Table 1. The set of candidate models.
MODEL | Linear Predictor |
---|---|
m1 | s(kW:Period) + s(Depth: Period) + Period + Country+ s(Fisherman, bs = “re”) |
m2 | s(kW: Period) + s(Depth: Period) +Period + Country + GSA +s(Fisherman, bs = “re”) |
m3 | s(kW: Period) + s(Depth) + Period + Country + GSA + s(Fisherman, bs = “re”) |
m4 | s(kW) + s(Depth) + Period + Country + GSA +s(Fisherman, bs = “re”) |
m5 | s(kW: Period) + Depth + Period+ Country + GSA +s(Fisherman, bs = “re”) |
m6 | s(kW: Period) + Depth + Period+ Country + s(Fisherman, bs = “re”) |
m7 | s(kW: Period) + Depth + Period+ GSA + s(Fisherman, bs = “re”) |
m8 | s(kW: Period) +Period+ Country + s(Fisherman, bs = “re”) |
m9 | s(kW: Period) + Country + s(Fisherman, bs = “re”) |
GSA = Geographical Sub-Areas
s() is a smooth function represented using penalized regression splines [25].
Covariate “Fisherman” was estimated through penalized random effects (bs = “re”).