British Journal of Anaesthesia 114 (4): 677-82 (2015)

Advance Access publication 13 December 2014 - doi:10.1093/bja/aeu404

Systemic oxygen extraction during exercise at high altitude
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Editor’s key points

e Five healthy subjects were
studied at sea level and at

altitude (4559 m).

o Systemic oxygen
extraction after peak

exercise was measured.

¢ Hypoxaemia was seen but
no change in the oxygen

extraction ratio.
e The lack of increased

tissue oxygen extraction
despite hypoxaemia is not

known.

Background. Classic teaching suggests that diminished availability of oxygen leads to
increased tissue oxygen extraction yet evidence to support this notion in the context of
hypoxaemia, as opposed to anaemia or cardiac failure, is limited.

Methods. At 75 m above sea level, and after 7-8 days of acclimatization to 4559 m, systemic
oxygen extraction [C(a—v)O,] was calculated in five participants at rest and at peak exercise.
Absolute [C(a—v)O,] was calculated by subtracting central venous oxygen content (CcvO,)
from arterial oxygen content (Cap,) in blood sampled from central venous and peripheral
arterial catheters, respectively. Oxygen uptake (VO,) was determined from expired gas
analysis during exercise.

Results. Ascent to altitude resulted in significant hypoxaemia; median (range) Sp,, 87.1
(82.5-90.7)% and Pap, 6.6 (5.7-6.8) kPa. While absolute C(a—v)O, was reduced at
maximum exercise at 4559 m [83.9 (67.5-120.9) ml litre ! vs 99.6 (88.0-151.3) ml litre *
at 75 m, P=0.043], there was no change in oxygen extraction ratio (OER) [C(a—Vv)0,/Ca0,]
between the two altitudes [0.52 (0.48-0.71) at 4559 m and 0.53 (0.49-0.73) at 75 m,
P=0.500]. Comparison of C(a—v)O, at peak VOZ at 4559 m and the equivalent VOZ at sea
level for each participant also revealed no significant difference [83.9 (67.5-120.9) ml litre’
vs 81.2 (73.0-120.7) ml litre 2, respectively, P=0.225].

Conclusion. In acclimatized individuals at 4559 m, there was a decline in maximum absolute
C(a—v)O; during exercise but no alteration in OER calculated using central venous oxygen
measurements. This suggests that oxygen extraction may have become limited after

exposure to 7-8 days of hypoxaemia.
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Exposure to hypobaric hypoxia at high altitude presents a sig-
nificant physiological challenge to oxygen transport processes
within the body. This environmental stress is heightened
during exercise by the additional demand of increased
oxygen consumption from exercising skeletal muscles. Intui-
tively, one would expect that when hypoxaemic, whole body
oxygen extraction would be increased to match the heigh-
tened demand for oxygen. However, during a simulated
ascent of Mount Everest in a hypobaric chamber study, Oper-
ation Everest II (OE II), no such augmentation of oxygen ex-
traction was observed either at rest or during exercise.! Using

a mathematical modelling approach based on data from OE
IT it was suggested that oxygen conductance within the
muscle was one of the most likely factors to limit exercise at
high altitude (tissue diffusion limitation).?

Whole body oxygen extraction is difficult to measure direct-
ly but can be inferred from the difference between the influent
and effluent oxygen contents of an organ, or for the entire
body. As proposed by Adolf Fick, comparison of blood sampled
from the pulmonary vein and artery provides a measure of
whole body oxygen extraction that can be used to calculate
cardiac output and oxygen consumption. Estimations of these
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measures can be obtained in humans by obtaining simultan-
eous peripheral arterial and central venous blood samples.

Based on previous data, we hypothesized that absolute
whole body oxygen content extraction [C(a—v)O,] derived
from arterial and central venous blood samples, and relative
oxygen extraction ratio (OER) [C(a—v)O,/Ca0,], would be
reduced at rest and during peak exercise at high altitude
when compared with sea level values.

Methods

Study design and participants

Approval for this study was obtained from the University College
London Committee on the Ethics of non-NHS Human Research
and all participants gave written informed consent. Participants
were five individuals enrolled from the Xtreme Alps 2010 exped-
ition,” three females and two males; median age was 37.4 years.
The participants were studied at sea level in London (75 m) and
then at 4559 m in the Margherita Hut high altitude research
laboratory. Ascent was initially by road to Alagna (1200 m)
and then, on the same day, by cable car to Punta Indren (3200
m) and on foot to the Gnifetti Hut (3647 m). After two nights
spent at 3647 m, participants ascended to 4559 m. Study mea-
surements were made on Days 5 and 6 after arriving at 4559 m
(Days 7 and 8 at high altitude). Subjectively, participants were
well acclimatized to high altitude with no evidence of acute
high altitude illness at the time of the study and had no contra-
indications to undertake a maximal exercise capacity test. The
median barometric pressure during the studies was 101.7 kPa
at sea level and 58.1 kPa at 4559 m.

Vascular catheter insertion

All catheters were placed under full sterile conditions, local
anaesthetic infiltration with 1% lidocaine. A 20 G arterial cath-
eter (Vygon, UK) was inserted into the radial artery of the non-
dominant arm. An 11 cm 18-G single lumen central venous
catheter (Vygon, UK) was inserted as caudally as possible
into the right internal jugular vein using ultrasound (Micro-
maxx, SonoSite, Inc., Bothell, WA, USA) to identify the vein. A

Table 1 Median (range) resting oxygen extraction values at sea
level and 4559 m. [Hb], haemoglobin concentration; * Significant
difference between 75 and 4559 m (P<0.05)

75m 4559 m
[Hb] (gdl™?) 14.2 (13.2-15.2) 14.7 (12.4-16.3)
Pao, (kPa) 13.8 (11.7-14.4) 6.6 (5.8-7.1)*
Sao, (%) 97.9 (96.7-98.2) 87.1(82.5-90.7)*
Scvo, (%) 62.6 (53.8-64.6) 57.7 (52.8-59.9)*

Ca0, (ml litre™?)
CcvO, (ml litre™ )

193.5(183.0-210.7) 175.2(157.9-193.8)*
118.3(111.6-137.5) 116.6 (100.5-125.5)*

C(a—v)0, 69.2 (64.7-92.9) 63.5 (57.4-68.3)*
(ml litre™ 1)

OER 0.36 (0.35-0.45) 0.35(0.33-0.38)
Voz(ml min~1) 381 (248-391) 384 (255-455)
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modified Seldinger technique (without skin incision or dilata-
tion of the vein) was used to insert the catheter. Both catheters
were then connected to a pressure transducer system
(Edwards Lifesciences, CA, USA) using 0.9% sodium chloride
as the flushing fluid. Transducers were attached to a monitor-
ing system (GE Marquette Dash 3000, GE Healthcare, Chalfont
St Giles, UK), zeroed at the height of the right atrium and
attached firmly to the participant. After completion of the
exercise protocols and 30 min of recovery, vascular catheters
were removed using a sterile technique.

Exercise protocol

Exercise was performed on an electronically braked cycle
ergometer (Lode Corival; Lode, Groningen, Netherlands) and
cardiopulmonary exercise testing system (Metamax 3b; Cortex,
Leipzig, Germany) previously validated at altitude.” At sea level
a ramp increment was selected depending on the sex, age,
height, weight and physical fitness of each participant, in order
to obtain a test duration of ~10 min. The same ramp increment
was used at altitude. After 3 min of resting data collection,a 3 min
period of unloaded pedalling preceded a ramp protocol to
exhaustion. Pedalling cadence was maintained at 60 rpm. The
load was removed from the ergometer when participants were
no longer able to maintain a steady pedalling cadence of
60 rpm. Oxygen uptake (VO,) was determined breath-by-breath
from expired breath analysis. Peak VO, was recorded as the
highest average VO, achieved during the final 20 s of exercise.

Measurements

Measurement of blood gas partial pressures, pH, and haemo-
globin concentration was performed using the Rapidlab 348
analyser (Siemens Medical Solutions Diagnostics, UK) and a
handheld photometric device (Hemocue® Whole Blood Hemo-
globin System, HemoCue AB, Angelhoim, Sweden). We have
previously validated this Siemens blood gas analyser for use
at high altitude and this is described elsewhere.” At rest and
during exercise, 1 ml blood samples were obtained simultan-
eously from the arterial and venous catheters. Sampling was
performed at the end of 3 min of unloaded cycling and then
every minute during exercise until exhaustion. A final sample
was obtained 1 min after cessation of exercise. Measurements
comprised arterial partial pressure of oxygen (Pao,), arterial
partial pressure of carbon dioxide (Paco,), and pH; arterial
oxygen saturation (Sao,) was calculated by the blood gas ana-
lyser according to a standard algorithm® as pulse oximetry is
unreliable when Sao, falls to <80%.”

Calculations and statistical analysis

Arterial oxygen content was estimated as the product of
haemoglobin concentration, Sap, and the volume of oxygen
carried by 1 g of haemoglobin [1.39 ml g~ '] plus the product
of the Pag, and the solubility coefficient for oxygen (0.225).
Absolute oxygen extraction C(a—v)O, was calculated by
subtracting central venous oxygen content (CcvO,) from
Ca0, in blood sampled simultaneously from central venous
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and peripheral arterial catheters, respectively. The OER was
calculated by dividing C(a—v)O, by CaO,.

Data were treated as non-parametric and presented as
median (range). Data at altitude and sea level were compared
using the Wilcoxon signed-rank test, with statistical signifi-
cance set at P<<0.05. Analyses were performed using SPSS
version 21.0 and Graphpad Prism 5.0.

Results

Data collection was successful in all five participants and no
complications or adverse events occurred.

Median Pag, and Sap, at rest were higher at sea level
compared with 4559 m (Table 1). Resting absolute oxygen
extraction declined after ascent, however, OER remained
unchanged at 4559 m (Table 1).

After exercise, median peak VOZ was lower at 4559 m than
at 75 m (Table 2). In keeping with this, the maximum work rate
achieved during exercise was reduced at 4559 m [239 (139-
315) W], when compared with 75 m [286 (189-405) W;
P=0.042]. During exercise at altitude Pap, and Sap, declined
steadily for each individual as work rate increased during exer-
cise while C(a—v)0; increased to reach a maximum value at
peak VOZ (Fig. 1). At peak VOZ the absolute C(a—v)0; declined
from 99.6 (88.0-151.3) ml litre™! at sea level to 83.9 (67.5-
120.9) ml litre™! at 4559 m while OER remained unchanged,
0.53 (0.49-0.73) and 0.52 (0.48-0.71), respectively. As the
maximum work rate for each participant was significantly
reduced at high altitude, the C(a—v)O, at VOZ peak for 4559 m
was compared with the equivalent work rate at sea level
during the ramped protocol to exhaustion (Table 3). The median
difference between C(a—v)O, calculations at these two com-
parable work rates was 2.6 (—5.5-15.0) ml litre %, P=0.225.

Discussion

Despite a significant reduction in Pap,, Sag, and CaO; at rest
after ascent to 4559 m [calculated inspired Po, (Plo,) of 10.9
kPa], there was no increase in systemic oxygen extraction
either at rest or at peak exercise. In absolute terms there was
a significant decrease in systemic oxygen extraction both at

Table 2 Median (range) oxygen extraction values during peak
exercise at sea level and 4559 m. * Significant difference between
75 and 4559 m (P<0.05)

75m 4559 m
Pao, (kPa) 13.0(12.3-15.8) 6.0 (5.7-6.8)*
Sao, (%) 97.0 (96.0-97.6) 82.5(75.1-85.1)*
Scvo, (%) 45.4 (26.8-49.1) 36.2 (24.6-42.0)

Ca0, (ml litre™?)
CcvO, (ml litre™)

193.4(179.0-208.7) 165.8(139.8-192.7)*
86.7 (57.4-94.5) 73.6 (49.0-81.9)*

C(a—v)0, 99.6 (88.0-151.3) 83.9 (67.5-120.9)*
(ml litre™ )
OER 0.53 (0.49-0.73) 0.52 (0.48-0.71)

VO, (mlmin~Y) 3646 (2156-4537) 2701 (1609-3355)*

rest and at peak exercise at altitude; however, in relative
terms OER remained unchanged. In view of the reduced work
rate at maximum exertion at high altitude a comparison was
made between mean C(a—v)O, for peak exertion at high alti-
tude and the equivalent VOZ at sea level; no difference in
oxygen extraction was detected.

The absence of an increase in whole body OER at 4559 m
from the value at 75 mis consistent with data from a previous
hypobaric chamber study® and field data collected at high
altitude.? ? Others have specifically measured limb oxygen ex-
traction during maximal exercise at high altitude, and also
found no change from the sea level value.’® The consistent
finding that sub-acute exposure to hypoxia is not associated
with an increase in systemic oxygen extraction is surprising in
view of the reduced arterial oxygen content noted in all of
these studies, and goes against the traditional teaching that
when oxygen delivery declines, tissues respond by extracting
more oxygen from arterial blood, resulting in a lower mixed
venous oxygen saturation and content.’” At rest, with only a
modest reduction in CaO,, it is conceivable that there is suffi-
cient oxygen delivery to meet tissue demands in various
organs such that overall oxygen extraction is unaltered.
However, the lack of an increase in oxygen extraction during
exercise at altitude is less easy to explain if viewed from the
perspective of balancing oxygen supply and demand. In a
classic animal model study, reducing systemic oxygen delivery
through isovolaemic haemodilution led to a demonstrable in-
crease in tissue oxygen extraction in order to maintain
oxygen uptake in the face of diminishing oxygen availability.*?
Inthis experimental setting Pag, was constant throughout and
it was anaemic hypoxia that impeded systemic oxygen trans-
port. Oxygen extraction increased (in accordance with the
Fick equation) until a critical level of oxygen delivery, after
which oxygen uptake began to decline as oxygen extraction
had reached its upper limit. It is conceivable that this process
of increased oxygen extraction may not be possible (or is less
effective) during a hypoxic challenge. Factors that may contrib-
ute to this lack of increase in overall whole body oxygen extrac-
tion at altitude include:

¢ Tissue diffusion limitation of oxygen because of the reduc-
tion in partial pressure gradient from the capillary to the
mitochondria that is exacerbated during exercise by a
reduced capillary transit time within skeletal muscle.*® **

e Localized mismatch between tissue oxygen demand and
microcirculatory blood flow because of heterogenous
flow patterns.

¢ Redistribution of blood flow away from actively exercising
muscle in order to ‘protect’ vital organs, a significant re-
duction in blood flow to other less vital organs such as
the gastrointestinal tract, or both.’> Redistribution of
flow may therefore resultin no overallincrease in system-
ic oxygen extraction.

o Altered cellular metabolism with reduced oxygen con-
sumption at a mitochondrial level. Oxygen consumption
is determined primarily by mitochondrial oxygen metab-
olism rather than oxygen delivery, and at altitude
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Fig1 Individual participant oxygen extraction [C(a—v)O-] data plotted against oxygen consumption (VO,) during exercise at sea level and at 4559 m.

alterations in mitochondrial function may limit peak
oxygen consumption.’®

Using the Fick equation, it is possible to calculate the cardiac
output [VOZ/C(G —v)0;] for the group, at rest and maximal ex-
ercise. Using this method the sealevel values for cardiac output
were 5.5 litre min~* at rest and 36.6 litre min~* at maximum
exercise; at altitude the respective figures were 6.0 and 32.2
litre min~ . This is in keeping with previously published data
when volunteers were acutely exposed to simulated high alti-
tude.”” Thus despite a reduced cardiac output at maximum
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exertion at altitude in our study, there was still no demon-
strable increase in whole body oxygen extraction.

Of interest we observed that the altitude-related re-
duction in peak work rate was proportionally smaller than
that of VO, peak, despite the work rate incrementation
having been standardized for each subject. This is apparent
as a reduction in the slope of the VO,-work rate relation-
ship, which has previously been observed in subjects
performing ramp-incremental exercise with acute inhalation
hypoxia (Fio, 0.14)."® This may reflect an inability of oxygen
transport to meet metabolic demands in the presence of
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Table 3 Oxygen extraction values for peak exercise at 4559 m and the equivalent work rate at sea level (SL). *The C(a—Vv)O, for equivalent VO, for

each individual at SL (ml litre™?)

Subject C(a—v)0, at peak VO, (ml litre™?): C(a—v)0, for equivalent work rate C(a—v)0, (ml litre™?) difference
4559 m (ml litre™"): SL* (4559 m—SL)

1 83.8 81.2 2.6

2 83.9 78.1 5.9

3 67.5 73.0 -55

4 119.1 104.1 15.0

5 120.9 120.7 0.3

Median 83.9(67.5-120.9) 81.2 (73.0-120.7) 2.6 (—5.5-15.0)

(range)

reduced oxygen content,'® a change in the efficiency of oxygen
utilization or altered oxygen uptake kinetics with hypoxia.

Alimitation of our study was that no sample size calculation
was performed before commencing the study and the number
of participants was low, therefore it is possible that the lack of
difference in OER between sea level and high altitude was the
result of a type II error. However, the significant reduction in
absolute oxygen extraction strongly suggests that there is no
true increase in OER and the likelihood is that extraction is
actually reduced. Another limitation of this study is the use of
central venous catheters rather than pulmonary artery cathe-
ters to measure mixed venous oxygen saturation (Svp,). This
method measures central mixed venous oxygen saturation
(Scvp,) and is commonly used as a surrogate for Svg, clinically.
While the two values are strongly correlated, Scvp, tends to
be lower than Svg, in healthy volunteers at rest because of
the flow of well-saturated venous blood from the renal circula-
tion that returns to the heart via the inferior vena cava; oxygen
extraction is lower in the kidneys than in most other organs.*®
20\We chose not to insert pulmonary artery cathetersin partici-
pants as it is technically more challenging than central venous
catheter insertion and is associated with significant risk of
adverse events. The tip of a correctly place central venous cath-
etershouldliein the superior vena cavajust above the entrance
totheright atrium. The distance from the entry site of the cath-
eter and the superior vena cava-atrial junction is ~16 cm in
adults,”! although this depends upon the height of entry
within theinternal jugular vein and individual participant char-
acteristics. The catheters used in this study were 11 cm in
length but it was possible to use a ‘low’ insertion technique
with ultrasound guidance in order to minimize the distance
between the tip of the catheter and the right atrium. It is pos-
sible that the stresses induced by both exercise and hypobaric
hypoxia may have led to disparity between measured Scvo,
and true Svo,. However, it is likely that this would have resulted
in a relative under-estimation of oxygen extraction while
resting at sea level; both exercise and hypoxia may have
resulted in a relative over-estimation of oxygen extraction.
That said, as an identical sampling technique was used at
sea level and altitude one would expect to detect relative
changes in OER if they were present, even if the absolute
values of Scvg, were not truly representative of Svg,.

The clinicalimplication of this high altitude field study is that
increased tissue oxygen extraction may not be an innate
physiological response to sub-acute hypoxaemia as it is in
other situations of reduced oxygen delivery such as haemor-
rhage. Thus under conditions of hypoxaemia, strategies to
maintain oxygen homeostasis at a cellular level may differ
from those used in anaemia or cardiovascular failure. Simple
arithmetic rebalancing of the oxygen delivery equation (the
product of CaO, and cardiac output) may well restore values
back to those we associate with normal physiology but fail to
address the underlying biological abnormality.

Using C(a—v)O, derived from peripheral arterial and central
venous blood samples, we have shown a decrease in absolute
whole body oxygen extraction at rest and peak exercise after
ascent to high altitude (4559 m) while OER remained un-
changed. The cause for this lack of increase in oxygen extrac-
tion remains uncertain but may be attributable to diminished
diffusion of oxygen from the microcirculation to mitochondria
because of a reduced Pag, gradient.
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