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Abstract

Aspergillus terreus is emerging as an etiologic agent of invasive aspergillosis in immuno-
compromised individuals in several medical centers in the world. Infections due to A. terreus
are of concern due to its resistance to amphotericin B, in vivo and in vitro, resulting in poor
response to antifungal therapy and high mortality. Herein we examined a large collection of
molecularly characterized, geographically diverse A. terreus isolates (n = 140) from clinical
and environmental sources in India for the occurrence of cryptic A. terreus species. The
population structure of the Indian A. terreus isolates and their association with those outside
India was determined using microsatellite based typing (STR) technique and Amplified
Fragment Length Polymorphism analysis (AFLP). Additionally, in vitro antifungal suscepti-
bility of A. terreus isolates was determined against 7 antifungals. Sequence analyses of the
calmodulin locus identified the recently described cryptic species A. hortai, comprising

1.4% of Aspergillus section Terrei isolates cultured from cases of aspergilloma and probable
invasive aspergillosis not reported previously. All the nine markers used for STR typing of
A. terreus species complex proved to be highly polymorphic. The presence of high genetic
diversity revealing 75 distinct genotypes among 101 Indian A. terreus isolates was similar to
the marked heterogeneity noticed in the 47 global A. terreus population exhibiting 38 unique
genotypes mainly among isolates from North America and Europe. Also, AFLP analysis
showed distinct banding patterns for genotypically diverse A. terreus isolates. Furthermore,
no correlation between a particular genotype and amphotericin B susceptibility was ob-
served. Overall, 8% of the A. terreus isolates exhibited low MICs of amphotericin B. All the
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echinocandins and azoles (voriconazole, posaconazole and isavuconazole) demonstrated
high potency against all the isolates. The study emphasizes the need of molecular charac-

terization of A. terreus species complex isolates to better understand the ecology, acquisi-

tion and transmission of this species.

Introduction

Invasive aspergillosis (IA) is a devastating and difficult to manage disease, which is associated
with significantly high morbidity and mortality, especially in immunocompromised patients
with haematological malignancy or recipients of allogeneic hematopoietic stem cell transplan-
tation [1- 3]. Furthermore, other forms of aspergillosis such as aspergilloma, chronic pulmo-
nary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA) can cause
considerable morbidity and mortality in immunocompetent or mildly immunocompromised
hosts [4]. While Aspergillus fumigatus is the most common causative agent of IA, Aspergillus
terreus remains the third most important etiologic agent of IA [5-7]. Interestingly, A. terreus
appears to be the commonest cause of infection in some medical centers, particularly in Hous-
ton, Texas and Innsbruck, Austria [8, 9]. Infections due to A. terreus are worrisome due to its
in vivo and in vitro resistance to amphotericin B (AMB) and are thus associated with a lower
rate of response to antifungal therapy and a higher rate of IA-associated mortality (51% versus
30%) compared with non-terreus species of Aspergillus [8-13].

Recently, Samson et al. (2011) [14], using a polyphasic approach, described seven lineages
among A. terreus isolates. They proposed 7 species in Aspergillus section Terrei namely A. ter-
reus sensu stricto, A. alabamensis, A. floccosus, A. neoafricanus, A. aureoterreus, A. hortai and
A. pseudoterreus [14]. Although the new species are defined in the A. terreus species complex,
molecular studies exploring the population structure of this important fungal pathogen are
limited vis-d-vis that of A. fumigatus [15-17]. Previously only two studies, originating from the
USA had explored the population structure of global A. terreus isolates [18, 19]. Balajee et al.
[18] using multi-locus comparative sequence analysis of three genes reported the existence of a
single, globally distributed A. terreus population in a collection of 94 clinical and environmen-
tal isolates. However, Neal et al. [19] in 2011 genotyped 117 A. terreus isolates from the USA
and Europe by using Inter-Simple Sequence Repeat (ISSR) PCR and demonstrated that one
clade comprised exclusively of isolates from Europe and another was enriched with isolates
from the USA. Overall, the data on genetic variability within A. terreus is inadequate due to
lack of application of reliable methods. We aimed to study the population structure of a large
collection of 140 molecularly characterized A. terreus isolates from various hospitals and the
environment in Delhi, India and its adjoining regions, using a robust microsatellite based typ-
ing technique (referred as short tandem repeat; STR typing) and Amplified Fragment Length
Polymorphism (AFLP) analysis. Furthermore, the association between isolates from India and
those outside of India was studied. Additionally, in vitro antifungal susceptibility of A. terreus
isolates against medical triazoles, echinocandins and AMB using CLSI M38-A2, was deter-
mined to examine if any specific antifungal susceptibility pattern correlated with a particular
genetic lineage. The data obtained by genotyping methods revealed the presence of a recently
delineated cryptic species, A. hortai in the Aspergillus section Terrei, as an etiologic agent of
aspergilloma and IA, not reported previously.
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Materials and Methods

Ethics Statement

All necessary permits were obtained for the described field studies. The study was approved by
the V.P. Chest Institute’s (VPCI) Ethics Committee, and a written informed consent was taken
from all subjects. The ethical clearance for field studies of Central park, VPCI was obtained by
V.P. Chest Institute’s Ethics Committee. The permission for collection of soil from privately
owned agricultural fields were obtained from the owner (JK, Haryana).

Fungal isolates and their morphological characterization

A total of 140 A. terreus isolates including 128 clinical isolates collected from 6 hospitals in
Delhi and 12 environmental isolates, during 2009-2014 were analyzed. The details of Indian
clinical and environmental isolates are included in S1 Table and global isolates used in this
study are included in S2 Table. Briefly, clinical isolates originated from patients with chronic
respiratory disorders, IA, ABPA, allergic fungal rhinosinusitis (AFRS), and CPA. The 12 A. ter-
reus soil isolates were selected from a collection of environmental isolates, processed and
stocked during an ongoing survey of azole resistant A. fumigatus [20]. Of these, two A. terreus
isolates originated from the central park surrounding V. P. Chest Institute, and the remaining
10 isolates were from a rose garden (n = 3) and agricultural fields of rice (Oryza sativa, n = 3),
red chilli (Capsicum annuum, n = 2), fenugreek (Trigonella foenum-graecum, n = 1) and wheat
(Triticum aestivum, n = 1) in Delhi and Haryana, India.

All of the isolates were stored at -70°C in glycerol. Preliminary species identification was
based on colony colour and morphology of the isolates on Czapek dox agar plates incubated at
28°C for 7 days.

Molecular identification by (Cmd) gene sequencing and Phylogenetic
analysis

All phenotypically characterized A. terreus isolates were confirmed by sequencing of the Cmd
gene. DNA extraction was done as described previously [21]. Briefly, the DNA was extracted
by subjecting A. terreus spores to bead beating in the presence of extraction buffer (0.2 M Tris-
HCI 10 mM EDTA, 0.5 M NaCl, 1% SDS) followed by the phenol, chloroform and isoamyl al-
cohol (25:24:1) extraction and ethanol precipitation. The extracted DNA was subjected to am-
plification of part of the Cmd gene with primers cmd5 (5-CCGAGTACAAGGAGGCCTTC-
3’) and cmd6 (5-CCGATAGAGGTCATAACGTGG-3’) [22]. Additionally, a set of distinct 12
A. terreus isolates revealing a separate clade in Cmd phylogenetic analysis were also character-
ized using B-tubulin gene primers Bt2a (5-GGTAACCAAATCGGTGCTGCTTTC-3’) and
Bt2b (5-ACCCTCAGTGTAGTGACCCTTGGC-3’) [23].

The amplification was followed by purification of the amplified product using Wizard SV
Gel and PCR Clean-up System (Promega, Fitchburg, WI, USA) and sequencing on an ABI
3130XL genetic analyzer (Applied Biosystems, Foster City, CA) using the Big Dye terminator
kit (v3.1, RR-100; Applied Biosystems) [21]. DNA sequences were analyzed with Sequencing
Analysis software version 5.3.1 (Applied Biosystems). Cind and S-tubulin gene sequences were
subjected to BLAST searches at GenBank (http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi) and
CBS database (http://www.cbs.knaw.nl/Collections/BioloMICSSequences.aspx?file = all). Se-
quence-based species identification was defined by >99% similarity. For phylogenetic analyses,
the Cmd and S- tubulin gene sequences of the type and reference A. terreus isolates were re-
trieved from NCBI database. All the sequences were aligned with ClustalW program (version
1.82), and the final alignments were edited manually. A maximum likelihood tree based on
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Cmd and B-tubulin gene sequences using 2000 bootstrap replications were constructed using
MEGA version 5 [24].

Genotyping of A. terreus isolates

A set of 122 A. terreus isolates (110 clinical, 12 environmental) based on Cmd sequence analysis
were selected for genotypic analysis using AFLP and STR technique. Of 140 isolates, 18 exhibit-
ing >99% sequence similarity and mainly colonizers were excluded for AFLP and STR typing.

Amplified fragment length polymorphism analysis

About 50 ng of genomic DNA was subjected to restriction ligation procedure using HpyCH4IV
and Msel restriction enzymes (New England Biolabs, Beverly, MA, USA) and complementary
adaptors as described previously [25]. The restriction-ligation reaction was diluted by adding
80 ul Tris/HCI (pH 8.3) buffer. One microliter of this diluted product was amplified in a final
volume of 25 pl, using selective primers HpyCH4IV-C (5’ -FLU-GTAGACTGCG-
TACCCGTC-3') and Msel-TGAG (5-GATGAGTCCTGACTAATGAT-3"). One microliter of
the 10x diluted amplicon was added to a mixture of 8.9 pl water and 0.1 pl LIZ600 internal size
marker (Applied Biosystems), followed by heating the diluted sample for 1 min to 95°C and
subsequent fragment analysis on an ABI 3500xL Genetic Analyzer (Applied Biosystems).

A raw data analyses was done using Bionumerics v6.0 (Applied Maths, Sint-Martens-Latem,
Belgium) and a dendrogram using standard Pearson and unweighted pair group method with
arithmetic mean (UPGMA) was generated. The reference/type strains of Aspergillus terreus
CBS 601.65" (soil, Connecticut); A. terreus var. floccosus CBS 116.37" (syn. A. floccosus, waste
cloth, China) and A. terreus var. africanus CBS 130.55" (syn. A. neoafricanus, soil, Ghana)
were included for AFLP analysis.

Microsatellite analysis

A total of 122 A. terreus isolates were subjected to microsatellite typing using a panel of nine
short tandem repeats (STR) to evaluate the genetic relatedness between the isolates. Twenty-
one isolates revealing no amplification at >2 loci after repeated attempts were excluded from
the analysis. Thus, STR analysis was carried out for 101 A. terreus isolates (91 clinical, 10 envi-
ronmental). Three di-, tri- or tetranucleotide repeat markers, described previously, were ampli-
fied using three multiplex PCRs, namely, M2, M3 and M4, respectively [26]. One of the
primers for each marker was labeled at the 5’end with either carboxyfluorescein (FAM),
dimethoxyfluorescein (JOE) or tetramethylrhodamine (TAMRA). Optimization of primer con-
centration and PCR conditions were carried out as described previously [26]. Briefly, the reac-
tion was run with an initial denaturation step of 95°C for 10 min followed by 30 cycles of 30 s
denaturation, 30 s of annealing at 60°C and 1 min extension at 72°C and a subsequent final
elongation at 72°C for 10 min.

The PCR products, so obtained, were diluted 100-fold with distilled water and 1 pl of this di-
luted product was combined with 0.1 ul of CC-500-ROX marker (Promega). The amplicons
were separated by size and detected on an ABI3500xL Genetic Analyzer platform equipped with
a 24-capillary array (Applied Biosystems) as per manufacturer recommendations. Repeat num-
bers in each marker was assigned by using A. terreus NIH 2624 as reference. Additionally, iso-
lates from USA (n = 20); Europe including France (n = 4), Germany (n = 2), Italy (n = 2),
Norway (n = 2), Slovenia (n = 1), Spain (n = 4), the Netherlands (n = 5); and China (n = 1), New
Zealand (n = 1), Panama (n = 1), Papua New Guinea (n = 2), Taiwan (n = 1) and Thailand (n =
1) were used for the analysis. A minimum spanning tree was generated to illustrate the genotypic
diversity among clinical Aspergillus terreus isolates from India and those from outside India.

PLOS ONE | DOI:10.1371/journal.pone.0118997 March 17,2015 4/17



@'PLOS ‘ ONE

Genotyping and Susceptibility of A. terreus Section Terrei

Antifungal Susceptibility Testing (AFST)

The in vitro susceptibility testing of 140 A. terreus isolates to all the antifungals was done using
microbroth dilution CLSI M38-A2 document [27]. The drugs tested included itraconazole
(ITC, Lee Pharma, Hyderabad, India, and Janssen Research Foundation, Beerse, Belgium), vor-
iconazole (VRC, Pfizer Central Research, Sandwich, Kent, U.K.), isavuconazole (ISA, Basilea
Pharmaceutica International AG, Basel, Switzerland), posaconazole (POS, Merck, Whitehouse
Station, NJ, USA), amphotericin B (AMB, Sigma-Aldrich, Germany), caspofungin (CFG,
Merck), micafungin (MFG, Astellas Toyama Co. Ltd., Japan) and anidulafungin (AFG, Pfizer).
Drug-free and mold-free controls were included and microtitre plates were incubated at 35°C
and MIC readings were taken after 48 hr for azoles and AMB and 24 hr for echinocandins.
CLSI recommended quality control strains, Candida krusei, ATCC6258 and Candida parapsi-
losis, ATCC22019 and reference strains Aspergillus fumigatus, ATCC204305 and Aspergillus
flavus, ATCC204304 were included. MIC end points for all the drugs except echinocandins
were defined as the lowest concentration that produced complete inhibition of growth vis-d-vis
the hyphal growth in the control well. Minimum effective concentration (MECs) of echinocan-
dins were defined as the lowest drug concentrations that allowed the growth of small, rounded,
degenerated hyphae vis-d-vis the growth in the control well. The AFST results for A. terreus in
this study were analyzed using recently described epidemiological cutoff values (ECVs) ITC, 1
mg/L; VRC, 1mg/L; POS, 0.5 mg/L; ISA, 1 mg/L; AMB, 8 mg/L and CFG, 0.25 mg/L [28-30].

Patient details

The records of patients with a positive culture for A. terreus were reviewed. The data collected in-
cluded demographics, information on underlying disease/risk factors, the clinical disease entity
attributable to A. terreus such as IA, aspergilloma, ABPA, AFRS, CPA or colonization of the re-
spiratory tract. IA was defined as probable or definite according to the criteria of the European
Organization for Research and Treatment of Cancer Mycoses Study Group (EORTC/MSG) [31].
CPA was diagnosed by chronic duration of clinical symptoms (>3 months), progressive pulmo-
nary lesions with or without cavitation, precipitating antibodies to A. terreus in serum, mycologi-
cal evidence of fungal presence, with or without the background of immunocompromising
factors (diabetes mellitus, leukemia, chronic steroid therapy etc). Aspergilloma were noted to be
present as a mobile, intra cavitary mass with an air crescent sign in the periphery with a positive
culture of respiratory specimens for A. terreus and serum precipitins against the fungus. ABPA
was diagnosed by a combination of clinical, mycoserologic and radiological features as proposed
by Rosenberg and Patterson [32]. AFRS was diagnosed by the deShazo and Swain criteria, which
included type 1 hypersensitivity, nasal polyposis, characteristic computed tomography findings,
eosinophillic mucin without invasion and a positive fungal stain of sinus contents [33].

Ouchterlony’s immunodiffusion test

The patients sera were tested for precipitins against in-house prepared culture filtrate antigen
of A. terreus by Ouchterlony’s immunodiffusion test as described previously [34].

Specific IgE estimation by Enzyme-linked Immunosorbent assay
(ELISA)

Aspergillus terreus extract was in-house prepared and specific IgE in patients sera was deter-
mined by ELISA as described previously [34]. Briefly, a microtitre plate (Nunc-ImmunoTM
modules, Roskilde, Denmark) was coated with A. terreus extract (1 ug/100 ul/well) in carbonate
buffer, pH 9.6, blocked with 3% defatted milk, washed with PBST (0.1 M PBS containing 0.2%
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Tween 20) and incubated with patient’s serum or control sera (1: 10 v/v) at 4°C overnight. The
plate was then incubated with 1: 1000 v/v anti-human-IgE peroxidase (Sigma, USA), colour de-
veloped with o-phenylenediamine and read at 492 nm in an ELISA reader. ELISA was per-
formed in triplicate and the mean of three readings was considered for analysis. Normal
human sera (pooled) were used as negative control.

Results

All A. terreus isolates (n = 140) originating from clinical and environmental sources showed
yellowish-brown to cinnamon-brown colonies consisting of a dense felt of conidiophores on
Czapek dox agar plates. Dense columnar conidial heads with smooth-walled hyaline conidio-
phore stipes along with biseriate conidiogenous cells were observed in the lactophenol cotton
blue mounts.

Molecular Identification and Phylogenetic analysis

Of the 140 A. terreus isolates sequenced for Cmd gene, 138 (GenBank accession nos.
KM386696- KM386816 and KM458096-KM458112) showed 99% homology (query coverage
ranging from 98-100%) with A. terreus isolates in GenBank (accession nos. KJ146014,
JF927632, EU147582) whereas the remaining two isolates viz., VPCI 317/P/11 and VPCI 906/
12 (GenBank accession nos. KM386817 and KM386818) showed 99% homology with A. hortai
isolates from Greece and Czech Republic, (accession nos. JQ806413 and FR837976).

The Maximum likelihood tree of all the Indian A. terreus isolates was generated from 491
contiguous bases of aligned sequences of Cind gene region. For phylogenetic analysis, Crmd
gene sequence of A. terreus reference/ type strains (n = 14), A. alabamanesis (n = 1), A. terreus
var. africanus (syn. A. neoafricanus) (n = 1) and A. aureoterreus (n = 1) of section Terrei were
retrieved from GenBank (Fig. 1). The Cmd phylogenetic tree (Fig. 1) yielded 5 distinct clades
and enabled the differentiation of newly described A. hortai species of A. terreus species com-
plex. Primarily, clade 1 represented 75% of Indian A. terreus isolates, which clustered with the
type strain, A. terreus CBS 601.65 and A. terreus var. africanus (syn. A. neoafricanus CBS
130.55"). Also, barring a solitary environmental isolate, all other 11 environmental isolates
clustered with the clinical isolates in clade 1. Indian clinical and environmental isolates exhib-
ited 97-100% sequence similarity among themselves. Furthermore, previously reported Indian
A. terreus clinical isolate (1769-05) by Balajee et al., [18] also fell in clade 1 and revealed 100%
similarity with the present study clinical isolate VPCI 264/P/12. A smaller clade 2, comprising
two clinical isolates (VPCI 1509/10 and VPCI 1562/10) and a solitary A. terreus isolate
(CBS469.81) from a cardiac valve of a patient from Thailand [18] showed 100% similarity with
each other. Similarly, clade 3 represented only 3 isolates comprising 2 clinical isolates (UAB31
and UAB26) from USA originating from BAL and sputum [18] and one clinical Indian isolate
(VPCI 274/P/12) from a BAL of an ABPA patient. Aspergillus hortai represented a distinct
clade 4 comprising two Indian clinical isolates (VPCI 906/12 and VPCI 317/P/11) and 2 envi-
ronmental A. hortai isolates (IBT16744 and IBT16755) from the Galapagos Islands and one
clinical isolate (IBT26384) from Brazil [18]. The two Indian A. hortai isolates revealed 100% se-
quence similarity with each other and exhibited 99% sequence similarity with Brazilian and
Galapagos islands isolates. Noticeably, clade 5 was distinct from rest of A. terreus isolates and
included 11 Indian isolates (10 clinical, 1 environmental) and 2 isolates (clinical and environ-
mental) from the USA. Also, the clade 5 isolates § tubulin gene region sequences analyzed by
maximum likelihood revealed the same clustering pattern and well-defined group with good
bootstrap value (99%).
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Clade 1

- "':| Clade 2

Clade 5

Fig 1. Phylogenetic tree based on partial sequence of calmodulin gene using maximum likelihood
analysis depicting intraspecies variation among A. terreus isolates. Aspergillus terreus (CBS 601.65"),

Asperqgillus alabamensis (UAB38), A. terreus var. africanus (syn. A. neoafricanus CBS 130.557), A.

aureoterreus (CBS 265.817), A. hortai (IBT16744, IBT16745 and IBT26384) of A. terreus section Terrei were
taken as outliers for the analysis. Bootstrap values are shown above the branches. Environmental isolates
are denoted by E, and clinical isolates are denoted by C.

doi:10.1371/journal.pone.0118997.9001
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Amplified Fragment Length Polymorphism

The AFLP fingerprint analysis showing genotypic diversity among 122 (clinical, 110; environ-
mental, n = 12) Indian A. terreus isolates is depicted in Fig. 2. The isolates could be distin-
guished based on the distinct banding patterns. UPGMA analysis (Fig. 2) showed that the
isolates grouped into four clusters. Majority of isolates (n = 103) that formed clade 1 in Cmd
phylogenetic analysis showed >95% similarity between the fingerprints including type strains
(CBS 601.65", CBS 130.55") and clustered together. The large number of invariable fragments,
together with the overall high similarity of >80% between the fingerprints, was in agreement
with a monophyletic origin of the isolates. AFLP also clearly demarcated one set of isolates
(VPCI 1562/10 and VPCI 1509/10), which represented clade 2 in Cmad tree and exhibited simi-
lar STR pattern. In addition, 2 A. hortai isolates forming clade 4 in Cmd tree, exhibited identi-
cal banding patterns and revealed less than 80% similarity with other A. terreus isolates. Also,
the distinct group of isolates forming clade 5 in Cmd tree exhibited different banding pattern
than the other groups suggesting a set of different genotypes. Additionally, a solitary isolate
(VPCI 274/P/12) of clade 3 in Cind tree fell in this AFLP group but exhibited differences in a
few invariable bands. Similarly, type strain of A. terreus var. floccosus (syn. A. floccosus) was
also represented by distinct banding profile suggesting AFLP could differentiate other species
in A. terreus complex.

Microsatellite typing

The high genetic diversity of Indian A. terreus isolates among each other and with isolates from
outside India was also observed in STR typing (Fig. 3). The STR typing of 101 Indian A. ferreus
isolates revealed 75 distinct genotypes distributed among environmental and clinical isolates.
Similar marked heterogeneity was noticed in the global A. terreus population analyzed, which
revealed unique 38 genotypes among 47 isolates. Among 10 distinct genotypes observed in 10
environmental Indian samples, 4 were also present in the clinical A. terreus population. Inter-
estingly, the two isolates (VPCI 1509/10, VPCI 1562/10) that represented clade 2 in Cnd phy-
logenetic analysis and had 100% sequence similarity also showed an identical allelic profile at
all the nine loci in STR typing. Noticeably, these two isolates revealed a new allelic profile at
five of the nine loci studied which were not observed in the total population of A. terreus iso-
lates analyzed. As mentioned above 21 isolates including 2 A. hortai (VPCI 906/12 and VPCI
317/P/11), could not be amplified after repeated attempts, and thus were excluded from the
analysis. Notably, the STR profile of the 11 A. terreus isolates, which exhibited a distinct group
in AFLP and Cmd phylogenetic tree (clade 5) revealed marked similarity at 5 loci in STR analy-
sis. The analyses of the STR profile of all the A. terreus isolates including outside India revealed
that loci 3A and 3C defined maximum heterogeneity with the large number of variable alleles.
A marked genetic heterogeneity was observed in the minimum-spanning tree of Indian clinical
A. terreus isolates (Fig. 4). Also, the tree clearly depicted no genotypic correlation of Indian A.
terreus isolates with those outside India (Fig. 4).

Antifungal susceptibility testing (AFST)

Overall, in the present study 8% (n = 11) of A. terreus isolates showed low AMB MICs ranging
from 0.5-1 mg/L. All other isolates revealed AMB MICs ranging from 2->16 mg/L. Echino-
candins, MFG (GM MEC, 0.015 mg/L), AFG (GM MEC, 0.016 mg/L) and CFG (GM MEC,
0.048 mg/L) exhibited highest activity against all the test isolates followed by POS (GM MIC,
0.07 mg/L) and ISA (GM MIC, 0.21 mg/L) (Table 1). In addition, ITC (GM MIC, 0.23 mg/L)
and VRC (GM MIC 0.4 mg/L) were also active against the isolates. Also, 2 A. hortai isolates
were susceptible to all the antifungals tested except AMB, which revealed MIC of 4-16 mg/L.

PLOS ONE | DOI:10.1371/journal.pone.0118997 March 17,2015 8/17



@ PLOS | one

Genotyping and Susceptibility of A. terreus Section Terrei

Fig 2. Amplified fragment length polymorphism analysis showing genotypic diversity among 122 clinical and environmental Indian A. terreus
isolates. Aspergillus terreus (CBS 601.65"), A. terreus var. africanus (syn. A. neoafricanus CBS 130.55"), A. terreus var. floccosus (syn. A. floccosus CBS
116.37") were used for the analysis. The dendrogram was constructed by using UPGMA (unweighted pair group method with averages) in combination with
the Pearson correlation coefficient and was restricted to fragments of 60—400 bp. Scale bar indicates the percentage similarity.

doi:10.1371/journal.pone.0118997.g002

Clinical Summary

Out of 128 patients, A. terreus was a colonizer in 70 (54.6%) patients with chronic respiratory
disorders such as chronic obstructive pulmonary diseases (COPD), interstitial lung disease,
post-tubercular sequelae, and asthma involving both structurally damaged and intact lungs. In
58 (45.3%) patients, the fungus was implicated in the etiology of the disease. Among these,
ABPA was diagnosed in 24 (41.3%) patients, IA in 13 (22.4%), aspergilloma in 10 (17.2%),
CPA in 8 (13.7%) and AFRS in 3 (5.1%) patients. In the 24 cases with ABPA, 12 patients had
both A. fumigatus and A. terreus-specific precipitins and both fungi were isolated in the spu-
tum culture. However, specific IgE was significantly elevated for both the fungi in 9 of the 12
cases. Among IA patients, the two most common underlying conditions were hematological
malignancies and COPD in 38.4% (n = 5) and 30.7% (n = 4) cases, respectively. The remaining
patients included renal transplant recipients (n = 2, 15.3%) and those with interstitial lung dis-
eases (n =2, 15.3%). The COPD patients who developed IA had severe obstruction to airflow
and required multiple admissions in the ward and intensive care units. These patients were on
systemic and inhaled steroids for a long period ranging from 6-10 years. Moreover, majority of
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Fig 3. Analysis of genotypic relationship between A. terreus isolates from India (n = 101), Europe (20), USA (20), Panama (n = 1), New Zealand (n =
1), Papua New Guinea (n = 2), China (n = 1), Taiwan (n = 1) and Thailand (n = 1) using STR typing. The dendrogram is based on a categorical analysis of
9 microsatellite markers in combination with UPGMA clustering. The scale bar indicates the percentage identity.

doi:10.1371/journal.pone.0118997.g003
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Fig 4. Minimum spanning tree showing wide genotypic diversity both in the clinical A. terreus isolates from India and those outside India. The
figure shows the 115 different genotypes (circles), the number of strains belonging to the same genotype (sizes of the circles), and origin of isolates (circles in
yellow indicate Indian isolates; green indicating European isolates including France (n = 4), Slovenia (n = 1), Germany (n = 2), ltaly (n = 2), Norway (n = 2),
Spain (n = 4), Netherlands (n = 5); pink indicate isolates from Australasia, including New Guinea (n = 2), New Zealand (n = 1), Taiwan (n = 1), China (n=1),
Thailand (n = 1); bright blue indicates isolate from Panama (Latin America; n = 1); dark blue indicates North American (n = 20) isolates). Gray-zone indicates
microsatellite cluster representing minimal 2 isolates that differ maximum by 1 microsatellite marker out of 9. Thick and medium-thick branches indicate 1 or 2
microsatellite marker differences, respectively. Thick dashed line indicates 3 marker differences between two genotypes; 4 or more microsatellite markers
differences between genotypes are indicated by medium thick and thin dashed lines, respectively.

doi:10.1371/journal.pone.0118997.9004

these COPD patients had associated comorbidities like diabetes mellitus (60%). The majority
of IA cases were invasive pulmonary aspergillosis (85.7%). Both the IA cases, which had acute
myeloid leukemia, developed breakthrough infections while receiving antifungal prophylaxis.
The mortality in IA patients was high (85.7%) and was attributed to A. terreus infection in 75%
cases. All the patients harboring an aspergilloma had post tubercular intrapulmonary cavities
and A. terreus coexisted with A. fumigatus in two patients. The majority of the patients with
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Table 1. In- vitro antifungal susceptibility profile of Aspergillus terreus and A. hortai isolates (n = 140) from India against medical triazoles,

echinocandins and amphotericin B.

Species tested MIC/MEC# parameters (mg/L)* Drugs®
ITC VRC ISA POS AMB  CFG® MFGS® AFG®
A. terreus (n=138) GM 0.23 0.40 0.21 0.07 2.97 0.048 0.015 0.016
MIC5o/MECs5,° 0.25 0.5 0.25 0.06 2 0.06 0.015 0.015
MICgo/MECgo® 0.5 0.5 0.5 0.25 8 0.125 0.015 0.015
Range 0.032 0.25-1 0.06-2 0.015-1 0.5-16 0.015-1 0.015-0.03 0.015-0.125
A. hortai (n = 2) Range 0.25-05 0.5 0.25-0.5 0.06-0.25 4-16  0.015-0.06 0.015 0.015

*MIC, minimum inhibitory concentration; MEC, minimum effective concentration was recorded for 3 echinocandins; GM, geometric mean; MICs,
andMICgyo, MIC at which 50% and 90% of test isolates were inhibited respectively.

$MECso and MECgo, MEC at which 50% and 90% of test isolates revealed the growth of small, rounded, degenerated hyphae respectively.
#ITC, itraconazole; VRC, voriconazole; ISA, isavuconazole; POS, posaconazole; AMB, amphotericin B; CFG, caspofungin; MFG, micafungin;

AFG, anidulafungin

doi:10.1371/journal.pone.0118997.t001

ABPA (n = 16) were treated with systemic steroids and the remaining 8 were administered ITC
for 6 weeks along with steroids. Seven of the 13 IA patients received VRC for 4-6 weeks where-
as 3 patients were initially treated with AMB deoxycholate for two weeks followed by VRC for
the next 3-4 weeks. In the remaining 3 cases, death occurred after 3 days of antifungal therapy
due to the associated illnesses. In CPA patients, serum was positive for precipitating antibodies
against A. terreus but serum galactomannan was negative. All the 8 cases with CPA received
VRC, 4 of the patients showed symptomatic improvement whereas 2 were lost to follow up and
2 died.

Discussion

The present study characterized a large number of A. terreus isolates using STR typing. Marked
heterogeneity among Indian, North American and European isolates was noted. In the past,
RAPD-PCR based methods have revealed high strain diversity among clinical and environ-
mental isolates implicating that nosocomial acquisition of this pathogen is highly unlikely

[9, 35, 36]. However, techniques based on complex banding pattern analysis, have poor repro-
ducibility and do not allow exchange of data for global comparison. Furthermore, a solitary
study based on multilocus phylogenetic approach by using three loci revealed a new cryptic
species, A. alabamensis in the A. terreus complex but this technique has limited utility in strain
discrimination [18]. Although STR typing, based on species-specific microsatellite loci, is high-
ly species-specific and, is well established for other Aspergillus species such as A. fumigatus and
A. flavus, it has so far not been utilized to detect genotypic diversity in A. terreus isolates from
different geographical locations. This is the largest series employing STR typing for geographi-
cally diverse A. terreus isolates. In the present study, 19 A. terreus and 2 A. hortai isolates could
not be amplified by the A. terreus loci revealing that other loci may have to be targeted for typ-
ing other species in the A. terreus complex. Furthermore in the present study a high concor-
dance was observed in clustering the related isolates between AFLP typing and Cmd
phylogenetic analysis. Also, AFLP technique proved to be both a typing as well as identification
technique for A. terreus complex isolates. Notably, this technique has been reported to have a
high discriminatory power and the robustness to serve as a powerful taxonomic tool for identi-
fication of isolates at the species level.
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We report for the first time the isolation of A. hortai, from clinical cases of aspergillosis.
This species comprised 1.4% of all A. terreus isolates identified by Cmd sequencing. Aspergillus
hortai was described for the first time by Langeron in 1922 from the human ear and was con-
sidered a synonym for A. terreus by Raper and Fennel (1965) [37, 38]. However, Samson et al.,
[14] in 2011 clearly showed it to be distinct from A. terreus using a polyphasic approach and
proposed it as a distinct species. Although this species reveals a strong morphological resem-
blance to A. terreus, it clearly exhibits a distinct extrolite profile. In the present study A. hortai
isolates originated from broncho-alveolar lavage of cases of aspergilloma and probable IA. Pre-
viously the cryptic species A. niveus and A. alabamensis have been reported from a case of IA
and as colonizers, respectively [18, 39]. The isolation of A. hortai in the present study from a
case of fungal ball and IA extends the spectrum of other cryptic species in the A. terreus species
complex. Although both A. hortai isolates exhibited 100% sequence similarity of the Cmd gene
and identical banding pattern by AFLP analysis they originated from 2 different patients ad-
mitted in different hospitals of Delhi. Furthermore, the 2 A. hortai isolates exhibited genetic di-
versity from a solitary clinical Brazilian isolate and 2 environmental Galapagos Island A.
hortai isolates.

Microsatellite typing is a useful, reproducible and discriminatory technique for strain typing
of Aspergillus species [19, 26, 40, 41]. Indeed, 75 distinct genotypes were observed in the pres-
ent collection of 101 Indian A. terreus isolates from clinical and environmental sources. Simi-
larly, geographically diverse isolates from outside India analyzed by STR in the present study
revealed no evidence of clonality among the population. All the nine markers used to type
A. terreus species complex proved to be highly polymorphic displaying highest numbers of 34
and 32 alleles at loci 3A and 3C respectively, whereas a limited allelic variation (n = 8) was ob-
served at locus 4A. The hypothesis of non endemicity of A. terreus isolates in a particular geo-
graphic location has been previously reported by Lass-Florl et al. [8] and Blum et al. [9]. The
authors in the former study analyzed 33 and 26 consecutive A. terreus isolates from patients
with TA and hematological malignancies, respectively obtained from 2 geographically disparate
institutions, namely, The University of Texas M. D. Anderson Cancer Center, Houston and the
University Hospital of Innsbruck, Austria [8]. The analysis of RAPD profiles of all the A. ter-
reus isolates resulted in 33 distinct profiles in the collection. No strain similarity between the
two collections was observed, indicating great genomic diversity of A. terreus [8]. Similarly,
Blum et al. [9] analyzed 49 A. terreus isolates from the environment and from aspergillosis pa-
tients at the University Hospital of Innsbruck. Genotypic analyses of A. terreus isolates with
RAPD PCR revealed 46 distinct genotypic profiles among the environmental and clinical iso-
lates, suggesting that the A. terreus population is genotypically diverse and lack any phylogeo-
graphic endemicity. However, in contrast a more recent study based on ISSR PCR for typing of
A. terreus isolates revealed global sub-clustering of genotypes among A. terreus isolates and
suggested a population structure linked to geographical origin in A. terreus [19]. Considering
the inherent drawbacks of reproducibility of ISSR and RAPD, the latter method has been wide-
ly used for investigating the clonality of A. terreus isolates. The present study using a more ro-
bust STR technique for typing and strain discrimination of clinical and environmental isolates
strengthens the evidence of lack of endemism among the A. terreus population. The genetic
heterogeneity of all 10 environmental isolates investigated in the present study is similar to the
RAPD analysis of 9 environmental isolates collected from the University Hospital of Cologne,
revealing no clonal relationship among A. terreus isolates [35]. Overall, the high degree of ge-
netic diversity obtained using both microsatellite and AFLP analyses in the present study is in
excellent agreement with a sexual mode of reproduction in A. terreus [42]. Furthermore, no ap-
parent correlation between genotypes and clinical presentation of the disease was observed in
the present study. Probably, as previously reported in cases of aspergillosis due to A. fumigatus,
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host and other factors like environmental exposure, extensive use of antifungals for prophylaxis
etc. play a more important role in the clinical presentation of disease than the genotypes of the
isolates involved [43, 44].

Although, A. terreus is known for intrinsic resistance to AMB, 12-13% isolates with low
AMB MICs have been observed worldwide in a few previous series, suggesting a possible genet-
ic difference that may exist in this Terrei section complex [6, 7]. The present study revealed
that 8% (11/140) of the A. terreus isolates exhibiting lower MICs of AMB (0.5-1 mg/L) were
not limited to a particular genotypic pattern. Similarly, a small relationship between population
structure and AMB susceptibility was reported among 145 clinical A. terreus isolates from Eu-
rope (n = 98) and the USA (n = 47) [19, 45]. Owing to the intrinsic resistance of A. terreus to
AMB, data from in vitro, animal and clinical studies suggests that AMB is not an effective op-
tion for A. terreus infections [46, 47]. The treatment strategies such as the use of expanded-
spectrum triazoles like VRC as a first line treatment and POS as prophylaxis and salvage thera-
py are recommended for IA [48, 49]. The present study observed higher potency of both VRC
(GM MIG, 0.4 mg/L) and POS (GM MIC, 0.07 mg/L). Notably, only 3% of the global collection
of clinical A. terreus isolates had MICs of VRC greater than the ECVs [50]. This is in concor-
dance with the VRC MICs in the present study where none of the isolate had VRC MICs above
ECVs. Furthermore, therapy with azoles in our patient population was effective especially in
ABPA and CPA patients. In the former group, 8 patients treated with ITC showed no relapse
after 6-12 months of follow up. Likewise, cases of fungal ball with hemoptysis in our study
were successfully managed with VRC and have been asymptomatic for the last 9 months. The
efficacy of VRC in prolonging the survival and reducing the fungal load in a murine model in-
fected by A. terreus strains that showed MICs less than or equal to ECV has been recently re-
ported [48]. However, emergence of azole resistance in A. terreus isolates in cystic fibrosis
patient with elevated MICs for VRC and POS involving M217I alteration in cyp51a gene has
been observed in a Danish patient [51].

Finally, considering that A. terreus causes fulminant infections, which are resistant to AMB
therapy, the knowledge of genetic relatedness of A. terreus isolates, is of paramount importance
to determine the source of infections and to study the population structure of this pathogen. In
conclusion, high resolution typing method such as AFLP and microsatellite analysis in the pres-
ent study yielded better understanding of the molecular epidemiology of A. terreus complex.
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