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Abstract
In an interesting and quite exhaustive review on Random Forests (RF) methodology in bioinformaticsTouw et al. ad-
dressçamong other topicsçthe problem of the detection of interactions between variables based on RF method-
ology. We feel that some important statistical concepts, such as ‘interaction’, ‘conditional dependence’ or
‘correlation’, are sometimes employed inconsistently in the bioinformatics literature in general and in the literature
on RF in particular. In this letter to the Editor, we aim to clarify some of the central statistical concepts and point
out some confusing interpretations concerning RF given byTouw et al. and other authors.
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INTRODUCTION
Random Forests (RF) is a valuable analysis tool, es-

pecially in situations where datasets contain many

variables with complex relationships. Therefore,

many authors use statistical terms such as ‘interactions’

and ‘conditional relationships’ to indicate the com-

plexity of the data—yet without clearly defining

their meanings or, alternatively, they use these terms

inconsistently throughout their paper [1–3]. Here, we

will give a consistent statistical definition of those con-

cepts that are most central for understanding the

rationale and behavior of RF. In examining these

definitions, we explain some of the statements of

Touw et al. [1] that we found unclear when reading

their paper. We stress, however, that some terms can

have sensible meanings other than those outlined in

our letter. Our intention is not to impose our defin-

itions on everyone but rather to provide a possible

interpretation of the considered concepts that allows

a better understanding of some aspects of RF meth-

odology. We aim to point out that it is important to

define concepts clearly and consistently within every

article, no matter whether formal statistical terms are

used for that purpose or not.
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INTERACTION, CORRELATION
AND CONDITIONAL
DEPENDENCE:WHATDO
THEYMEAN?
Interactions and effect modification
The term ‘interaction’ is related to the concept of

(effect) modification. According to Miettinen [4],

effect modification is present when the measure of

association between a predictor variable [e.g. a single

nucleotide polymorphism (SNP)] and the response

variable (e.g. a trait) is not constant across another

characteristic (e.g. population strata or a SNP at a

second locus). Because such a characteristic changes

the effect of the SNP of interest on the trait, this

phenomenon is often referred to in the literature as

effect modification. Notably, some epidemiology

textbooks [5] reserve the term effect modification

for when the modification is linked to a causal mech-

anism and use the reduced term modification other-

wise. There seems to be no consensus on how to

define the term ‘effect modification’ in the literature

[6–8].

The statistical literature avoids these definition

problems by using the term ‘interaction’ in the con-

text of regression models with additive effects to

denote deviations from the additive model that are

reflected by the inclusion of the product of at least

two predictor variables in the model. In this letter we

take this perspective, which has the advantage that

it involves unambiguous definitions; see the next

section for a formal definition of interaction effects

within a regression model.

In many of the explanations below it is important

to clearly distinguish between the response variable

Y of a supervised learning problem, also termed out-

come, criterion variable or dependent variable and

the potential predictor variables X1, . . . ,Xp, also

called features, covariates or independent variables.

Observed values of Y and Xj are denoted by y and

xj, j ¼ 1, . . . , p, with n denoting the number of ob-

servations and p the number of predictor variables.

Interactions in regression models
Let us consider a regression problem with a response

variable Y and two predictor variables X1 and X2. If

Y is binary, a popular statistical approach to build a

prediction model for Y based on X1 and X2 is the

logistic regression model, which relates the probabil-

ity PðY ¼ 1jX1 ¼ x1,X2 ¼ x2Þ to a linear combin-

ation of the predictor variables through the so-called

‘logit’ function logitðxÞ ¼ log x
1�x. In this context,

interaction effects are modeled by including a separ-

ate effect b12 for the interaction in the linear

combination

logitðPðY ¼ 1jX1 ¼ x1,X2 ¼ x2ÞÞ

¼ b0 þ b1 � x1 þ b2 � x2 þ b12 � x1 � x2,

where b0, b1, b2 and b12 denote parameters that

link the predictors X1 and X2 to the response

variable Y and have to be estimated from the data

at hand. It is clear from this formula that, if the

parameter b12 is non-zero, the effect of x1 on

PðY ¼ 1jX1 ¼ x1,X2 ¼ x2Þ depends on x2, because

the linear combination can be reformulated as

b0 þ ðb1 þ b12 � x2Þ � x1 þ b2 � x2:

Likewise, the effect of x2 depends on x1. Looking at

this formula, it is intuitive that the notion of inter-

action is equivalent to one of the possible definitions

of the notion of effect modification: the value of x1

modifies the effect of x2 and vice versa.

Note that this classical statistical way of viewing

interactions is in line with Fisher’s original 1918 def-

inition of epistasis (alias: genetic interaction, [9]),

which involves a statistical interaction between two

variables X1 and X2, each coding allelic information

at a different genetic locus.

A simplified example of such an interaction could

be the probability of correctly assessing fetal health

during pregnancy (response variable Y with Y¼ 1

for correct diagnosis, Y¼ 0 for incorrect diagnosis).

A correct assessment is possible only if high-quality

ultrasound devices are available (predictor variable

X1) and if the hospital staff is trained to use them

and interpret the pictures (predictor variable X2).

This is an interaction effect, because only both pre-

dictor variables together can explain whether the

fetal health can be assessed correctly: intuitively,

the coefficient b12 of the product x1 � x2 will be

high, because it is important that both x1 and x2

equal 1 for the diagnosis to be correct. Only if the

staff is adequately trained on their use does the avail-

ability of high-quality ultrasound devices have an

effect on the correct assessment of fetal health and

vice versa. In addition to the interaction effect, it is

plausible in this example that the variable ‘trained

staff’ also has a main effect on the correct assessment

of fetal health, because a well-trained physician

might partly assess fetal health using other methods

(e.g. listen to the fetal heartbeat even in the absence

of an ultrasound device). Conversely, the availability

of ultrasound devices has no main effect, because the
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presence of trained staff is absolutely necessary for an

ultrasound device to be useful.

Interaction and association/correlation
It is important to note that an interaction is not the

same as ‘confounding’. We know from our experi-

ence in statistical consulting for applied scientists

without strong quantitative background that the

concepts are sometimes confused.

Confounding may occur when a variable is asso-

ciated with both the predictor variable of interest

and the dependent variable. Note that the term ‘cor-

relation’ (referring to Pearson’s correlation) is often

used in place of ‘association’ when both considered

variables are continuous and that ‘no association’ is

equivalent to ‘no correlation’ in the special case of

Gaussian variables. If such a confounder variable is

not taken into account, an apparent relationship may

be observed between the response variable and an-

other predictor variable, but this relationship is in

whole or in part the result of the association with

the confounder. There are several ways to remove

confounding from observed associations between a

predictor variable of interest and an outcome, the

most popular being adding the confounder as a sep-

arate main effect, in addition to the predictor variable

of interest, in a multiple regression model with the

response variable as a dependent variable.

To better understand the notion of confounding,

recall our fetal health example mentioned above. In a

naive analysis, a strong positive association could

be found between clean hospital floors (predictor

variable X3) and a correct assessment of fetal health

(response variable Y). However, this spurious associ-

ation exists due to the fact that trained staff (predictor

variable X2) is associated to both the response vari-

able Y and clean hospital floors X3. This is because,

roughly speaking, both X2 and X3 depend on the

hospital’s quality standards. The predictor variable

trained staff thus acts as a confounder. If it is not

accounted for, a regression model would show a

large regression coefficient for clean hospital floors,

whereas if the presence of trained staff is included as

an additional predictor variable in the model, we will

find that the apparent effect of the clean hospital

floors vanishes.

Quite generally and independently of this specific

example, the regression coefficient of a predictor

variable might be different depending on whether

a second predictor variable of interest is included in

the model or not. Such a change does not indicate an

interaction but is due to the association between

these two predictor variables. If they are strongly

positively associated and both have, say, a positive

effect on the response variable, their coefficients are

likely to be smaller in the model including both than

in the univariate models including only one of them.

This is because in the multiple regression model the

regression coefficients correspond to partial effects of

one variable given the other(s). This fundamental

characteristic of the multiple regression model has

also inspired the conditional variable importance

measure for RF, which is discussed in section

‘Conditional variable importance measure’.

It is important to note that one is not speaking of a

confounder variable if the considered variable is part

of the causal pathway. In this case one is speaking of

a mediator variable. To explain the term mediator

and its role as part of a causal pathway, it is assumed

for the moment that the correct assessment of the

fetal health shall be predicted from the hospital’s

quality standards that could be quantified on a

scale. If the hospital’s quality standard is taken as

the predictor variable, a well-trained staff is regarded

as a mediator because one can expect a hospital with

high quality standards to make sure that well-trained

staff is employed. As the latter is the decisive factor

for a correct diagnosis rather than the hospital’s qual-

ity standards, it lies in the causal pathway from the

hospital’s quality standards to the correct assessment

of fetal health and is thus considered a mediator.

As we have just seen above when discussing the

problem of confounding, association/correlation on

the one hand and interaction on the other hand, are

two completely different concepts: two predictor

variables might be independent but show a strong

interaction effect and, vice versa, two predictor vari-

ables may be strongly associated but have no inter-

action. To better highlight this issue, let us return to

our fetal health example. We have seen that there is a

strong interaction between well-trained staff and the

availability of high-quality ultrasound devices. It is

likely that these two factors are also associated be-

cause they are both related to the hospital’s quality

standards and because the staff’s competence depends

on the opportunity they have had to gain experience

with ultrasound devices. In this example we thus

have both a strong interaction effect and an associ-

ation between predictors. But the two concepts of

association/correlation and interaction can also occur

independently of each other. For example, trained

staff and clean hospital floors are associated but do
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not have any interaction effect: the effect of the staff’s

training on the correctness of fetal health assessment

does not depend on the cleanliness of the floors and

vice versa.

Note that strong association between predictor

variables may in some cases hinder the detection of

interaction effects, especially in datasets of moderate

size. To see this in the case of two binary predictor

variables X1 and X2, consider a dataset where no

observation shows the combination x1 ¼ 1 and

x2 ¼ 0. Based on this dataset, it is impossible to de-

termine whether X1 modifies the effect of X2,

because there is no observation with x1 ¼ 1 and

x2 ¼ 0, whereas it might be possible with a larger

dataset that includes a sufficient number of observa-

tions with both x1 ¼ 1 and x2 ¼ 0. In our example

it is unlikely that a hospital buys high-quality ultra-

sound devices (i.e. x1 ¼ 1) if nobody knows how to

use them (x2 ¼ 0). We may thus end up with a

dataset where there are no cases with high-quality

ultrasound devices but without well-trained staff.

These ‘empty cells’—if you imagine a contingency

table—make it technically impossible to estimate the

interaction effect in generalized linear models and

will very likely also affect the results of RF. In

these situations, a very large sample size may be ne-

cessary to provide a sufficient number of observations

with the scarce combination.

Conditional dependence
One term that is frequently used but not clearly

defined in the paper by Touw et al. [1] is the term

conditional dependence. The way this term is used

in the paper does not enable the reader to clearly

distinguish its meaning from that of other terms

and concepts that are frequently referred to more

or less implicitly, such as the concept of interactions

or the concept of association/correlation among pre-

dictor variables. These concepts, however, are very

different, which is relevant for the RF variable

importance measures discussed in the paper.

In parts of the statistical literature [10], the term

conditional dependence refers to a situation where

the association between two variables A and B de-

pends on the value of a third variable C. Here we use

the notation A, B and C because we do not yet want

to refer to response or predictor variables. At first

sight one may directly think of an interaction. But

only if either A or B takes the special role as the

response variable Y then we have indeed an inter-

action effect as defined in the section ‘Interactions in

regression models’ and conditional dependence does

become technically equivalent with our definition of

interaction. Winham etal. [11] take this point of view

and use the term conditional dependence to denote

interactions. However, if A, B and C are all predictor

variables then C only affects the association between

two predictor variables and not the association be-

tween a predictor variable and a response variable.

Thus, in the latter case we cannot speak of an inter-

action effect in the sense we have outlined in the

section ‘Interactions in regression models’.

Statistical interaction versus biological/
genetic interaction
Finally, we should not forget that any statistical find-

ing on the presence of interaction needs to be eval-

uated for its meaningfulness at a biological or clinical

level. For example, in the context of gene–gene

interactions (also referred to as epistasis) screening,

the challenge is to bridge the gap between statistical

interaction and those findings that are relevant from a

genetic or biological point of view. Moore [12] in-

dicates the conceptual differences between genetic

and biological epistasis on the one hand (both occur-

ring at the individual level and referring to interplays

between DNA sequences and/or gene products) and

statistical epistasis (occurring at the population level

and referring to statistical interactions between

DNA-based genetic markers in relation to a response

variable of interest) on the other hand. There is no

one-to-one correspondence between them.

TREESAND FORESTS
The aim of the paper by Touw et al. [1] was to point

out that classification and regression trees and RF

offer specific features and require choices about

which the user should be well informed. In the re-

maining sections, we will revisit their key points and

show how some are related to the statistical concepts

we have described above.

RF is an aggregation of several decision trees.

When creating a RF, one can use ‘classical’ trees

that use the Gini index as the splitting criterion.

Another option is to use conditional inference trees

[13]: these are implemented in the R package ‘party’,

which also includes the function ‘cforest’, which

derives RF from such trees. As we also found poten-

tially misleading statements on conditional inference

trees in the paper by Touw et al. [1], we briefly
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review this concept here and clarify the meaning of

the word ‘conditional’ used to describe these trees.

Conditional inference trees
Conditional inference trees are characterized by their

particular splitting criterion. They use the P-values of

a certain type of statistical test as splitting criterion

instead of the Gini index as in CART [14]. The

specific statistical test depends on the type of response

variable (binary, ordinal and nominal categorical,

continuous, continuous censored) and on the type

of predictor variable (binary, ordinal and nominal

categorical, continuous). These tests all fit in a

common statistical framework and can be called

conditional tests in the sense that the values of the

predictor variables and of the response variables are

considered as fixed when deriving the null distribu-

tion that is used to compute the P-value-based split-

ting criterion. The term ‘conditional’ thus refers to a

statistical property of the tests used as splitting criter-

ion for split selection and does neither relate to

any type of association/correlation or interaction

between variables, nor to the conditional variable

importance suggested by Strobl et al. [15].

Conditional inference trees were proposed to

overcome a serious problem of standard CART

and RF algorithms, namely that variables offering

more cutpoints are artificially preferred in variable

selection. This bias is carried over to the Gini variable

importance measure which should therefore not be

suggested to applied researchers, although it is still

commonly used in practice [16]. In contrast, using

conditional inference trees to construct the forests

leads to unbiased permutation variable importance

measures when used in combination with subsam-

pling instead of bootstrap sampling [17], as is cor-

rectly noted by Touw et al. [1]. More precisely, the

Gini variable importance measure output by the

original RF algorithm is strongly biased in favor of

predictor variables with many possible splits. For ex-

ample, in the case of categorical predictor variables,

predictor variables with many categories are favored

over predictor variables with few categories. But the

Gini VIM may also be biased in settings with pre-

dictor variables with the same number of categories,

for example in SNP data analyses where almost all

predictor variables have three categories. In this case,

predictor variables with approximately equally sized

categories tend to be favored over predictor variables

with unequally sized categories [18, 19].

Conditional variable importance
measure
In the presence of associated/correlated predictor

variables, another feature of the original RF permu-

tation variable importance measure is that predictor

variables that have no effect of their own, but are

associated/correlated with an influential predictor

variable, can receive a high variable importance.

This behavior is not outright wrong, because there

are different concepts for judging the importance of a

variable in the presence of associations/correlations

among the predictor variables (see, for example [20]).

However, it is not the behavior a user may expect

when he/she is used to the partial or conditional

behavior of the regression coefficients in (general-

ized) linear models that was outlined in the section

‘Interactions in regression models’.

Therefore, Strobl etal. [15] proposed an alternative

permutation-based variable importance measure

called, as we admit potentially misleadingly, ‘condi-

tional variable importance’ that is also implemented

in the R package ‘party’.

The term ‘conditional’ here refers to the fact that

the variable importance of one variable is computed

conditionally on the values of other associated/

correlated predictor variables. It was chosen to em-

phasize the contrast between the partial or condi-

tional view on variable importance on the one

hand and the marginal or unconditional view on

variable importance on the other hand. The partial

or conditional view is inherent in the conditional RF

variable importance measure, in partial correlations

between one predictor variable and the response

variable given another predictor variable or in regres-

sion coefficients in multiple regression. In contrast,

the marginal or unconditional view is inherent in the

standard RF importance measure and in correlations

between one predictor variable and the response

variable without taking potential confounders into

account.

This principle can again be illustrated by recalling

the model formula for the logistic regression model

with the two predictor variables X2 (trained staff) and

X3 (clean hospital floors) which do not interact:

logit½PðY ¼ 1jX2 ¼ x2,X3 ¼ x3Þ�

¼ b0 þ b2 � x2 þ b3 � x3:

Suppose that b2 ¼ 3 and b3 ¼ 0, and that X2 and X3

are strongly associated. When testing the association

between X3 and Y univariately, one would likely

find an association—due to the association between
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X2 and X3 on one side and the effect of X2 on Y
on the other side, as already outlined in the

section ‘Interaction and association/correlation’.

However, conditionally on X2, X3 does not have

any effect on Y. Correspondingly, when testing the

effect of X3 in the multiple logistic regression model,

one does not expect to find any significance. A mul-

tiple regression model assesses the effect of each pre-

dictor variable conditionally on the other predictor

variables.

The conditional permutation-based VIM pro-

posed by Strobl et al. [15] is based on the same prin-

ciple: it assesses the importance of each predictor

variable conditionally on the other predictor vari-

ables in order to eliminate the possible influence of

association/correlation between predictor variables.

The definition of the conditional VIM directly

reflects this idea: for each predictor variable that

has to be assessed all other predictor variables that

are associated are identified and the permutations

are performed within groups of observations defined

by the values of these predictor variables.

To conclude, the fact that the conditional VIM

takes a partial or conditional view on associated/

correlated predictor variables has nothing to do

with the concept of interactions as we have defined

it above.

Local importance
In the literature on RF, the term local importance

refers to the fact that the permutation variable im-

portance suggested for RF by Breiman and Cutler

available in the original version of the RF software

[21] as well as in the open source implementation

[22] cannot only be computed for the entire sample,

but also for each observation individually. The im-

portance of each variable then reflects the change in

the prediction accuracy for this individual observa-

tion averaged over all trees for which the observation

was in the out-of-bag-sample. When all individuals

from a subgroup of interest are combined, the local

importance may indicate that some variables are

more important for correctly classifying one sub-

group than another.

This idea and its potential for applied research is

explained by Touw et al. [1]. In their paper, it is

motivated by the example of different cancer sub-

types for which different predictor variables may be

informative. It is important to note that local import-

ance is not directly related to the concepts of associ-

ation/correlation or interaction in the sense outlined

above, but refers to subgroups of the response classes

that were not considered in any of the other

concepts.

RF and interaction effects
The split-based structure of classification and regres-

sion trees can advantageously take interaction effects

into account. Let us consider the first two layers in a

tree and how this tree might look when there are

only two relevant binary predictor variables X1 and

X2, with additional irrelevant predictor variables

X3, . . . ,Xp. If the root node is split by predictor vari-

able X1, the effect of X2 may be different in the two

child nodes, hence taking the potential interaction

between X1 and X2 into account. If X1 and X2

have main effects only, one ideally expects X2 to

be selected in both child nodes with the same

effect on the response, yielding the idealized picture

in Figure 1. Everything else—selection of different

predictor variables in the two child nodes, stopping

on one side but not on the other, same predictor

variable and same cutpoint on both sides but with

different effects—indicates a potential interaction

(Figures 2A, B and C as examples of these three

situations) [23]. The problem is that, due to

random variations in finite samples, it is extremely

rare that the tree selects the same predictor variable

with the same effect on both sides, except perhaps in

the case of very large samples. Moreover, the fact

that in RF the splitting variable is selected out of

only mtry candidate variables—that are randomly

selected for each split—increases the differences be-

tween the branches of a tree: If mtry is set smaller

than the total number of predictor variables, we are

sure that the ideal pattern of Figure 1 will not always

be observed even for infinite sample sizes, because

X2 will not always be in the subset of candidate

Figure 1: Idealized tree in the presence of two pre-
dictor variables, X1 and X2 with main effects only (no
interaction). The bars at the bottom of the tree
denote the proportion of observations with Y¼ 0 and
Y¼1 in the respective leaves.
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predictor variables for the splits of the second layer.

Thus, in practice a tree almost always looks as if there

were interactions as it includes patterns as in Figure 2,

but empirically such patterns will also be seen in the

absence of interactions. The essential question is thus

whether these patterns are just the result of random

variations (chance) and of the recursive nature of the

tree building algorithms, or of true interactions. This

question is far from trivial and to date there exists no

standard approach to answering it only by investiga-

tion of the trees of a RF.

RF methodologies are commonly claimed, often

in rather vague terms, to be able to handle inter-

actions [24–29], although, by construction, the pre-

dictor defining the first split of a tree is selected as the

one with the strongest main effect on the response

variable [30]. It is not within the scope of this letter

to answer whether this claim is justified or not.

However, we feel that whenever RF methodologies

are investigated in relation to interactions, the latter

term should be defined precisely and the investigated

role of RF in this context should be clearly stated.

For example, does it relate to the ability of RF to

yield high individual VIMs for predictor variables

involved in interactions [31], the possibility to dir-

ectly identify which predictor variables interact with

each other by examining a RF [32, 1], or the com-

bination of RF with other analysis tools with the aim

of identifying interactions [30]? In any case, when an

algorithm based on RF (possibly combined with

other tools) is suggested to identify which predictor

variables interact with each other, we claim that this

algorithm should be assessed in simulations using ad-

equate measures such as, for example, sensitivity, the

proportion of pairs of interacting variables that are

correctly identified as interacting; specificity, the

proportion of pairs of non-interacting variables

that are correctly identified as non-interacting; or

false positive rate, the proportion of pairs of non-

interacting variables within the pairs identified as

interacting.

CONCLUSION
Clearly, regarding interactions and associations be-

tween variables, the terminology found in the litera-

ture is highly heterogeneous and is best carefully

specified as a preliminary to all further consider-

ations, while keeping in mind that each community

(bioinformaticians, statisticians, machine learners,

geneticists, epidemiologists, etc.) may understand

apparently unequivocal terms in different ways. To

prevent misunderstandings, we appeal to researchers

in this area to clearly define what they mean by any

kind of statistical terms and avoid using ambiguous

and imprecise phrasings. Through this work we hope

to have clarified the most central statistical concepts

that are necessary for understanding issues related to

interactions and RF.

Key Points

� Concepts such as interaction or conditional dependence have
ambiguous meanings. A careful definition of these concepts as a
preliminary to all further considerations in an article might
avoidmisunderstandings.

� Different definitions of these terms are conceivable, but within
an article definitions should be consistent.

� Theword ‘conditional’ has differentmeanings in the term‘condi-
tional inference trees’ and in the term ‘conditional variable im-
portancemeasure’.They should not be confused.

� The extraction of information on interactions between pre-
dictor variables based on random forests is not trivial.
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