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The study of glass formation is largely framed by semiempirical
models that emphasize the importance of progressively growing
cooperative motion accompanying the drop in fluid configura-
tional entropy, emergent elasticity, or the vanishing of accessible
free volume available for molecular motion in cooled liquids. We
investigate the extent to which these descriptions are related
through computations on a model coarse-grained polymer melt,
with and without nanoparticle additives, and for supported poly-
mer films with smooth or rough surfaces, allowing for substantial
variation of the glass transition temperature and the fragility of
glass formation. We find quantitative relations between emergent
elasticity, the average local volume accessible for particle motion,
and the growth of collective motion in cooled liquids. Surprisingly,
we find that each of these models of glass formation can equally
well describe the relaxation data for all of the systems that we
simulate. In this way, we uncover some unity in our understanding
of glass-forming materials from perspectives formerly considered
as distinct.
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here are numerous theoretical approaches aiming to describe

the universal liquid dynamics approaching the glass transi-
tion. One class of theories emphasizes the importance of the
congested nature of the local atomic environment in cooled
liquids, focusing on the amount of “free volume” available to
facilitate molecular rearrangement (1). This free-volume ap-
proach is also linked to the more modern jamming model of glass
formation (2). Older treatments of glass formation based on this
perspective can be traced back to Batchinski (3), Doolittle (4),
and Hildebrand (5) for small liquids, and to Williams and co-
workers (6) and Duda and Vrentas (7, 8) for polymer materials.
There is also more recent work based on the free-volume per-
spective, for example, positron lifetime measurements (9) that
probe the cavity structure of glass-forming (GF) liquids. Debye—
Waller measurements (9, 10), based on neutron, X-ray, or other
scattering measurements, emphasize another type of free volume
that is associated with the volume explored by particles as they
rattle about their mean positions in a condensed material. This
type of free-volume modeling has also been refined to take into
account the shape of these “rattle” volumes (11, 12).

Another family of glass-formation models emphasizes the
emergent elasticity in glassy materials (13). These approaches
build on the idea that the solid-like nature of glasses is one of
their most conspicuous, and perhaps defining, properties. Dyre
(13) and Nemilov (14) have argued that the activation energy for
transport should grow in proportion to the shear modulus. The
models of Hall and Wolynes (15) and Leporini and coworkers
(10, 16) can also be included in this class if the Debye—Waller
factor is taken as a measure of local material stiffness.

Approaches emphasizing the underlying complex potential
energy surface have also found considerable phenomenologi-
cal success (17). The venerable Adam-Gibbs (AG) theory of
glass formation (18), and the more recent random first-order
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transition theory (19), emphasize the temperature dependence
of the configurational entropy in cooled liquids and its relation
to collective motion, although these theories do not explicitly
define the form of the “cooperatively rearranging regions”
(CRRs). This approach can be extended by identifying these
CRRs with string-like clusters of cooperative particle exchange
motion (20-22) and analytic calculation of the configurational
entropy (23). In addition to these approaches to glass formation,
the mode-coupling theory (24), and dynamic facilitation models
(25) postulate a “dynamical” glass transition that is unrelated to
any underlying thermodynamic transition.

The diverse range of models for glass formation reminds us of
the story of the blind men and the elephant, where they grasp at
the elephant and describe its attributes in terms of the different
parts of which they have happened to take hold. In this respect,
all these various approaches to understand glass formation may
be “valid,” but are simply focusing on different manifestations of
a larger beast.

As a step toward bringing together some of these seemingly
disparate ideas, the present paper explores the extent to which
the thermodynamic perspectives of glass formation in terms of
elasticity, collective motion, and vibrational free volume repre-
sent complementary perspectives of the same complex object,
i.e., GF liquids. In particular, we consider the potential cor-
respondence among perspectives through the direct computation
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of the relationship between the structural relaxation time deter-
mined from the density correlations and molecular free volume,
defined in terms of the Debye—Waller factor (u?) and the scale
of collective motion, defined in terms of the size L of string-like
molecular displacements. We find that all these approaches
offer an accurate description of our relaxation time data for
a model bulk polymer melt, polymer-nanoparticle composites,
and supported polymer films—immediately implying quanti-
tative relationships between the scale of collective motion,
Debye—Waller factor, and emergent elasticity in cooled liquids.
The differing models of GF liquids indeed involve different
perspectives on essentially the same phenomenon. Several re-
cent papers have sought to establish quantitative relations be-
tween emergent elasticity, free volume, and configurational
entropy theories of glass formation, but with inconclusive results
(26-28).

Results

Free-Volume Model of Relaxation. It has long been appreciated,
both intuitively and theoretically, that the equilibrium and trans-
port properties of fluids depend on the space available for mo-
lecular motion, but the lack of methods to accurately compute or
measure free volume has limited the development of this per-
spective. Batchinski noticed that the viscosity of many simple
fluids is nearly independent of temperature at constant volume at
elevated temperatures (3), suggesting the applicability of a free-
volume description of molecular transport in liquids. Hildebrand
(5) and Hildebrand and Lamoreaux (29) developed Batchinski’s
phenomenological relation further by introducing a critical refer-
ence volume V) such that the fluid viscosity scales as the fractional
volume 5~ V;/(V = V), and they showed the wide applicability of
this relation to many fluids at elevated temperatures. Deviations
from the Batchinski-Hildebrand expression are observed in fluids
below their melting temperatures, and Doolittle introduced the
modified expression (4)

n~exp[Vo/(V =Vo)l, (1]

which describes the viscosity of many liquids, ranging from polymer
fluids (5) to hard spheres (30), over a wide temperature and con-
centration range approaching 7,. The success of the empirical
Batchinski-Doolittle relation for # prompted theoretical efforts to
quantify free volume and to rationalize Doolittle’s observations.
The free-volume model was also greatly influenced by Fox and
Flory (31-33), who interpreted the Doolittle expression as implying
that the glass transition corresponds to a vanishing of “sufficient”
free volume for molecular movement and implying a physical in-
terpretation of Doolittle’s free-volume parameter, V.

The Batchinski-Doolittle relation (Eq. 1) also offers one possible
explanation for the widely used, empirical Vogel-Fulcher—
Tammann (VFT) relation. In particular, if the specific volume
is reasonably taken to vary linearly with temperature in the range
of glass formation, (V' —V)) o (T — Ty), so then Eq. 1 becomes the
VFT equation,

n=noexp[DTy/(T —Tp)], [2]

where D is a dimensionless constant that quantifies the strength
of the T dependence of . The reciprocal of D offers one def-
inition of the fragility of glass formation (34). The same ex-
pression is normally argued to apply to the diffusion coefficient,
structural relaxation time z, and other transport properties.

Fig. 1 shows the applicability of the VFT equation to all our
simulation data for the relaxation time ¢ of the coherent inter-
mediate scattering function (density—density correlations), in-
cluding data for the pure polymer melt, polymer nanocomposites
(35), and thin polymer films (36, 37). This description of our data
is uniformly excellent from a numerical standpoint, but the free-
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Fig. 1. VFT collapse of the temperature dependence of the relaxation time
7(T) for pure polymer melts, nanocomposites, and thin films. The triangles
represent the pure melts at different pressures, P=0 and P=1.0, the
squares represent the nanocomposite data, and the circles and diamonds
represent the thin-film data for smooth or rough surfaces, respectively. For
the nanocomposite data, the color gradient represents the increase in ¢.
(Inset) Temperature dependence of the segmental relaxation time z(T),
where the symbols represent the simulation data and the solid lines rep-
resent the VFT fits.

volume model provides little insight into the magnitude of 7, D,
and Ty, so that it is hard to predict trends with molecular structure.

Emergent Elasticity and Relaxation. To address questions relating
to elasticity and relaxation, we first must identify an appropriate
and physically accessible measure of material “stiffness.” Both
experiments and simulations have recently emphasized that the
Debye-Waller factor (u?) also provides a useful measure of
material stiffness. We can understand the physical grounds for
this relation from the fact that the high-frequency plateau shear
modulus G, can be directly related to (u?), G, =4kpT/nc(u?)
through a Langevin model for the Brownian motion, with a
Maxwell model of viscoelasticity incorporated to describe tran-
sient caging (23). Recent simulations of a coarse-grained poly-
mer melt, similar to the model described in the present paper,
found good conformity with this relation (38). The Debye-
Waller factor (u?) measures monomer displacements on a time
scale over which the particles are caged by their neighbors, and is
thus accessible from both X-ray and neutron scattering mea-
surements (39). Because (u?) is usually determined experimen-
tally at a fixed instrumental time, corresponding to the time scale
on the order of vibrational motion of the molecules, we deter-
mine the mean-squared chain segment displacement at a caging
time on the order of 1 ps.

We next explore the quantitative relation between 7z and (u?).
Based on the arguments and findings put forth by Hall and
Wolynes (15) and Buchenau and Zorn (40), there should be a
roughly linear scaling relation between logz and 1/(u?). How-
ever, subsequent analyses for a range of systems have shown that
such a relation exhibits systematic curvature (10-12, 16). Under
the assumption that (u?) is a direct measure of free volume,
simply requiring units of volume from (u?) in the Doolittle re-
lation (Eq. 1) suggests a proportionality of logz with (u?)*/?,
a relation we consider below based on more fundamental rea-
soning.

The localization model of relaxation (12) also starts from
a free-volume perspective for relating T and (u?). In particular,
Simmons et al. (12) emphasize the anisotropic nature of the local
free volume, and they propose the relation
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() = exp (a3 /() ). [31

where 7, is a constant prefactor, a is a measure of free-volume
anisotropy, and u3 is interpreted as a critical particle oscillation
distance required for a particle to escape its “cage.” As indicated
above, one would expect a =3 for roughly spherical volumes on
dimensional consistency grounds. The scaling of the volume with
(u?) for volumes that are highly anisotropic should lead to var-
iation of a. Simmons et al. treated the parameters z,, u2, and a as
fit parameters (12), and our data can be well described by Eq. 3,
where these parameters are allowed to vary freely. Similarly, the
model of Leporini and coworkers (10, 16) fits just as well if the same
number of parameters is allowed to vary, so it is clearly desirable to
reduce the number of free parameters to better understand their
physical origin and have a more predictive relationship.

To do so, we take the localization model (Eq. 3) further by
defining the parameters 7, and u? through direct observation,
rather than treating them as fit parameters. Specifically, we
consider the fluid properties at the onset temperature 7,4 for
dynamics influenced by glass formation. In particular, 74 marks
the temperature where particle caging first emerges, and non-
Arrhenius 7(7) dependence becomes apparent; its determina-
tion is briefly discussed in Materials and Methods. Accordingly,
u% = (u?(T4)) defines a natural reference scale of localization
and 74 =7(T,4) defines the corresponding time scale. If we choose
u3 =u?, then consistency of Eq. 3 requires that 7, =ez4 (where e is
Euler’s constant). With these definitions, Eq. 3 becomes

o((u2)) =z exp| (ud /()" 1] [4]

leaving only one free parameter, a, because 74 and u? are
obtained directly from our simulation data. For the specific case
of isotropic free-volume equals, the localization model antici-
pates a=3 (12). Thus, in the spherical cage approximation, there
are no free parameters in this revised localization model.

We now test the validity of Eq. 4 to quantitatively describe our
simulation results. Fig. 2 shows the scaled relaxation data z/z4 as
a function of scaled Debye-Waller factor u?%/(u?) for nano-
composites and thin-film systems, and the dashed lines indicate
the fits to Eq. 4. For both cases, nanocomposites and thin films,
the data nearly collapse to a master curve, described by Eq. 4
where a~3.11 £0.07 for nanocomposites and a = 3.45 +0.15 for
thin films. In SI Text, we also consider fixing a=3. The average
value of z4 for the entire set of GF liquids that we study is in the
range 74 = 4.1 + 0.4, the average value of u? for thin films is 44 =
0.127 +0.003, and for nanocomposites it is % =0.154 +0.007. In
Fig. 3, we show the variation of these values for all systems
considered. In physical units, 74 is on the order of 1 ps for all
systems investigated. This modified version of the localization
model (12) of GF liquids provides a systematic way of obtaining
the parameters of the model.

Cooperative Motion and Relaxation. AG (18) proposed an intu-
itively appealing and enduring conceptual picture for relaxation
in GF liquids in which the activation free-energy barrier for
molecular relaxation is assumed to increase in proportion to the
number particles involved in hypothetical CRRs. The random
first-order transition (RFOT) theory of Lubchenko and Wolynes
(19) is related to the AG theory, in the sense that it also pos-
tulates dynamic CRR clusters (“entropic droplets”) whose geo-
metrical size (rather than the number of particles) determines
the activation barrier for relaxation. The conception of such
dynamic clusters has framed many modern investigations of dy-
namical heterogeneity in GF fluids, but, unfortunately, neither
the AG nor RFOT theories offers a prescription for defining the
CRRs. Simulation has led the way in defining the existence and
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precise nature of cooperative motion in cooled liquids. In par-
ticular, several studies have established that the activation free-
energy barrier AG for structural relaxation is proportional to the
average length of string-like clusters involving particle exchange
motion (20, 21, 34-37, 41). These well-defined string clusters
provide a concrete realization of the CRRs. Notably, these
“strings” have been observed for all of the systems we examine
here, as well as in other materials, ranging from the grain
boundaries of crystals and the interfacial dynamics of nano-
particles (42-44), to driven granular systems (45) to lipid mem-
branes (46). The ubiquity of the phenomenon suggests that the
dynamics of dense, strongly interacting particle systems may be
generally characterized by string-like collective motion. Another
aspect of the AG approach that has become apparent from re-
cent molecular simulation is the importance of including the
entropy of activation in the free energy of activation (21, 35, 37);
AG made the unwarranted assumption that this quantity could
be neglected. The approach of AG is further advanced by rec-
ognition that the strings can be analytically described as a kind of
equilibrium polymerization, enabling a functional form for string
length L that can be extended to the glass transition (21). Re-
cently, Freed (22) provided an analytic extension of transition
state theory that accounts for string-like cooperative barrier
crossing events, providing a theoretical basis for the string model
extension of the AG description (21). Our analysis of data starts
from this fully developed “string model” of relaxation, a quanti-
tative descendant of the AG model that preserves the original
AG conception of the physical nature of glass formation.

The central prediction of the string model of glass formation is
that the activation free energy for structural relaxation is pro-
portional to the average string length L, where the proportion-
ality factor is unity at Ty, i.e., AG=Au(L/L4), so that

7(T)=7pexp[Au(L/L4)/kpT], [51

where Ay is the activation free energy, Au(T)=AH —TAS at
high temperatures, i.e., T> T4, L4=L(T4), AH and AS denote
the enthalpy and entropy of activation, respectively, and 7y is an
(inverse) vibrational attempt frequency. As noted before, AG
neglected the entropic contribution AS to the free energy of
activation, and we shall see that this term plays a significant role
in describing the dynamics of polymer films and nanocomposites.

Similar to our approach to reduce the number of free para-
meters in the localization model, we can reduce the number of
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Fig. 3. Characteristic time 74 and localization scale ui extracted from sim-
ulations data for the film (Left) and composite systems (Right) at the onset
temperature Ta. For films, parameters are shown as a function of inverse
thickness h;' at Ty, and for composites as a function of nanoparticle con-
centration ¢. (Bottom) Values of a from the best fit to Eq. 4. Note that the
variations of 74, u%, and « are all small.

adjustable parameters in Eq. 5 through the introduction of the
reference values 7(74) and Auy=Au(T,4). Demanding consis-
tency with Eq. 5 then implies,

T(T)=TA CXp[Aﬂ(T)(L/LA)/kBT—AﬂA/kBTA]. [6]

Because 74 and L, are taken directly from the simulated data,
the activation free-energy parameters AH and AS are the only
parameters adjusted in Eq. 6. Conveniently, these basic transi-
tion state theory parameters can be determined by simulations
at high 7, and have a definite physical meaning in transition
state theory.

We test the validity of Eq. 6 to quantitatively describe our sim-
ulation results in Fig. 4, which show a remarkable collapse of all
data, supporting the validity of this approach. Fig. 4 (Insets) shows
that the activation parameters exhibit a linear entropy-enthalpy
“compensation” relation, a phenomenon commonly observed in the
dynamics and thermodynamics of condensed materials (47-49).
Obviously, such a compensation relation cannot be recognized if AS
is neglected, as in the original AG formulation. It is not common for
the enthalpy of activation to become negative. This unusual type of
kinetics has been observed in materials characterized by complex
energy landscapes (50-53), and negative activation parameters are
observed in zeolite materials where confinement is very strong
(54, 55). The enthalpy—entropy compensation temperature,
Teomp (the slope of the linear relation) for the nanocomposites and
thin films, is close to the estimated VFT temperature Ty of their
pure systems, as found in previous experimental studies of f-re-
laxation in GF liquids (56-58). Our data reduction in terms of
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the scale of collective motion is equally as compelling as the
relation indicated above between 7 and (u?).

By extension, consistency between these relations for = implies
a direct and precise relation between (u?) and the scale of string-
like collective motion, L, so that

(ui) (L(T) Au Ay +1 e
<M2>_ LA kBT kBTA '

We test this relationship for the nanocomposite and thin-film
systems. Fig. 5 illustrates the relationship between the scale of
collective motion and the Debye—Waller factor (Eq. 7) for
T <T4. This relation, together with the characterization of the
string-like collective motion, allows us to understand how the
cooperative motion of particles influences (u?). Moreover, we
have recently developed and tested the validity of a polymeri-
zation model which predicts the T dependence of the extent of
cooperative motion (21). Combining the present results with the
theory of ref. 21, we can then predict the T dependence of (1?) in
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activation free energy Ay, in which, for both cases, they are linearly related
with a characteristic temperature Tcomp. For both cases, AH and AS are fit
parameters of Eq. 6, and 1 is not a free fitting parameter; it is determined by
0 =1TA exp[—AH/kBTA +As/k3]
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termined for all GF liquids simulated.

terms of the extent of the cooperative motion. The inverse scaling
relating between L and the fluid configurational entropy s, (20)
means that Eq. 7 implies a curious relation between (u?) and s,
that remains to be explored.

Conclusions

We have examined well-defined experimental molecular-scale
measures of material elasticity, free volume, and the scale of
cooperative motion in a class of model polymeric GF liquids
whose fragility is varied over a large range by varying the nano-
particle concentration or film thickness. This unified analysis
reveals that the description of the structural relaxation time
obtained from the coherent intermediate scattering function can
be quantitatively described in terms of each of these perspectives
of glass formation. We find that the introduction of mathemat-
ical consistency conditions and a definition of the scale of (u?)
relative to its value at 7,4 into the localization model of glass
formation leads to a relation between 7 and (u?) with only one
free parameter. In previous work, we were able to describe 7 in
terms of an apparently distinct relation involving the scale of
collective motion L and the high-temperature Arrhenius activation
parameters, AH and AS. The success in combining these two
analyses of the relaxation data for our nanocomposite simu-
lations implies a remarkable relation between the scale of the
emergent collective motion in GF liquids, L, and a measure of
the emergent elasticity of GF liquids, (u?). From a separate
perspective, (u?) can be interpreted as a measure of local free
volume (11). Evidently, the free volume, emergent elasticity, and
cooperative motion models of glass formation, when defined in
terms of well-defined measures of these physical characteristics
of GF liquids, lead to largely equivalent mathematical descrip-
tions of the temperature dependence of structural relaxation in
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