numbers of bacteria in their hearts than
did mice inoculated with 297, with the difference bordering on
statistical significance (P � 0.049), but there were no significant
differences in the bacterial loads of ears from mice infected with
297 or AH309 (Fig. 3). These data demonstrate that the luxS mu-
tant does not have any metabolic deficiencies that inhibit mam-
malian infection.

Wild-type versus mutant competition infections. For a more
sensitive analysis of the role of LuxS during mammalian infection,
head-to-head competitions were undertaken. Mice were simulta-
neously inoculated with equal numbers of both wild-type and luxS
mutant bacteria. The rationale for such studies is that if two strains
are equally virulent, then mice will become infected with equal
numbers of both strains, while differences in infectivity will be
reflected by differences in relative bacterial loads.

To discriminate between the wild-type and luxS mutant
strains, PCR primers were designed which specifically amplify
only the wild-type or mutant luxS locus (Fig. 2). Control PCRs
with purified DNA from each strain confirmed that the oligonu-
cleotide pairs were equally efficient at priming PCRs from their
respective templates.

The strain-specific primer pairs were then used for qPCR anal-
yses of heart, ear, and urinary bladder tissues of eight doubly in-
oculated mice. The analyzed tissues were all distant from the site of

inoculation and therefore measured the bacteria’s ability to dis-
seminate through mice and colonize three different types of tis-
sues. Examination of distal tissues also ensured that detected bac-
teria had survived the processes of injection and dissemination.
Comparisons of resultant data indicated that all tissues of all mice

FIG 2 Specificity of PCR oligonucleotide primer pairs to detect wild-type (297) and luxS mutant (AH309) B. burgdorferi strains. (A) Schematic representation
of locations of sequences complementary to PCR primers. Primers ermC-F and ermC-R both correspond to sequences within the ermC gene that is inserted into
luxS of AH309 (22). Oligonucleotide luxS-R overlaps the ermC insertion site of the AH309 locus and thus cannot serve to prime PCR for that strain. (B) Purified
genomic DNAs from strains 297 and AH309 were subjected to PCRs using each primer pair and then subjected to agarose gel electrophoresis and ethidium
bromide staining. Lane 1, 297 with primers luxS-F and luxS-R; lane 2, 297 with primers ermC-F and ermC-R; lane S, molecular size markers; lane 3, AH309 with
primers luxS-F and luxS-R; lane 4, AH309 with primers ermC-F and ermC-R. Sizes of markers are indicated to the right of the gel.

FIG 3 qPCR analyses of tissues from mice that were singly infected with either
strain 297 or AH309. For each tissue, chromosomal loci of B. burgdorferi and
mice (flaB and nidogen, respectively) were quantified, and data were plotted as
numbers of B. burgdorferi genome equivalents per mouse genome equivalent.
Differences in bacterial loads of heart tissues were equivocal (P � 0.049), while
there were no significant differences in bacterial loads of ear tissues (P � 0.05).
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contained significantly larger numbers of wild-type than mutant
bacteria (Table 2 and Fig. 4). Variations in wild-type/mutant ra-
tios occurred between mice and between tissues of the same ani-
mals. The greatest degree of variation was found for the ears, with
3-fold to 18-fold more wild-type borreliae. Less variability was
seen in the internal organs, i.e., the hearts and urinary bladders.

DISCUSSION

The two strains utilized in the current studies were previously used
for nonquantitative analysis of infectivity, the results of which
were published in this journal with statements such as “AH309
appeared to be fully infectious at wild-type levels” (22). The main
purpose of the present studies was to determine whether or not the
previous conclusions were accurate. Quantification of the bacte-
rial loads in dually infected mice revealed that all three examined
tissue types of all eight infected mice carried significantly greater
loads of wild-type than luxS mutant B. burgdorferi. All examined
tissues— ears, hearts, and urinary bladders—are distal from the
midscapular injection site, which required bacteria to survive, dis-
seminate, and colonize three different tissues. Although qPCR
cannot discriminate live from dead bacteria, these analyses indi-
cated that substantially larger numbers of wild-type bacteria mi-
grated to all tissues, which in itself is a significant difference. Thus,
it can be concluded that mouse infection studies with wild-type
strain 297 and the congenic luxS mutant AH309 do not eliminate
a role for LuxS during mammalian infection but instead provide
support for the hypothesis that LuxS makes a significant contri-
bution.

These results indicate that further studies of the function(s) of
LuxS during mammalian infection are warranted. At present,
there are no published methods to produce clean genetic comple-
mentation of B. burgdorferi mutants. Small differences in expres-
sion of regulatory factors can have large effect on targets, so com-
plementation of the luxS mutation with the wild-type gene on a
plasmid would not be useful. Likewise, restoration of wild-type
luxS to its chromosomal locus by use of an adjacent selectable
marker would also be questionable, since the marker’s insertion
would alter the structure of the chromosome at that locus. Until
tools are available to examine the final molecular Koch’s postulate
on B. burgdorferi LuxS, the question of the enzyme’s contribution
to mammalian infection must remain unanswered, with the un-
derstanding that all available data indicate that LuxS and AI-2

affect the expression of numerous borrelial proteins and have a
positive effect on mammalian infection.

Competition studies between mutant and wild-type bacteria
can effectively identify bacterial factors that contribute to mam-
malian infection, because the question being asked is not whether
the mutant is merely capable of infection but whether the infec-
tivity of the mutant is equivalent to that of the wild-type pathogen.
Previous studies demonstrated that competitive index studies
magnify the negative impacts of mutations, making them more
readily detectable (e.g., see references 28 and 29). Such analyses
are particularly relevant to B. burgdorferi, since transmitting ticks
are generally colonized with mixtures of borrelial variants (3).
Thus, there is intense selective pressure on each Lyme disease spi-
rochete to maximize its efficiency of infection and to avoid being
outcompeted.

Although regulatory factors are often perceived as on/off
switches, many function more like rheostats, incrementally ad-
justing transcription to meet specific needs of the organism. Prior
analyses of the effects of AI-2 on B. burgdorferi indicated that this
molecule affects borrelial protein levels in a rheostat manner (4, 7,
20). The previous (22, 23) and current studies indicate that the
inability to produce LuxS and AI-2 does not render B. burgdorferi
noninfectious, yet the impacts of LuxS/AI-2 on borrelial protein
expression suggest an appreciable benefit of these factors (4, 7, 20).
Combining results of these infection studies with previous studies
of cultured borreliae, we hypothesize that AI-2 enables precise
control of important host-interactive proteins.

Pathogens produce numerous substances that can be described
as “virulence factors,” or proteins and other molecules that con-
tribute to infectivity. In addition to LuxS, the significance of at
least three other B. burgdorferi factors became evident after quan-
titative infection assays. B. burgdorferi organisms that are unable
to produce BBA03, a surface protein of unknown function, are
capable of infecting mice yet were outcompeted in dual-infection
studies with wild-type bacteria (30). Similar analyses indicated
that the naturally occurring replicon lp28-3 encodes at least one
factor that makes a significant contribution to mammalian infec-
tion (31). Mutant B. burgdorferi organisms that are unable to pro-
duce the surface-exposed fibronectin-binding protein BBK32 are
capable of infecting mice (32). However, the 50% infective dose
(ID50) of a bbk32 mutant was determined to be approximately
10-fold greater than that of the wild type (33). Subsequent studies

TABLE 2 Results of dual-infection studies

Animal
no.

Raw CT valuea

Heart Bladder Ear

297 AH309 297 AH309 297 AH309

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 31.068 0.729 32.860 0.281 30.863 1.422 33.555 0.208 30.550 0.811 32.775 0.661
2 30.265 0.296 32.763 0.272 30.673 0.534 33.893 0.419 31.620 0.440 32.798 0.511
3 31.173 1.667 33.180 0.913 30.293 0.571 32.170 0.612 30.493 0.456 33.683 1.429
4 30.370 0.921 33.143 0.452 30.728 2.049 31.733 1.112 30.865 0.389 33.325 0.106
5 30.703 1.517 33.130 1.300 30.138 0.676 32.763 1.055 30.810 0.819 34.763 2.401
6 31.395 1.759 33.015 0.843 30.680 1.953 30.738 0.787 30.170 0.561 32.355 0.324
7 29.795 1.186 33.035 1.138 30.638 0.296 31.880 1.612 30.578 0.096 32.883 1.000
8 30.295 1.193 31.790 0.707 30.375 0.423 33.003 0.604 33.083 2.005 34.080 0.042
a Values represent the means for two separate trials, with two measurements per trial. Student’s t test was performed, and CT values obtained for target loci of strains 297 and
AH309 were found to differ significantly across all tissues in all animals, with P values of �0.0001, 0.0015, and 0.0003 for the heart, bladder, and ear, respectively.
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found that BBK32 plays a role in B. burgdorferi escape from the
bloodstream (34).

B. burgdorferi secretes AI-2 into the culture medium and can
respond to externally supplied AI-2, as do V. harveyi and S. Ty-
phimurium (4, 7). The mechanism by which AI-2 influences B.
burgdorferi protein expression is not yet known. V. harveyi and S.
Typhimurium each use very different mechanisms to detect and
respond to AI-2 (12, 14, 15). V. harveyi utilizes a two-component
phosphorelay system that senses external AI-2 and sends an inter-
nal signal (15). B. burgdorferi possesses two two-component reg-
ulatory systems, the triggers for neither of which have been deter-
mined (3, 10). However, mutations in either of the two borrelial
two-component systems have more drastic effects than does dis-
ruption of LuxS function, suggesting that they are probably not
key to AI-2 signaling (35, 36). In contrast, S. Typhimurium uses an
ABC transport system to internalize AI-2 (17, 18). DPD/AI-2
structurally resembles ribose, and the S. Typhimurium trans-
porter is related to ribose transporters (13, 16–18). Along that line,
B. burgdorferi cannot use ribose as a carbon source, yet the spiro-
chete encodes a putative ABC transport system that resembles
known ribose transporters (10, 37). B. burgdorferi also encodes
two proteins that resemble pentose-sensing DNA-binding pro-
teins, one of which has been named BadR and demonstrated to be
a transcriptional regulator (10, 38). Alternatively, noting that two
proteobacteria use radically different methods to respond to AI-2,
it is possible that a distantly related spirochete may have evolved
yet another mechanism.

As do other studied bacterial species, B. burgdorferi maximally
produces DPD/AI-2 during periods of high metabolic activity (7,
39, 40). Thus, concentrations of AI-2 are reflective of the bacterial
growth rate (40). In this way, AI-2 differs from “typical” quorum
sensing molecules, which are thought to be indicative of bacterial
density (41, 42). The rate at which B. burgdorferi grows varies
during its tick-mammal infection cycle, with essentially no bacte-
rial growth during colonization of the nutrient-poor environment
in the unfed tick midgut but rapid growth during transmission,
when the tick ingests nutritious blood, and during infection of
tissues throughout the vertebrate host (1, 3, 43–49). Correspond-
ing with the changes in growth rate, expression of luxS increases
significantly during transmission of B. burgdorferi from ticks to
mammals (21). The concomitant increase in AI-2 production may
benefit B. burgdorferi at stages in which multiple bacteria are
found in close proximity, such as during periods of cell division.
Molecules that are secreted and have their concentrations sensed,
such as AI-2, can also provide individual bacteria with informa-
tion on the nature of their local environment: in an open environ-
ment, such as the bloodstream, AI-2 will rapidly diffuse away,
whereas it will accumulate in a closed environment, such as the
solid tissues that are preferred by B. burgdorferi for vertebrate col-
onization (3, 50, 51). This hypothesis can explain the observed
variations in bacterial loads and differences in wild-type/mutant
ratios possibly being affected by animal-to-animal differences in
microvasculature structures or extracellular matrix distribution.

In conclusion, quantitative analyses of a previously examined
B. burgdorferi luxS mutant demonstrated that the mutant is sig-
nificantly impaired in the ability to infect mammals. These data
disprove prior conclusions and suggest that LuxS does indeed per-
form a significant function(s) during mammalian infection. Pre-
vious studies indicated that AI-2 affects the expression levels of
several proteins known to be involved in mammalian infection (4,

FIG 4 qPCR analyses of tissues from mice that were simultaneously injected
with 104 bacteria (each) of both strains 297 and AH309. Total DNAs were
extracted from the hearts, urinary bladders, and ear pinnae of eight mice.
Ratios of wild-type (strain 297) to luxS mutant (strain AH309) bacteria were
calculated from the �CT values for each strain in each tissue. Competition
indexes were calculated for every mouse tissue.
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7, 20), suggesting that the defects of the luxS mutant are probably
pleiotropic. Further studies should be undertaken to discover the
mechanism by which the Lyme disease spirochete responds to
AI-2. These results also serve as reminders that determination of
whether or not a bacterial component is involved with infection
cannot always be achieved through nonquantitative methods.
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