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Abstract
There are 33 human tetraspanin proteins, emerging 
as key players in malignancy, the immune system, 
fertilization, cellular signaling, adhesion, morphology, 
motility, proliferation, and tumor invasion. CD9, a 
member of the tetraspanin family, associates with and 
influences a variety of cell-surface molecules. Through 
these interactions, CD9 modifies multiple cellular 
events, including adhesion, migration, proliferation, and 
survival. CD9 is therefore considered to play a role in 
several stages during cancer development. Reduced 
CD9 expression is generally related to venous vessel 
invasion and metastasis as well as poor prognosis. We 

found that treatment of mice bearing human gastric 
cancer cells with anti-CD9 antibody successfully inhibited 
tumor progression via  antiproliferative, proapoptotic, and 
antiangiogenic effects, strongly indicating that CD9 is a 
possible therapeutic target in patients with gastric cancer. 
Here, we describe the possibility of CD9 manipulation as 
a novel therapeutic strategy in gastric cancer, which still 
shows poor prognosis.
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Core tip: Tetraspanin CD9 is a cell-surface protein with 
four transmembrane domains and is found in several 
organs. Although CD9 was primarily identified as a 
tumor suppressor, it exhibits diverse functions through 
its association with various partner proteins. CD9 
relates to tumor proliferation, apoptosis, migration, 
adhesion, and angiogenesis, therefore involving several 
steps of tumor formation: communication with the 
environment, dissemination, and metastasis. In this 
review, we describe the possibility of CD9 manipulation 
as a novel therapeutic strategy to improve clinical 
outcome in gastric cancer.
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INTRODUCTION
Gastric cancer is one of the most common malignancies, 
remaining a major public health issue as the fourth 
most common cancer and the second leading cause 
of cancer death worldwide[1], with a particularly high 
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Table 1  CD9 associated with partner proteins
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incidence in Japan, China, South Korea, Chile and 
Costa Rica. The large regional incidence variations 
possibly reflect different prevalences of Helicobacter 
pylori infection, which is responsible for > 60% of 
gastric cancer globally. Advanced gastric cancer is an 
aggressive disease, and the prognosis remains poor. 
The 5-year survival rate for locoregional disease is 
25%-35%[2-4] and the median survival ranges from 
10 to 14 mo in advanced disease[5,6]. Although various 
treatment modalities have been developed and the 
mortality rate of gastric cancer has gradually decreased 
over recent decades[7], many of them have failed to 
eliminate gastric cancer cells curatively[8]. Therefore, a 
novel therapeutic strategy is clinically desired.

CD9, a member of the tetraspanin family, has 
been reported to relate to growth and invasion of 
tumor cells. There are many reports of the relationship 
between CD9 expression and disease prognosis. In 
addition, molecular mechanisms of CD9 functions 
have been gradually clarified. In this field, we also 
reported apoptotic signals after CD9 ligation in gastric 
cancer cells, as well as the treatment of gastric-cancer-
bearing mice with anti-CD9 antibody.

We review the characteristics of CD9 and discuss 
the possibility of CD9 as a novel therapeutic target in 
gastric cancer.

CD9 FUNCTIONS
Tetraspanins, which have four putative membrane-
spanning domains, are integral membrane proteins 
including at least 33 distinct family members, such as 
CD9,CD37, CD53, CD63, CD81, CD82, and CD151[9-11]. 
Members of this family are involved in many physiological 
and pathological processes, such as fertilization, cellular 
adhesion, motility, and tumor invasion[9-12]. To date, 
tetraspanins are believed to act as molecular facilitators 
or adaptors, which form a network of interaction among 
the cell-surface molecules, known as the “tetraspanin 
web” or tetraspan-enriched microdomains[12,13]. Notably, 
some tetraspanin proteins have key roles in tumor 
initiation, promotion, metastasis, and angiogenesis.

CD9, which was identified as a suppressor of cancer 
spread[14], belongs to the tetraspanin family. Like other 
tetraspanins, CD9 has four putative transmembrane 
domains, which provide the short N- and C-terminal 
cytoplasmic domains, a small intracellular loop, and 
two extracellular loops[11,12] (Figure 1). CD9 is widely 
expressed on the surface of several types of cells, 
including many malignant tumor cells as well as normal 
hematopoietic, endothelial and epithelial cells[11,12].

CD9 interacts with a number of transmembrane 
proteins, including integrins, immunoglobulin superfamily 
member EWI proteins (EWI-2 and EWI-F) and other 
tetraspanins (e.g., CD81 and CD151)[10-13], Claudin-1[15], 
epidermal growth factor receptor (EGFR)[16], and 
membrane-bound ligands for EGFR[17-19] (Table 1). 
These interactions form functional complexes, which 

facilitate cell adhesion, motility, and signaling[10,20-24]. 
For examples, antibody (Ab) ligation of CD9 induces 
homotypic aggregation of pre-B cells and augments 
their adhesion to bone marrow fibroblasts through the 
modification of integrins[10]. Treatment with anti-CD9 
Ab can induce strong adhesion between stromal and 
hematopoietic cells[25,26] as well as inhibit the migration of 
malignant cells[27]. In addition, CD9 acts as a co-receptor 
for diphtheria toxin. CD9 does not bind directly to the 
toxin, but interacts with the diphtheria toxin receptor 
(transmembrane precursor of heparin-binding epidermal-
growth-factor-like growth factor; HB-EGF), leading 
to the elevation of juxtacrine activity of HB-EGF[28,29]. 
Also, CD9 functionally associates with Fcγ receptors, 
and co-cross-linking of CD9-Fcγ receptors modifies 
signals for phagocytosis and inflammatory responses on 
macrophages[30].

CD9 affects physical processes, such as cell 
proliferation, apoptosis and tumor metastasis[31-33]. 
Treatment of cells with anti-CD9 Ab has revealed 
antiproliferative effects[16,18] via the suppression of 
extracellular signal-regulated kinase (ERK) 1/2 activity[31]. 
In addition, CD9 ligation concurrently induces apoptosis 
via the selective activation of the c-Jun N-terminal 
kinase/stress-activated protein kinase (JNK/SAPK) and 
p38 mitogen-activated protein kinase (MAPK) pathway, 
as well as caspase-3 and the p46 Shc isoform[31]. 
Moreover, CD9 can associate with conventional protein 
kinase C (PKC) isoforms including PKCα and PKCβ[34], 
as well as type Ⅱ phosphatidylinositol 4-kinase[35], 
which could contribute to tumor-suppressor functions. 
In addition, CD9 may affect the Wnt signaling pathway 
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Partner protein Function Ref.

EWI-2 Modulates integrin-dependent 
cell motility, morphology and/

or spreading

[5-6,8,44,45,50]

EWI-F Functions unknown [5-6,8,46,47]
Integrin β1 CD9 modulates integrin-

dependent cell morphology, cell 
migration, signaling and adhe-

sion strengthening

[5,11]

Other tetraspanins 
(e.g., CD81, CD151)

Form TEMs [7,8]

Claudin-1 CD9 stabilizes expression of 
non-junctional Claudin-1

[10]

EGFR CD9 enhances the internaliza-
tion of EGFR and reduces EGF-

EGFR-induced signals

[11]

HB-EGF CD9 upregulates both diphthe-
ria toxin binding and mitogenic 

functions of HB-EGF

[23,24]

PKC isoforms Contribute to signaling and 
tumor-suppressor functions

[29]

Type Ⅱ PI4K Contribute to signaling and 
tumor-suppressor functions

[30]

EGFR: Epidermal growth factor receptor; HB-EGF: Heparin-binding 
epidermal-growth-factor-like growth factor; PKC: Protein kinase C; TEMS: 
Tetraspan-enriched microdomains.



by downregulating Wnt genes[36]. Expression of CD9 
also acts to protect transforming growth factor α from 
cleavage, thereby regulating cell proliferation and 
migration[19]. Therefore, CD9 expression has an ability to 
regulate a variety of intracellular signals.

CD9 AND CANCER
From experiments manipulating CD9 in tumor cell 
lines, CD9 has been demonstrated to be primarily a 
suppressor of metastasis[27,37-40]. Several clinical studies 
have also shown an important prognostic value of CD9. 
The reduced CD9 expression is associated with poor 
prognosis in melanoma[41], non-small-cell lung cancer[28], 
and breast[37,42], colon[43], pancreatic[44], ovarian[45] and 
prostate[46] cancer. Expression of CD9 is also related to 
metastasis of the gastrointestinal carcinoma[43,44,47,48]. 
For example, reduced CD9 expression is significantly 
associated with more venous vessel invasion and liver 
metastasis in patients with colon cancer[27,43]. Although 
diverse physiological functions (clinical data) of CD9 
have been suggested[49,50], we and others have found 
that the amount of CD9 is inversely correlated with 
lymph node status in gastric cancer[48] and in esophageal 
squamous cell carcinoma[47]. Moreover, expression of 
CD9 protein in gastric cancer tissues was significantly 
stronger in patients without regional lymph node or 
distant metastasis than in those with metastasis[51]. 
Furthermore, the reduction of CD9 protein was asso
ciated with distant metastasis of gastric cancer. Thus, 
decreased levels of CD9 are strongly associated with an 
increased risk of recurrence, especially in patients with 
N0 nodal status and M0 metastatic status. Low levels 
of CD9 expression are related to poor prognosis. These 
findings are consistent with previous reports. Therefore, 
reduced CD9 expression is generally related to more 
venous vessel invasion and metastasis as well as poor 
prognosis in most common types of cancer.

As mentioned above, many investigators believe 
that CD9 is a suppressor of tumor development.

POSSIBILITY OF CD9-TARGETED 
THERAPY IN GASTRIC CANCER
Anti-CD9 monoclonal Abs (mAbs), ALB6 and PAINS-13 
are ligand-mimic Abs, therefore, Ab ligation of CD9 
with these antibodies enhances, but does not inhibit, 
CD9 functions (Figure 2). We first introduce some 
interesting data concerning mechanisms of CD9 
functions obtained by using these Abs. We previously 
reported that treatment with anti-CD9 mAb (ALB6), 
which enhances CD9 functions, inhibited cell growth 
in CD9-positive tumor cell lines (MKN-28, MKN-45, 
SW480, HT-29, CaCO2, MIA-PaCa-2 and A459)[31]. 
In a gastric cancer line MKN-28, CD9 ligation induced 
apoptosis. ALB6 treatment activated JNK/SAPK and 
p38 MAPK as well as caspase-3[31]. Notably, ALB6 
treatment selectively induced tyrosine phosphorylation 
of the p46 Shc isoform, and overexpression of its 
dominant-negative form completely cancelled the 
ALB6-induced activation of JNK/SAPK, p38 MAPK and 
caspase-3, leading to loss of apoptosis. Therefore, Ab 
ligation of CD9 induced apoptotic signals via restricted 
activation of the p46 Shc isoform. We also reported 
that CD9 ligation enhanced the internalization of 
EGFR[16]. ALB6 treatment induced a dotted or patch-
like aggregation composed of CD9-EGFR and CD9-β1 
integrin on the surface of MKN-28 cells. Furthermore, 
expression of CD9 specifically attenuated EGFR 
signaling in CD9-overexpressing CHO cells via the 
downregulation of surface expression of EGFR[16]. 
Therefore, CD9 expression negatively regulates cell 
surface EGFR expression levels. Finally, we examined 
in vivo effects of ALB6 Ab to treat patients with gastric 
cancer. MKN-28 cells were inoculated subcutaneously 
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Figure 1  Structural features of CD9. CD9 has four putative transmembrane domains, which provide the short N- and C-terminal cytoplasmic domains, a small 
intracellular loop, and two extracellular loops. C: Cysteine; G: Glycine.
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into SCID mice. After a tumor was visualized, the MKN-
28-bearing mice were injected with ALB6 or control 
Ab three times per week. In the ALB6 treatment 
group, tumor volume was significantly suppressed, 
and the apoptotic indexes were increased. Therefore, 
administration of mice bearing human gastric cancer 
cells with anti-CD9 Ab successfully inhibited tumor 
progression[52]. Similar to our results, it has been 
reported that anti-CD9 mAb PAINS 13 inhibited in vivo 
tumor growth of colon cancer cells[53]. The inhibition 
of cell proliferation in colon carcinoma cells caused by 
anti-CD9 mAbs PAINS‑13 was related to the enhanced 
integrin-dependent adhesion and the increased 
expression of membrane tumor necrosis factor (TNF)-α.

Therefore, TNF-α partly mediates the antipro
liferative effects of CD9 in this case.

Overexpression of vascular endothelial growth factor 
(VEGF)-A is associated with tumor angiogenesis, nodal 
metastasis, and poor prognosis in cancer patients[54,55]. 
A report that CD9 gene transduction could downregulate 
VEGF-A expression is now available[36]. In this situation, 
CD9 is also likely to regulate tumor development 
negatively.

With regard to interactions between CD9 and 
integrins, CD9 seems to positively and/or negatively 
involve tumor development through functional 
modification of integrins. Indeed, the enhancement 
of integrin-mediated cell adhesion by CD9 inhibits 
metastasis and invasion of tumor cells and contributes 
to cell-adhesion-mediated drug resistance[56].

PRESENT TREATMENT FOR PATIENTS 
WITH GASTRIC CANCER
Improving molecular characterization has translated 
into better survival in select patients with advanced 
gastric and esophageal cancer. Trastuzumab, an 
antibody targeting the anti-human epidermal growth 
factor receptor 2 (HER2) extracellular domain, induces 
antibody-dependent cellular cytotoxicity and inhibits 
the HER2 downstream signals. In the ToGA study, 
standard chemotherapy regimens (capecitabine 
plus cisplatin or fluorouracil plus cisplatin) combined 
with trastuzumab resulted in a longer survival time 
than standard regimens without trastuzumab in 
patients with HER2-positive gastric cancer[57,58]. In 
addition, ramucirumab, an mAb targeting vascular 
endothelial growth factor receptor (VEGFR)-2, is 
the first biological treatment that showed survival 
benefits as a single-agent therapy for the second-
line chemotherapy (REGARD trial) in patients with 
advanced gastric cancer who progressed after first-
line chemotherapy[59]. An early report of the phase Ⅲ 
RAINBOW trial, testing ramucirumab in combination 
with paclitaxel for the second-line therapy after 
platinum-fluoropyrimidine failure, also demonstrated 
an overall survival benefit of 9.6 mo vs 7.4 mo 
as compared with paclitaxel alone[60]. With recent 
success of ramucirumab, investigations with several 
other antiangiogenic agents have begun. These 
include the VEGFR-2 inhibitor, apatinib, and the multi-
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Figure 2  CD9 signaling. CD9-EGFR and CD9-β1 integrin co-localize on the cell surface. CD9 enhances the internalization of EGFR and reduces EGF-EGFR-
induced signals[11]. CD9 ligation induced apoptosis via the selective activation of JNK and p38 MAPK pathway as well as caspase-3 and the p46 Shc isoform[26]. 
CD9 modulates integrin-dependent cell motility, cell migration, adhesion strengthening, and spreading[5,11]. EGFR: Epidermal growth factor receptor; p38 MAPK: p38 
mitogen-activated-protein kinase; JNK: c-Jun NH2-terminal kinase; FAK: Focal adhesion kinase.
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targeted tyrosine kinase receptor inhibitors, axitinib 
and pazopanib[60]. In addition to the HER family and 
VEGFRs, the phosphatidylinositol 3-kinase-AKT-
mammalian target of rapamycin (mTOR) and the 
c-MET signaling pathways are promising candidates, 
and some molecular targeting agents are now in 
clinical investigation[61].

FUTURE PROSPECTS
A number of recent reports have suggested that 
tetraspanin targeting by Abs, soluble large-loop 
proteins, RNAi technology, or adenoviral transduction 
methods could be therapeutically beneficial[62]. In the 
case of CD9, we and others have proposed that CD9 
ligation is likely to be useful to treat malignancies. 
Ectopic expression of CD9 in small-cell lung carcinoma 
cells inhibited their proliferation[63], and adenoviral 
transduction of CD9 inhibited lymph node metastasis 
in an orthotopic lung cancer model[40]. With cDNA 
expression microarray experiments, CD9 was reported 
to be one of the genes upregulated in gastric cancer[64]. 
Thus, CD9 expression in non-cancerous tissues is 
lower than that in gastric cancer tissues, indicating 
that adverse effects of anti-CD9 treatment on normal 
gastrointestinal tissues might be tolerable.

Tumor growth is dependent on angiogenesis, which 
forms new blood vessels[65]. Targeting tumor vessels 
provides several advantages over traditional anti-tumor 
approaches. CD9 enhancement contributes to tumor 
angiogenesis, presumably by affecting endothelial cell 
function, although their contributions to angiogenesis 
have not been shown using de novo tumor models. It 
was previously reported that CD9 gene transduction 
could downregulate VEGF-A expression, which is 
essential for angiogenesis[36]. Therefore, enhancement 
of CD9 functions may also be worthwhile in particular 
circumstances.

With regard to tumor metastasis, CD9 is involved 
in cell adhesion via enhancing integrin functions. In 
addition, associations of CD9 with EWI-2[10,11,13,66,67], 
EWI-F[68,69], EPCAM[70], Claudin-1[10] or HB-EGF[23,24] 

could have different effects on tumor cell invasion and 
metastasis. Indeed, the CD9 partners EWI-F[71] and 
EWI-2 can markedly affect cell migration[72], and EWI-2 
influences the association of CD9 with membrane-type 
1 matrix metalloproteinase (MT1‑MMP; also known as 
MMP14) and MMP2[73], which could alter proteolysis 
during invasion. Thus, CD9 acts on multiple steps of 
tumorigenesis, and because CD9 function is dependent 
on its associating proteins, efficacy of the CD9-
targeting therapy may be determined by expression of 
these associating molecules as well as CD9 itself.

CONCLUSION
Molecular mechanisms for CD9 functions have been 
understood through identification of CD9-associating 
proteins. Ab ligation of CD9 is a powerful tool to 

change CD9 functions, and we showed apoptotic 
signals after CD9 ligation in gastric cancer cells as well 
as successful treatment of gastric-cancer-bearing mice 
with anti-CD9 Ab. CD9 influences intracellular signals, 
cell adhesion, and cell proliferation, and is involved in 
several events during development of gastric cancer. 
Taken together with evidence from clinical data, the 
manipulation of CD9 is likely to have the potential to 
improve clinical results of therapy for gastric cancer. 
When implementing CD9-targeted therapy in gastric 
cancer, we should come up with various ideas to 
enhance CD9 functions.

A new therapy to target HER2, VEGFR-2, is 
responsible for a significant increase in survival of 
patients with advanced gastric cancer. Unfortunately, 
advanced gastric cancer continues to have a poor 
prognosis. In the future, new strategies to target 
CD9 will hopefully be developed and implemented for 
gastric cancer treatment.
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