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Abstract
Organ formation requires a delicate balance of positive and negative regulators. In Dro-
sophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc

and serves to block retinal development. The T-box gene optomotor-blind (omb) is ex-
pressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in

blocking eye development. Omb exerts its function primarily by blocking cell proliferation.

These effects occur predominantly in the ventral margin. Our results suggest that the prima-

ry effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd
which encodes the Jak receptor ligand Unpaired.

Introduction
The Drosophila compound eye originates from the eye-antenna anlage in the embryo. These
cells proliferate and form the eye-antennal disc in the larva. In the mid-third instar eye disc, a
wave of cell cycle coordination and apical cellular constriction, called the morphogenetic fur-
row (MF) forms at the posterior margin and progressively moves toward anterior. Posterior to
the MF, retinal cell fates are specified by a series of cellular interactions [1,2,3,4]. The early
steps of eye development involve at least three aspects: specification of eye fate, control of cell
proliferation, and initiation and progression of the MF.

A large number of genes are involved in promoting eye development. Eye fate is specified by
the retinal determination gene network which includes the transcription factors encoded by
eyeless (ey), twin of eyeless (toy), sine oculis (so), eyes absent (eya), and dachshund (dac) [5,6].
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Cell proliferation is highly regulated. Undifferentiated cells anterior to the MF undergo prolif-
eration that is promoted by Notch signaling, the Pax protein Eyg, a combination of the tran-
scription factors Eyeless, Homothorax (Hth), Teashirt (Tsh) and the transcriptional
coactivator Yorkie (Yki), as well as Upd/Jak/STAT signaling [7,8,9,10,11,12,13,14]. MF initia-
tion and progression are promoted by the Decapentaplegic (Dpp), Hedgehog (Hh) and Upd/
Jak/STAT signaling pathways [11,15,16,17,18,19,20,21,22,23,24].

However, developmental processes rarely proceed by agonistic action alone but tend to be
held in check by interaction between agonists and antagonists. The necessity to keep retinal de-
velopment in bounds is obvious in the eye-antennal imaginal disc since this disc, in addition to
the retina, gives rise to much of the exterior of the adult head [25,26,27]. Molecules with the
ability to block eye development include Patched (Ptc) and other negative regulators of Hh sig-
naling, Wingless (Wg) and the positive components of its signaling pathway, the transcription
factors and cofactors encoded by homothorax (hth), teashirt (tsh), hairy (h), extramacrochaetae
(emc), pannier (pnr), Chip, arrowhead (awh) and Lim1 [6,13,28,29,30,31,32,33,34].

Of these anti-retinal genes, Wg is the only signaling ligand and appears to be the most im-
portant anti-retinal factor. In the third instar eye disc, wg is expressed in the lateral margins
and prevents inappropriate marginal morphogenetic furrow initiation [30,35]. Wg exerts its
anti-retinal function by several routes. First, Wg blocks MF initiation [30,35]. A primary target
is Dpp, which is essential for MF initiation [15,36]. Wg signaling represses dpp transcription
and Dpp signaling at a step downstream of receptor activation [37,38]. Second, Wg also blocks
MF progression [35] and neuronal differentiation through repression of Daughterless (Da)
[38].

Which gene is induced by Wg to mediate its anti-retinal functions? One prime candidate is
optomotor-blind (omb, FlyBase bifid, bi) which is expressed in the lateral margins in a pattern
similar to the wg expression domain [39]. Ectopic expression of either wg or its downstream ef-
fector armadillo (arm) induces the expression of omb near the lateral margins [40]. Omb en-
codes a T-domain transcription factor and is required for the development of the optic lobes,
wing, abdomen, and terminalia [41,42,43,44,45,46,47,48,49,50,51]. The polar eye disc expres-
sion and the fact that ectopic omb can completely block eye development [52] led us to investi-
gate the role of omb in this process, and its relationship with Wg.

We show that Omb antagonizes eye development primarily at the level of cell proliferation.
We further identified a molecular pathway downregulated by Omb. Our results suggest that
the main effects of Omb are a block of Jak/STAT signaling by suppressing transcription of upd
encoding the Jak/STAT ligand Unpaired. The block of Jak/STAT signaling accounts for the ef-
fect of Omb on cell proliferation. Our results also show that Omb mediates part of the Wg
anti-retinal effects.

Materials and Methods

Fly stocks
Fly culture and crosses were performed according to standard procedure at 25°C unless noted
otherwise. Transgenic expression lines: UAS-omb and hsp70-omb [47], UAS-arm [40], UAS-
dpp [53], UAS-upd, UAS-hop [54]. STAT92E397[55], STAT92E06346 (STATP1681-lacZ, in
[56,57]). dppC40.6-GAL4 [53], ombP3-GAL4 (GAL4-bimd653 in [58]; cf. [59], ey-GAL4 [37] and
ombP7-GAL4 (omb3 in [60]; cf. [59] were used as GAL4 drivers. Alleles used are: ombbi (regula-
tory hypomorph, [41]), l(1)ombD4, l(1)omb3198, and l(1)omb15 (molecularly defined null mu-
tants, [61,62]), ombFor (gain-of-function mutant caused by a large downstream insertion [51])
and ombP7-GAL4 is hemi- and homozygous lethal and was used both as an omb allele and as
GAL4-driver in the omb expression domain [60]. lacZ reporter lines are: omb-lacZ (ombP1 in
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[63]), dpp-lacZ (BS3.0)[3],mirr-lacZ [63], fng-lacZ [64], and wg-lacZ [65]. w ombP1 l(1)
omb3198 was obtained by intragenic recombination. dpp-lacZ (BS3.0), dpp-GAL4c40.6 and
wgIL114 were kindly provided by Jessica Treisman, ombFor by Marc Fortini, Act5C>CD2>GAL4
[23], tub>CD2>omb and tub>CD2>GAL4 by Christian Dahmann. Other fly stocks were ob-
tained from the Bloomington Drosophila Stock Center and the Mid-America Drosophila Stock
Center (Bowling Green, Ohio).

Construction of 10X STAT-GFP-nls
GFP-nls sequence was amplified from pH-Stinger [66] by PCR primers (GGTTCAGGGG-
GAGGTGTGGG; ACTCGAGGCAGCCAAGCTGATCCTCTAGGG) and then cloned into
10XSTAT-luciferase [66] by Xho I and Xba I to generate the10X-STAT-GFP-nls construct.
Germline transformants were generated as described previously [67].

Clonal induction
Positively labeled flp-out expression clones were generated by crossing UAS-lines to hs-FLP122;
Act5C>y+>GAL4 UAS-GFPS65T [68]. Heat shock induction of hs-FLP122 was at 37°C for 30
min at 24–48 hr after egg laying. l(1)ombD4 and control clones were generated by incubating
hs-flp122 hs-GFP FRT19/FRT19 or hs-flp122 hs-GFP FRT19/l(1)ombD4 FRT19 larvae at 48–60 h
AEL at 38°C for 30 min. Larvae were raised at 25°C for 48 h. Before dissection, larvae were sub-
jected to 37°C for 1h and then shifted back to 25°C for 1h to allow GFP expression. omb gain-
of-function and control clones were generated by incubating hs-flp122; tub>CD2>GAL4; UAS-
GFP or hs-flp122; tub>CD2>omb; UAS-GFP larvae at 36–48h AEL for 30 min at 37°C. Larvae
were dissected after 72 h at 25°C.

Immunohistochemistry
Late third instar larval imaginal discs were dissected and stained. Primary antibodies were rat
anti-Elav 7E8A10 (1:500, Developmental Studies Hybridoma Bank, U. of Iowa (DSHB, Iowa),
rabbit anti-ß-galactosidase (1:1000, Cappel), mouse anti-Eya 10H6 (1:200, DSHB, Iowa), rabbit
anti-BarH1(S12) (1:1000, gift from Tetsuya Kojima), rabbit anti-Omb (1:1000, [47,49]), rabbit
anti-phospho-histone H3 (anti-PH3) (1:200–1:1000, Upstate Biotechnology), rabbit anti-Cas-
pase-3 (cleaved) (1:200, Upstate Biotechnology), mouse anti-CD2 (rat) (1: 2000, Serotec), and
mouse anti-Wg 4D4 (1:200, DSHB, Iowa), mouse anti-BrdU (1:50, Roche). Secondary antibod-
ies (Jackson ImmunoResearch) were FITC-, Cy3- or Cy5-conjugated anti-rabbit, anti-rat and
anti-mouse. Confocal microscopy was performed on a Zeiss LSM 310 or LSM 510. X-Gal stain-
ing of lacZ expression was done as described [63]. Anti-BrdU staining was performed as de-
scribed [9].

RNA in situ hybridization
upd RNA in situ hybridization is executed as described [9].

Tissue sections
Semi-thin plastic eye sections were performed according to [69].

Scanning electron microscopy and determination of ommatidial number
Scanning electron micrographs of adult eyes were obtained as described [52]. Due to the curva-
ture of the eye, the ommatidial number N cannot be obtained from a single micrograph. A
given eye was photographed from different angles. Dust particles or aberrations in the bristle
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pattern allowed the alignment of the otherwise repetitive structures such that error-free count-
ing was possible.

Results

omb negatively regulates eye size
In the eye imaginal disc, Omb is expressed in two cell types. Within the main epithelium, Omb
is expressed at the dorsal and ventral margins (S1A Fig., arrow). Omb is also expressed in the
retinal basal glial cells that lie at the basal level of the eye disc and in the optic stalk [39,70]
(S1A Fig.). Only the epithelial expression will be considered here. We found that loss-of-func-
tion and gain-of-function ombmutations caused changes in eye size.

In omb hypomorphic allele combinations and omb knock-down, the Omb level was reduced
in both margins and the eye disc was enlarged (S1B Fig.). This was observed for the omb hypo-
morph ombbi in combination with any of three molecularly characterized omb null alleles, l(1)
ombD4, l(1)omb282, and l(1)omb3198 [61,62]. In these adults, the eye was enlarged with an in-
crease in ommatidial number (N) by up to 25%, from 750–800 in wild type to 850–1000 in the
mutant (wild type: N = 782, SD = 11.5, n = 6; ombbi/l(1)omb282: N = 952, SD = 61, n = 9).

The expansion of the eye occurred primarily ventrally. The dorsal-ventral distinction was
based on several criteria. Using the enhancer trap insertion ombP1 [63] as marker for dorsal
and ventral ommatidia (Fig. 1A), only an increase in the ventral expression domain could be
observed in the adult eye of omb hypomorphs (Fig. 1B). In the larval eye disc, the location of
the dorsoventral (DV) midline was defined by the location of the optic stalk (S2A-D, Fig., ar-
rowhead), the inversion of ommatidial chirality based on anti-Bar staining [71] (S2A-B Fig.),
the ventral-specific fng-lacZ expression [64] (S2C-D Fig.) and the dorsal-specificmirr-lacZ ex-
pression (Fig. 1D, E). There was an obvious enlargement of the ventral eye disc in l(1)ombD4/
ombP7 hypomorphic larvae (Fig. 1D-F; S2B, D Fig.). We followed the developmental progress
of ombP7 eye discs, based on the number of ommatidial rows, and found that the number of
ommatidia in the ventral region was consistently higher relative to that in the dorsal region,
which was not different from wild type (S2E Fig.). By all these criteria, an overgrowth of the
ventral relative to the dorsal part was evident in the omb hypomorphic mutant eye.

These loss-of-function effects were also observed when omb was knocked down by RNAi.
Expressing omb-RNAi [48] in its own expression domain using ombP3-GAL4 caused a strong
reduction of Omb level in the margins of eye disc, the retinal basal glia and in the antenna disc
This resulted in a strong overgrowth of eye disc (S1B Fig.) and adult eye (Fig. 1B). When omb-
RNAi expression was driven by GMR-GAL4, the size of eye disc and adult eye was normal (not
shown). This is consistent with omb expression not overlapping with the activity of the GMR-
GAL4 driver, which is restricted to cells posterior to the MF [72].

In contrast to the loss-of-function effects, gain-of-function of omb caused reduction or elim-
ination of the eye. In the regulatory dominant gain-of-function allele ombFor [51], Omb was
overexpressed in the lateral margins and in the retinal basal glia (S1C Fig.). ombFor larvae had
smaller eye discs (S1C Fig.) and the adults had a reduced number of ommatidia and a posterior
indentation in the eye (wild type: N = 782, SD = 11.5, n = 9; ombFor: N = 507, SD = 57.6, n = 6).
Targeted mis-expression of omb in the lateral and posterior margins by dpp-GAL4 (dpp>omb)
causes a strong reduction or total absence of the adult eye [52]. Specific overexpression of omb
at the lateral margins using 30A-GAL4 [73] caused a decrease in ommatidial number N that de-
pended on the strength of the UAS-omb line (UAS-omb4–15: N = 601.9, SD = 52.3, n = 10; UAS-
omb2–17: N = 670, SD = 32.3, n = 9).

In summary, the loss and gain-of-function phenotypes of omb indicate that omb is a nega-
tive regulator of eye development. The effect is stronger on the ventral side of the eye.
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Fig 1. omb expression level influences eye size. (A)w ombP1 (an enhancer trap insertion that does not
affect omb expression and function, Sun et al., 1995), (B)w ombP1 l(1)omb3198/w ombbi. The expanded
territory of ventral eye fate is clearly evident. Because of the increased size, the eye surface is more convex.
Therefore, the unaffected dorsal pigmentation is not fully visible under this angle. (C) ombP3>omb-RNAi
showed strong overgrowth in the eye. The overgrowth is stronger in the ventral than in the dorsal part of the
eye. The eye is convoluted. (D-E)mirr-lacZ (anti-beta-galactosidase, red). Phalloidin staining (green). Elav
(blue). (D-D”’)mirr-lacZ/+ eye disc showing the dorsal-specific expression ofmirr-lacZ. D, D’ and D”, D”’ are
two focal planes. The D”, D”’ focal plane shows the ventral flap. (E-E”’) l(1) ombD4/ ombP7 eye disc. E, E’ and
E”, E”’ are two focal planes. The E”, E”’ focal plane shows the ventral flap. The dorsal and ventral eye regions
were distinguished (separated by a white line) based onmirr-lacZ and the position of the optic stalk. Two
different focal planes are acquired in each eye disc. The area of eye disc including the ventral flap, based on
two focal planes, were measured by the software, Zeiss Zen 2009. The results are summarized in (F). The
ventral area of l(1)ombD4/ombP7;mirr-lacZ/+ are significantly enlarged compared to that ofmirr-lacZ/+. The
dorsal area of l(1)ombD4/ombP7;mirr-lacZ/+ are not significant increased compared to that ofmirr-lacZ/+.
Differences (*) presented in (E) and (J) are significant (Student0s t-test, **, p<0.05; n.s., non-significant). In
all panels anterior is left and dorsal up.

doi:10.1371/journal.pone.0120236.g001
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omb blocks cell proliferation during eye development
Deviations from normal eye size can arise by several mechanisms. Changes in proliferation,
cell death, morphogenetic furrow progression or retinal differentiation can all affect eye size.
We tested the effect of loss and gain of omb on proliferation and cell death.

In omb hypomorphs, cell cycle activity was increased in the ventral eye disc, as monitored
by histone H3 phosphorylation (pH3) (ombP7/Y, Fig. 2B, compare with wild type eye disc in
2A; quantified comparison in 2E) or BrdU incorporation (ombP7/Y, Fig. 2D, compare with
wild type eye disc in 2C) as markers for cell proliferation. There are two mitotic waves in the
eye disc. The first mitotic wave occurs anterior to the MF and affects the cell population which
will be recruited to form ommatidial clusters. Changing cell proliferation in the first mitotic
wave will change the number of ommatidia [9,10]. omb hypomorphic eye discs showed an in-
crease of mitosis in the first mitotic wave (Fig. 2B, D), as expected by their increase in omma-
tidial numbers. In contrast, the second mitotic wave occurs behind the MF and affects the
number of cellular components assembled into the ommatidia [74]. Since omb is expressed in
the anterior lateral margins, it is not expected to affect the second mitotic wave. This was
confirmed in omb hypomorphic mutants (Fig. 2B, D) and by knocking down omb by
GMR>omb-RNAi, which resulted in normally sized adult eyes (not shown). Therefore, omb
appears to affect cell divisions in the undifferentiated region anterior to the MF.

We also analyzed the effect of omb loss of function mutant clones on cell proliferation. The
l(1)ombD4 null allele was used because it yielded stronger effects than the hypomorphic alleles
In wild type eye discs, control clones (marked by lack of GFP) were of similar size relative to
their twin spots, irrespective of location (Fig. 2F, G shows two different focal planes to allow
clone size visualization and measurement in the infolded margins, in particular the "ventral
flap"; data are summarized in Fig. 2J). As expected from the restricted omb expression pattern
and from the phenotype of omb loss-of-function mutants, omb null mutant clones had a prolif-
erative advantage relative to their twin spots (omb+/omb+) only in the ventral margin (Fig. 2I,
arrow) but not in the center of the disc (Fig. 2H, arrow) or in the dorsal margin (Fig. 2I). omb
clones in the ventral regions were about 3.5 times larger than omb clones in the central region
of the disc or than wild type clones (summarized in Fig. 2J).

We next analyzed whether apoptosis plays a role in the omb over-expression phenotype.
There is little cell death in wild type larval eye discs [75]. Before onset of retinal differentiation,
dpp-GAL4 c40.6 is expressed in the lateral and posterior margins; later it is restricted to the later-
al eye disc margins. The expression in the lateral margins partially overlaps with the omb ex-
pression domain in the progenitor region (cf. S6 Fig.). Expression of omb driven by dpp-GAL4
(dpp>omb) caused a strong reduction to total absence of the adult eye [52] and lack of retinal
differentiation in the eye disc Enhanced apoptosis could be detected in the posterior margin of
the dpp>omb+GFP eye disc (S3A. Fig.). Coexpressing the anti-apoptotic factor p35 (dpp>omb
+p35) did not rescue adult eye size (data not shown) nor retinal differentiation in eye disc, al-
though apoptosis was strongly reduced (S3B Fig.). These results suggest that apoptosis is not
primarily responsible for eye size reduction at the larval and adult stages and that Omb mainly
affects eye size by blocking cell proliferation.

Omb can block retinal differentiation
In addition to the effect on cell proliferation, Omb ectopic expression can block retinal differ-
entiation. Ectopic clonal omb expression at the posterior margin prevented MF initiation
(Fig. 3A). Ectopic clonal omb expression in the path of the MF blocked its progression (Fig. 3B)
and neural differentiation (Fig. 3C-C-1”, arrow). Transient overexpression of omb by heat-in-
duced expression of hs-omb in the entire eye field caused a dorso-ventral scar in the adult eye
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Fig 2. Omb blocks cell proliferation in eye disc. Cell proliferation was monitored by staining against the
mitotic marker phospho-histone 3 (pH3), BrdU incorporation, and by comparing clone size in late third instar
eye discs. (A-D) Arrowhead points to the position of the optic stalk. (A) Wild type eye disc showing the two
mitotic waves (arrows) labeled by anti-pH3 (red). (B) The ombP7 mutant showed an increased number of
pH3-positive nuclei in the ventral eye compared to wild type. (C, D) BrdU incorporation showed an increase of
proliferating cells in the ventral flap (arrow) of the ombP7mutant eye disc (D) compared to the wild type eye
disc (C). (E)mirr-lacZ was used to mark the dorsal region. pH3 positive cells were scored in ombP7/Y; mirr-
lacZ/+ andmirr-lacZ dorsal and ventral eyes. In order to include the ventral flap area, the images of several
optical sections were merged. The quantification results are summarized in (E). The mitotic cells in ventral
eye of ombP7 is significant increased compared to ventral eye in wild type (p<0.05). (F, G) A wild type eye
disc with clones (marked by the absence of GFP) at two focal planes to show the central region (F) and the
ventral and dorsal flap regions (G). The clones were of similar size in all regions (summarized in J). (H, I) An
eye disc with l(1)ombD4 clones (marked by the absence of GFP) at two focal planes to show the central (H)
and ventral and dorsal flap regions (I). The wild type clones and l(1)ombD4mutant clones were induced at the
same time. The l(1)ombD4 clones in the ventral flap were on average about 3.5 times larger than omb clones
in the central region of the disc or than wild type clones (summarized in J). Differences (*) presented in (E)
and (J) are significant (Student0s t-test, *** p<0.001; **, p<0.05).

doi:10.1371/journal.pone.0120236.g002
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Fig 3. Ectopic omb expression can blockmorphogenetic furrow initiation, progression, and
differentiation. Flip-out induced omb expression clones (Act5C>omb) marked by GFP coexpression
repressed Elav (cyan) and Eya (red) expression. (A-A”) A clone at the posterior margin (arrow) inhibited MF
initiation. (B-B”) A clone at the MF (arrow) inhibited MF progression (as indicated by CycB pattern, red) and
neuronal differentiation (Elav, cyan). (C-C”) Omb expression level in Act5C>omb clones varied. Omb
expression in a single ommatidial clusters (arrows) could autonomously block neuronal differentiation (Elav,
cyan). The Z-section along the white line is shown in C-1 to C-1”. The relative level of Omb induction
correlates to the signal of coexpressed GFP. (D) Tangential semi-thin sections through an adult eye of an hs-
omb transgenic fly exposed to a single 1hr 37°C heat shock during mid-L3. Ommaditial patterning resumed
normally beyond the dorso-ventral scar (arrow).

doi:10.1371/journal.pone.0120236.g003
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(Fig. 3D, arrow) characteristic of furrow-stop mutations [19]. Anterior and posterior to the
scar, retinal differentiation proceeded normally, indicating that Omb does not irreversibly ar-
rest MF progression and retinal differentiation. Previously we have shown that sustained omb
expression posterior to the MF severely disturbs ommatidial development [52].

Increase in ommatidial number in omb hypomorphs apparently did not occur at the ex-
pense of gena tissue (the rim of naked tissue between retina and vibrissae) (Fig. 1B, C). This in-
dicates that Omb in the lateral margins does not act to prevent spreading of eye fate into
adjacent tissue domains. Rather, the increase in eye size in omb hypomorphs appears caused by
overproliferation of retinal precursors in the ventral eye field (s. above).

Omb inhibits cell proliferation by blocking Jak/STAT signaling through
repression of upd transcription
To understand the mechanism by which Omb impedes proliferation in the ventral anterior eye
disc, we tested the effect of Omb on the Upd/Jak/STAT signaling pathway, which promotes cell
proliferation [7,9,10,18,24], as well as MF initiation [15,17,18,22,24].

The ligand Unpaired (Upd, FlyBase: outstretched, os) of the Jak/STAT pathway is expressed
in the ventral eye disc at first instar and in the posterior center of the eye disc at second and
early third instar [9,10,57]. Upd, acting through the Jak/STAT signaling pathway, promotes
cell proliferation and represses wg transcription to promote MF initiation [7,9,10,18,24]. STAT
signaling is induced by Upd and can be detected using STAT reporters containing STAT bind-
ing sites [9,10,18,24,76]. Grh-STAT-lacZ and 10X-STAT-GFP reporter expression is high in the
posterior region, consistent with STAT activity being induced by the Upd ligand [24]. 10X-
STAT-GFP is expressed in the posterior part of the second instar eye disc, before MF initiation.
In the third instar eye disc, the 10XSTAT-GFP signal is much reduced and represents perdur-
ance from earlier expression [76]. In the omb hypomorph ombP7, STAT activity was ectopically
activated in the ventral margin (Fig. 4B and S4 Fig.), as monitored by expression of 10XSTAT-
GFP-nls (constructed in this study) which is normally expressed only in the posterior region of
the eye disc (Fig. 4A). ombP3>omb-RNAi yielded similar results (not shown). A STAT-lacZ en-
hancer trap reporter, although not fully recapitulating the STAT92EmRNA pattern, is known
to be negatively regulated by Jak/STAT activity [43,57] and, therefore, can be used as a reporter
for Jak/STAT activity. In the wild type L3 eye disc, its expression was higher in the lateral poles
and lower around the DV midline (Fig. 4C, see also [57]). In the l(1)omb15 eye disc, STAT-lacZ
expression was lost in the ventral region (Fig. 4D), suggesting an elevated STAT activity in this
region. To determine whether omb regulates Jak/STAT activity cell-autonomously, we generat-
ed l(1)ombD4 mutant clones. We found that 10XSTAT-GFP-nls was nonautonomously
induced in ventral clones (Fig. 4E-E”’). These results suggest that Omb normally acts to repress
Jak/STAT activity in the ventral region of the eye disc.

In order to determine, at which level of the Jak/STAT signaling cascade Omb inhibits this
pathway, we coexpressed the Janus kinase gene hopscotch (hop) with omb (dpp>omb+hop)
(Fig. 4G). Hop largely rescued retinal development indicating that Omb acts upstream of hop.
dpp>hop (not shown) and dpp>hop+GFP (Fig. 4F) caused an enlargement of the eye disc, con-
sistent with the role of Jak/STAT signaling in promoting cell proliferation. These results sug-
gest that repression of Jak/STAT activity is a major mechanism by which ectopic Omb blocks
eye development. We then asked whether increased Jak/STAT signaling can account for the
omb loss-of-function phenotype. We reduced the STAT92E dose in the ombP7 mutant back-
ground, (ombP7/Y; STAT06346/+ and ombP7; STAT92E397/+), which caused attenuation of the
ventral outgrowth of eye disc (Fig. 4H, H’, two focal planes; quantified comparison in 4I).
These results suggest that the overgrowth phenotype elicited by reduced omb expression
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Fig 4. Omb blocks Jak/STAT signaling. 10XSTAT-GFP is a reporter of Jak/STAT signaling [76]. We added
a nuclear localizing signal (nls) to obtain 10XSTAT-GFP-nls. (A) 10XSTAT-GFP-nls expression pattern
(GFP, green) in wild type third instar eye disc. (B) The 10XSTAT-GFP-nls was ectopically expressed in the
ventral eye margin (arrow) in an ombP7 hypomorphic mutant eye disc. (A, B) The position of the MF, based on
the DIC image, is marked by an arrowhead. (C) STAT-lacZ is repressed by Jak/STAT signaling. In wild type
late third instar eye disc, its expression was strong in the lateral poles and weaker around the DVmidline, as
reported [57]. (D) In l(1)omb15/Y eye discs, STAT-lacZ expression was attenuated in the ventral region. (E-
E”’) 10XSTAT-GFP-nls (green) was ectopically induced in l(1)ombD4mutant clones (clone marked by loss of
RFP (red) expression and by dashed line). (E’-E”’) Higher magnification of the square marked in (E).
10XSTAT-GFP-nls was non-autonomously induced by loss of omb in the ventral margin. (F) dpp>hop+GFP
caused an enlargement of the eye disc (Elav, red; GFP, green). (G) Coexpression of hopwith omb
(dpp>omb+hop) could largely rescue the dpp>omb phenotype (dpp-lacZ, green; Elav, red). (H-H’)
Reducing STAT dosage in ombP7/Y; STAT92E397/+ larvae reduced the size of the ventral retinal field
compared to that in ombP7/Y (Fig. 2B). Different focal planes of ombP7/Y; STAT92E397/+ were shown in H
and H’. The quantified eye areas are summarized in (I).

doi:10.1371/journal.pone.0120236.g004
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requires Jak/STAT activity. Therefore, in its normal function Omb appears to suppress inap-
propriate Jak/STAT signaling at the ventral margin.

Upd is the ligand of Jak/STAT pathway and expressed in the center of the posterior margin
of the eye disc in L2 and L3 larvae (S5A-D, F Fig.; [9,57]). We examined whether omb could
suppress Jak/STAT activity by downregulating upd expression. Expression of omb along the
posterior margin (in dpp>omb+GFP) suppressed upd-lacZ expression (S5E, E’ Fig.). Clonal ex-
pression of omb repressed upd-lacZ cell autonomously (Fig. 5A-A”’). We further tested wheth-
er upd expression is affected in ombmutant eye discs. We performed RNA in situ
hybridization on wild type and ombP7 eye discs and found that upd was derepressed in the ven-
tral margin in ombP7 (Fig. 5C) compared wild type (Fig. 5B). Thus, ectopically expressed Omb
can suppress upd transcription, and Omb in its normal expression domain restricts upd tran-
scription in the ventral eye margin. Moreover, coexpression of omb with upd (in dpp>omb
+upd) largely rescued retinal development in the eye disc (Fig. 5D) and the adult eye (Fig. 5E).
These results suggest that Omb, in its endogenous expression domain, acts by repressing upd,
thus limiting cell proliferation in the ventral eye. Our results further suggest that repression of
Jak/STAT signaling occurs at the transcriptional level of upd and is the major mechanism by
which Omb blocks cell proliferation in eye development.

Omb is a mediator of Wg anti-retinal function
Since Wg and Omb are expressed in a similar pattern and both block retinal development, we
asked whether the anti-retinal activity of the Wg signal is mediated by Omb. The Wg effector
Arm was expressed to mimic Wg signaling. In dpp>arm+GFP, eye disc size was reduced and
no neuronal differentiation was detected (Fig. 6A), consistent with a block of eye development
by Wg signaling. dpp expression along the posterior and lateral margins has little overlap with
endogenous wg expression (S6A’-E’, A”-E” Fig.). Therefore, this experiment tests the effect of
ectopic Wg signaling. When omb was knocked down in the background of dpp>arm (in
dpp>arm+omb-RNAi), disc size and neuronal differentiation were partly recovered (Fig. 6B).
Adult eye size also was largely restored (Fig. 6D). Knock down of Omb in the dpp expression
domain (dpp>omb-RNAi+GFP) caused no significant effect on retinal development (Fig. 6C,
E). Misexpression of arm by ey-GAL4 (ey>arm) caused a reduction of adult eye size and retinal
differentiation in eye disc (Fig. 6F, J). When omb dosage was reduced (l(1)ombD4/+), the
ey>arm phenotype was partially rescued with full penetrance (Fig. 6G-I, K-L). These results
suggest that Omb is one of the mediators of Wg activity in blocking eye development.

Discussion

omb represses retinal development
In this study, we demonstrate that omb is a negative regulator of retinal development. Omb can
block eye development at several levels: cell proliferation, MF initiation, and progression. In
omb loss-of-function mutant or RNAi-knockdown animals, the most prominent phenotype
was an enlargement of the ventral eye (Fig. 1) due to extra cell proliferation (Fig. 2). ombmu-
tant clones in its expression domain at the ventral margin were 3.5 times larger than control
clones (Fig. 2). These loss-of-function results were supported by the opposite effect in gain-
of-function experiments. In omb gain-of-function animals, the size of eye disc (S1C Fig.) and
adult eye was reduced (data not shown). In addition, omb-expressing clones blocked MF initia-
tion (Fig. 3A) and progression (Fig. 3B). Expression of omb along the margins (dpp>omb
+GFP) could completely block retinal development (S3B-C Fig.).

Act5C>omb clones were not detected in late third instar eye discs. Rare clones were ob-
served only when larvae were raised at 17°C and examined at early to mid-third instar (Fig. 4).
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These clones were often round and sorted out from the neuroepithelial layer. This behavior has
previously been observed for omb gain-of-function clones in the wing imaginal disc [49].

We identified the Jak/STAT signaling pathway asdownregulated by Omb. In omb loss-
of-function animals, the 10XSTAT-GFP-nls and upd-lacZ expression were elevated in the ven-
tral region (Figs. 4B, 5C). Conversely, when omb was ectopically expressed in the posterior and
lateral margins, upd-lacZ expression at the margins was reduced (S5E, E’ Fig.). These results
show that upd transcription is repressed by Omb in the lateral margins, especially the
ventral margin.

The repression of the Upd signaling cascades by Omb is of developmental relevance. Ectopic
expression of omb in the margins (dpp>omb+GFP) blocked retinal development (S3C,5E
Figs.). Coexpression with of hop (dpp>omb+hop) could nearly fully restore retinal develop-
ment in the eye disc (Fig. 4G). Reducing the dosage of STAT (in ombP7/Y; STAT92E397/+) par-
tially suppressed the ombP7 enlarged eye phenotype (Fig. 4H), suggesting that STAT signaling
is downstream of omb and involved in causing its mutant phenotype. These results indicate
that the repression of the Upd/Jak/STAT pathways is responsible for the block of retinal devel-
opment by Omb.

upd is transcriptionally repressed by Omb. Is it a direct transcriptional target of Omb? Omb
is a transcription factor of the T-box family all members of which bind to a common consensus

Fig 5. omb can repress upd transcription. (A-A”’) omb expression clone induced by Act5C-GAL4 suppressed upd-lacZ expression (Act5C>omb+GFP in
upd-lacZ). (A’-A”’) are a higher magnification of the area marked in (A). GFP (green) marks the Omb expressing cells. Omb expressing cells suppressed
upd-lacZ (red). (B-C) RNA in situ hybridization of third instar eye discs. (B) In late third instar, no signal was detected by upd anti-sense probe in wild type eye
disc. (C) updmRNA was ectopically expressed in the ventral eye margin of ombP7/Y. (D, E) Coexpression of omb with upd (in dpp>omb+upd) partially or
fully rescued retinal development in the eye disc (D) and adult eye (E). (Elav, red; Wg, blue)

doi:10.1371/journal.pone.0120236.g005
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element, the T-box binding element (TBE, [77]). Based on transcript microarray data and cell
culture studies, Omb acts predominantly as a transcriptional repressor ([52]; A. Klebes and
G. O. Pflugfelder, unpublished data). A bioinformatic search using a position weight matrix
constructed from bona fide TBEs identified a well conserved high-affinity potential TBE in the

Fig 6. Functional relationship betweenwg and omb. (A) dpp>arm+GFP eye discs were reduced in size
and showed no neuronal differentiation (Wg, red; Elav, cyan; GFP, Green). (B, D) dpp>arm+omb-RNAi
caused partial rescue of eye disc size and neuronal differentiation (B) and adult eye (D). (C, E) dpp>omb-
RNAi+GFP did not affect retinal development in eye disc (C) and adult eye (E). Misexpression of arm by ey-
GAL4 (ey>arm) caused eye size reduction in adult eye (F) and in eye disc (J). Reduction of omb genetic
dosage (l(1)ombD4/+) in the background of ey>arm partially rescued the eye size with full penetrance in adult
(G-I) and in eye disc (K, L). 31% of these eye discs showed ventral expansion of retinal differentiation.
Interestingly, 44~50% of l(1)ombD4/+; ey>arm flies have dorsal ectopic eyes in adult (I) and in eye discs (6L).

doi:10.1371/journal.pone.0120236.g006
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upstream region of upd (G. O. Pflugfelder, unpublished data). This finding and the cell-autono-
mous repression of upd by Omb (Fig. 5A) as well as the derepression of upd in the ventral omb
domain in ombmutant eye discs (Fig. 5C) suggest that repression of upd by Omb may be di-
rect. However, Omb cannot be the only factor that prevents upd expression from the lateral
margins, because dorsally upd is not derepressed in ombmutant eye discs.

Omb partially mediates the anti-retinal function of Wg signaling
Since Wg and Omb are expressed in similar patterns and since both can block retinal develop-
ment at multiple steps, the question arises whether Omb mediates Wg signaling. We found
that the anti-retinal effects of ectopic Wg signaling (ey>arm and dpp>arm) were attenuated
when the omb dosage was reduced. The partial rescue suggests that Omb mediates part of the
Wg effect and that additional factor(s) are likely to be involved. Our analyses show that the ef-
fect of Omb is partly similar to that of Wg and partly different (Fig. 6).

A clear difference was the opposite effect on cell proliferation. Omb repressed cell prolifera-
tion, through a block of Upd/Jak/STAT signaling. In contrast, enhanced Wg signaling (in axin
mutant) causes overgrowth [78], whereas loss of Wg results in reduction of eye disc size
[30,35]. Therefore, Wg can promote cell proliferation.

Loss of omb affected primarily development of the ventral eye margin. The ventral bias in-
cluded effects on STAT activity. Therefore, the effect of wg in the dorsal side may be mediated
by another factor, either independent of Omb or functionally redundant with Omb. Dorsal eye
fate is governed by the expression of members of the Iroquois gene complex (Iro-C)[79]. Its ac-
tivity modulates the function of genes that are symmetrically expressed at the poles of the eye
disc, like teashirt, for instance [79,80]. The specification of dorsal rim ommatidia late in eye de-
velopment provides an example of how Omb function is modulated at the lateral eye margins.

During pupal eye development, a dorsal Wg gradient specifies three cell fates at the dorsal
eye boundary: pigment rim, polarization-sensitive dorsal rim (DR) ommatidia, and bald om-
matidia (lacking the mechanosensory hairs). Omb which is induced by Wg, is sufficient to in-
duce the DR fate in the dorsal eye. Ectopic omb induces the dorsally restricted expression of
homothorax (hth) which together with ubiquitous extradenticle (exd) allows the formation of
Hth/Exd complexes which specify DR development [81]. Dorsalisation of the ventral eye by
ubiquitous expression of Iro-C genes causes DR fate also along the ventral margin. The mono-
polar Iro-C expression thus determines the different functional outcome of symmetrical omb
expression at the two margins. Like in early eye development, loss of omb has little consequence
for dorsal eye development during specification of DR ommatidia. The discrepancy between
strong effect in omb gain-of-function and little effect in omb loss-of-function dorsal eye pheno-
types has been attributed to a redundant function exerted by the related T-box genes Dorso-
cross (Doc) [82].

Intriguingly, the closely omb-related vertebrate T-box genes Tbx2/3/5 are all expressed in a
polar pattern, first in the dorsal eye cup and later in the dorsal retina [83,84,85,86]. A role of
human TBX5 in eye development is apparent from the frequent ophtalmological symptoms of
patients suffering from Holt Oram Syndrome (TBX5 haploinsufficiency) [87,88]. The related
expression patterns of Tbx2/3/5 and omb in eye development suggest conservation of ancient
functions which were already present in an evolutionary precursor before the split into the pro-
tostome and deuterostome lineages [89], in spite of the widely differing mechanisms of eye on-
togenesis in metazoans [90,91].
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Supporting Information
S1 Fig. Reduced Omb expression by ombP3>ombRNAi and increased Omb expression in
the ombFor mutant. Eye-antennal discs stained with anti-Omb (green) and anti-Elav (red).
Marginal expression is indicated by arrows, expression in retinal basal glial cells by arrowheads.
(A) wild type, (B) ombP3>omb-RNAi, (C) ombFor, (D) ombP3>GFP and (E) ombP7 >GFP. In
ombFor, Omb is increased in the dorsal and ventral margin and in the retinal basal glia. The
disc size is reduced (C). The marginal expression of ombP7-GAL4 was broader than that of
ombP3-GAL4. In (C) and (D) the retinal basal glial cells were below the focal plane.
(TIF)

S2 Fig. Loss of omb causes primarily ventral overgrowth. (A-D) The boundary of dorsal/ven-
tral fields in third instar eye discs was monitored by the position of the optic stalk (white ar-
rowhead), anti-Bar antibody staining (A, B) and the ventrally expressed fng-lacZ (C, D).
Dotted lines mark the MF and the projection from the optic stalk entry point onto the MF. In
(A, B) the dotted line also visualises the line of mirror symmetry in the Bar expression pattern.
The BarH1 and BarH2 expression in photoreceptor cells R1 and R6 [71] is mirror-symmetrical
with regard to the equator. The solid line in (C, D) marks the dorsal boundary of the ventral
fng-lacZ expression domain. (A) w1118/Y, (B) ombP7/Y, (C) fng-lacZ and (D) ombP7/Y; fng-lacZ.
The D/V eye field was symmetrical in the third instar eye disc of wild type, but the ventral field
was expanded in ombP7/Y. (E) The number of rows of ommatidia in each eye disc, and the
numbers of ommatidia in the dorsal and ventral eye fields were counted at different stages of
eye disc development. In wild type eye disc, the dorsal and ventral eye fields were always of
equal size. In ombP7/Y, the ventral eye field was consistently larger than the dorsal field.
(TIF)

S3 Fig. Coexpression of the cell death inhibitor p35 does not rescue eye development
blocked by Omb. (A) dpp-GAL4 driven GFP (dpp>GFP) expression (GFP, green) overlapped
with the omb-lacZ expression (red) domain in the lateral margins. In early eye disc, dpp-GAL4
expression is similar to that of dpp-lacZ (S6 Fig.) in the posterior and lateral margins. Unlike
dpp-lacZ, dpp-GAL4 is not expressed in the progressing MF in mid to late third instar eye disc.
(B) dpp>omb+GFP, as dpp>omb, completely blocked eye development in adult (B) and in late
third instar eye disc (C). The eye disc has no neuronal differentiation (Elav, blue) but has ele-
vated activated caspase 3 (red). (D) Blocking apoptosis by coexpression of p35 (dpp>omb
+p35) significantly reduced the caspase 3 signal but did not rescue eye size or retinal differenti-
ation. Scale bar: 50um.
(TIF)

S4 Fig. The Jak/STAT activity is detected in the ventral margin of ombmid- and late third
instar eye discs. 10XSTAT-GFPnls is a Jak/STAT reporter. (A-C) Jak/STAT activity in ombP7

eye discs. (A-A”) 10XSTAT-GFPnls was found in the posterior eye field in the early third instar
eye disc of ombP7. (B-B”) Jak/STAT activity was activated in posterior eye field and ventral
margin (arrow) of mid-third instar larvae. (C, C”) Jak/STAT activity was detected in the poste-
rior eye field as well as ventral margin (arrow) in the late third eye field. Elav (red), GFP
(green).
(TIF)

S5 Fig. Expression of omb suppresses upd transcription. (A-C’) The expression pattern of
ombP1-lacZ (red) and upd>GFP (green) did not overlap in late second (A), early third (B) and
late-third instar eye discs (C). ombP1-lacZ is also expressed in the retinal basal glia which lies at
the basal surface and does not overlap with the upd expressing cells in the neuroepithelial layer
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(not shown). (D) The expression pattern of upd-lacZ (red) in wild type. Elav (cyan). (E, E’)
dpp>omb+GFP (GFP, green) suppressed upd-lacZ expression (red) at the center of the posteri-
or margin (arrow)
(TIF)

S6 Fig. Relative expression pattern of omb, dpp and wg during eye disc development. (A-E)
The expression patterns of omb (visualized by ombP3>GFP, green), (A’-E’) Wg (anti-Wg, red),
and (A”-E”) dpp (represented by dpp-lacZ, blue) were followed during eye-antennal disc devel-
opment from early second instar to late third instar. (A”’-E”’) shows the merge images of
ombP3>GFP, dpp-lacZ andWg immunostaining.
(TIF)
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