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Abstract

Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information
from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle.
New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to pro-
liferate, a phase known as transit amplification. SAG cells eventually come to rest between
the ear and hindbrain before terminally differentiating. Regulation of these events is only par-
tially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf se-
creted by mature SAG neurons exceeds a maximum threshold, serving to terminate
specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG
development, but how it is coordinated with Fgf is unknown. Here we show that transcription
factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebra-
fish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of
the otic vesicle that includes neurogenic precursors. Functional studies were conducted in
zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specifica-
tion and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a
inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. How-
ever, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Di-
rectly blocking either Fgf or Notch caused less dramatic acceleration of SAG development
without neuronal death, whereas blocking both pathways mimicked all observed effects of
Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics
showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that
Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling.
Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data
support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling
to control the duration, amount and speed of SAG neural development.
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Neurons of the statoacoustic ganglion (SAG) transmit impulses from the inner ear neces-
sary for hearing and balance. SAG cells exhibit a complex pattern of development, regula-
tion of which remains poorly understood. Here we show that transcription factor Tfap2a
coordinates multiple cell signaling pathways needed to regulate the quantity and pace of
SAG neuron production. SAG progenitors originate within the developing inner ear and
then migrate out of the ear towards the hindbrain before forming mature neurons. We
showed previously that Fgf initiates formation of SAG progenitors in the inner ear, but ris-
ing levels of Fgf signaling eventually terminate this process. Elevated Fgf also stimulates
proliferation of SAG progenitors outside the ear and delays their maturation. Notch signal-
ing is also known to limit SAG development. Tfap2a governs the strength of Fgf and Notch
signaling by activating expression of Bmp7a, which inhibits Fgf and Notch. Together these
signals stabilize the pool of SAG progenitors outside the ear by equalizing rates of matura-
tion and proliferation. This balance is critical for sustained accumulation of SAG neurons
during larval growth as well as regeneration following neural damage. These findings could
inform development of stem cell therapies to correct auditory neuropathies in humans.

Introduction

Vestibular and auditory information is transmitted from the inner ear to the hindbrain via neu-
rons of VIILth cranial ganglion, also known as the stato-acoustic ganglion (SAG). SAG neu-
rons are formed by a complex but poorly understood multi-step process that begins in the otic
vesicle, the precursor of the inner ear. In the first step, SAG neuroblasts are specified in the
floor of the otic vesicle and are marked by the expression of proneural gene neurogeninl

(ngnl) [1,2]. After specification, neuroblasts delaminate from the otic epithelium via epithelial-
mesenchymal transition and migrate to a region between the otic vesicle and hindbrain. In zeb-
rafish, markers of later stages of differentiation are usually not expressed within the otic epithe-
lium. Upon delamination, however, neuroblasts quickly lose expression of ngnl and upregulate
the related factor neurod [1,3]. neurod-expressing cells form a population of migrating and pro-
liferating precursors called the transit-amplifying (TA) pool [4]. As cells in the TA pool differ-
entiate into mature neurons they lose expression of neurod and upregulate early neuronal
markers islet] and islet2b [5]. Newly formed neurons extend processes bi-directionally to con-
nect sensory epithelia with central targets in the hindbrain. SAG development in chick and
mouse embryos follows a similar course except that transit-amplification and expression of
NeuroD and Isl1/2 begin while neuroblasts still reside within the otic epithelium [2,6,7].

We previously showed that Fgf signaling regulates each step in SAG development in zebra-
fish [5]. Specification of SAG neuroblasts is initiated by a low level of Fgf signaling. As SAG
neurons mature they begin to express fgf5 such that rising levels of Fgf eventually become in-
hibitory to ngnl expression in the otic vesicle. Consequently, neuroblast specification starts to
decline after 24 hpf and ceases entirely by 42 hpf [5,8]. Elevated Fgf also delays terminal differ-
entiation of cells in the TA pool. The TA pool is thereby maintained as a relatively stable popu-
lation in which the rate of proliferation closely matches the rate of terminal differentiation.

The otic vesicle originates from an ectodermal thickening called the otic placode. The otic
placode, along with all other cranial placodes, emerges from a contiguous region of pre-placo-
dal ectoderm (PPE) that forms around the anterior neural plate by the end of gastrulation
[9,10]. In zebrafish competence to form PPE is regulated by four transcription factors: Tfap2a,
Tfap2c, Gata3 and Foxil [9,11]. These transcription factors are also essential for later
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development of a subset of cranial placodes, including the otic placode. For example, in re-
sponse to inductive Fgf signaling foxil expression upregulates in nascent otic/epibranchial pla-
codes; and disruption of foxil leads to severe deficiencies of epibranchial and otic tissue in
zebrafish [12-14]. A similar role has been shown recently for Foxi3 in mouse and chick
[15,16]. Expression of gata3 also regulates otic development, becoming localized to the nascent
otic placode [17] and to discrete regions of the otic vesicle [18-20]. Disruption of Gata3 in
mouse causes severe defects in otic vesicle development [18], including deficiencies of sensory
epithelia and improper wiring of auditory neurons [21-23]. In contrast, less is known about
later roles of tfap2a/c. tfap2a is best known for its role in the early differentiation and survival
of neural crest cells [24-32] and together with tfap2c is indispensible for neural crest specifica-
tion in zebrafish [26,28]. However, whether tfap2a/c genes regulate later development in the
otic placode and vesicle has not been investigated.

Here we report that tfap2a is expressed throughout the nascent otic placode and is later re-
stricted to a ventrolateral region in the otic vesicle overlapping with the neurogenic domain.
Misexpression of tfap2a leads to excess specification and precocious differentiation of SAG
neurons whereas knockdown of tfap2a causes reduced neurogenesis and delayed differentia-
tion of SAG precursors. Further investigation revealed that tfap2a acts non-autonomously
through upregulation of bmp7a, which in turn restricts Fgf and Notch signaling to promote
specification and differentiation of SAG precursors.

Results
Expression of tfap2a during otic development

To begin to assess potential functions of tfap2a in otic development, we examined expression
of tfap2a in the otic placode and early otic vesicle in zebrafish. At 14 hpf (10 somites) when otic
cells first form a morphological placode, tfap2a is expressed broadly throughout the placode as
shown by co-staining for the early otic marker pax2a (Fig. 1A-B). The level of tfap2a expres-
sion varies, with higher levels in dorsal and lateral otic cells. Otic expression in general appears
much weaker than in surrounding neural crest cells. By 24 hpf, expression of tfap2a in the otic
vesicle is restricted to ventrolateral cells. This domain partially overlaps with the neurogenic
domain of the otic vesicle, marked by the proneural gene ngnl (Fig. 1C-D). Neurogenesis de-
clines sharply by 30 hpf and ceases entirely by 42 hpf [5,8]. Similarly, the level of tfap2a gradu-
ally declines in the neurogenic domain after 30 hpf and is no longer detectable by 48 hpf

(Fig. 1E-I). Despite initial expression of tfap2a in at least some neuroblasts in the otic vesicle,
expression is lost in most neural precursors as they delaminate from the otic vesicle. Mature
neurons of the statoacoustic ganglion (SAG), marked by expression of Isl1, show no detectable
expression of tfap2a (Fig. 1]). These data are consistent with the possibility that tfap2a is in-
volved in at least some aspects of neurogenesis in the otic vesicle. Expression patterns of tfap2a,
ngnl, and other key genes involved in SAG development are summarized in Fig. 1K.

To examine the possibility that expression is conserved in amniote vertebrates, we examined
expression of Tfap2a in chick embryos. In agreement with the patterns observed in zebrafish,
chick embryos also show expression in ventrolateral regions of the otic vesicle (Fig. 1L-Q).
Moreover, in chick as in zebrafish, the domain of Tfap2a expression abuts the sensory domain
with little or no overlap. The similar expression patterns seen in zebrafish and chick potentially
reflect a broadly conserved role in early otic development.

Effects of Tfap2a on neurogenesis in the otic vesicle

To explore the role of tfap2a, we characterized the effects of tfap2a loss of function or misex-
pression on neurogenesis in the otic vesicle in zebrafish. Disruption of tfap2a causes no overt
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Fig 1. Conserved expression of tfap2a during otic neurogenesis. Allimages show cross-sections of the otic placode or vesicle in wild type zebrafish
embryos (A-J) or chick embryos (L-Q) with a dorsal up and medial to the left. (A, B) At 14 hpf (10 somites) pax2a (red) marks the precursor cells in the
emerging otic placode that are co-labeled with tfap2a (blue). (C-H) Cross-sections through the widest part of the neurogenic domain of the otic vesicle, just
posterior to the utricular macula. The outer and inner edges of the otic vesicle are outlined. Patterns of ngn1 or tfap2a are shown at the indicated times. tfap2a
is expressed in the ventrolateral part of the otic vesicle, which partially overlaps the domain of ngn1 expression. (I-J) Cross-sections passing through the
utricular macula of specimens co-stained for Isl1 (red) and tfap2a (blue) at 48 hpf. Expression of tfap2a is not detected in the floor of the otic vesicle or in the
mature SAG neurons at this time. (K) Schematic summary of SAG development in zebrafish, including regional markers. Neuroblasts are specified and
delaminate from the otic vesicle (light purple) adjacent to nascent sensory epithelia (green). Recently delaminated neuroblasts migrate towards hindbrain
and continue to proliferate, forming the transit-amplifying pool (blue). Neuroblasts then stop dividing and differentiate into mature neurons (red). Relevant
genes expressed in each domain are indicated. Expression of tfap2a (dark purple) overlaps the neurogenic domain, as well as the domain of bmp7a
expression. Note that all of the tissues indicated express Fgf-target genes (etv5b and spry4) and transducers of Bmp (smad1 and smad5), but transit
amplifying SAG precursors show specific upregulation of smad7 and smad5 [37]. (L-Q) Cross-sections through the otic vesicle of chick embryos at days 3
and 4 (E3 and E4). The sensory region is labeled with Jagged-1 (green). Tfap2a (red) is expressed in the ventrolateral otic domain in chick embryos similar to
the pattern observed in zebrafish.

doi:10.1371/journal.pgen.1005037.g001

defects in morphogenesis of the otic vesicle [27]. However, tfap2a™ (lockjaw) mutants pro-
duced only half the normal number of ngn1-positive neuroblasts in the otic epithelium at 24
hpf, the stage when neurogenesis normally peaks in wild-type embryos (Fig. 2A, C). At later
stages, too, tfap2a”” mutants continued to show significant deficiencies in neuroblast specifica-
tion (Fig. 2D, F, M). Similar results were seen in tfap2a morphants (tfap2a-MO, Fig. 2M). We
next used a heat-shock inducible transgenic line, hs:tfap2a, to misexpress tfap2a at various de-
velopmental stages. Activation of hs:tfap2a at 20 hpf increased the peak number of neuroblasts
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Fig 2. Tfap2a enhances otic neurogenesis. (A-L) Cross-sections (medial left, dorsal up) through the otic
region just posterior to the utricular macula showing ngn1 expression in +/+ control embryos, hs:tfap2a
embryos and tfap2a™” mutants at the indicated times. Wild-type and hs:tfap2a embryos were heat shocked
as indicated in each panel. Overexpression of tfap2a increases the number of neuroblasts in the otic vesicle
whereas loss of tfap2a slows down and decreases otic neurogenesis. The outer and inner edges of the otic
vesicle are outlined in each image. (M, N) Mean and standard deviation of the total number of ngn1 positive
cells in the otic epithelium from 24 to 32 hpf for the genotypes indicated in the color key (counted from serial
sections, n = 3—7 ears per time point). Asterisks (*) indicate statistically significant differences between
groups indicated by brackets (N) or compared to control embryos (M).

doi:10.1371/journal.pgen.1005037.g002

in the otic vesicle at 24 hpf by 30% (58.33+3.21 ngnl+ cells in hs:tfap2a embryos vs. 44.5+2.65
cells in controls, Fig. 2B). Activation of hs:tfap2a at 24 hpf prolonged the phase of peak neuro-
genesis, resulting in twice the normal number of neuroblasts at 28 hpf (Fig. 2D, E, M). Despite
the initial surge, however, the number of ngnl+ neuroblasts subsequently declined sharply in
transgenic embryos, dropping below the level seen in control embryos at 30 hpf and thereafter
(Fig. 2G, H, M). Because transgene activity decays 5 hours after heat shock (S1 Fig.), we tested
the effects of serial heat shocks at 24 hpf and 29 hpf. This resulted in elevated neurogenesis
through at least 32 hpf, when transgenic embryos had twice as many ngnl+ cells in the otic epi-
thelium as in control embryos (Fig. 2G, I, N). Neurogenesis in the ear normally ceases by 42
hpf [5,8], prompting us to investigate whether termination of neurogenesis could be altered by
later misexpression of tfap2a. Indeed, activation of hs:tfap2a at 38 hpf prolonged specification
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@.PLOS | GENETICS

Tfap2a Non-Autonomously Promotes Otic Neurogenesis.

of neural precursors, as ngnl+ neuroblasts were still present in the otic vesicle through at least
43 hpf (Fig. 2], K). In contrast, activation of hs:tfap2a at 40 hpf was not sufficient to prevent or
delay the cessation of neurogenesis in the otic vesicle (Fig. 2L). Overall these results indicate
that tfap2a enhances neurogenesis in the ear but cannot induce ectopic neurogenesis beyond
the floor of the otic vesicle nor reactivate neurogenesis after it has stopped.

Effects of Tfap2a on later stages of SAG development

We next examined whether altered levels of neuroblast specification caused by manipulating
tfap2a function were followed by changes in later stages of neuronal differentiation. Normally,
newly specified neuroblasts delaminate from the otic vesicle, lose expression of ngnl and initi-
ate expression of neurod, a marker of the “transit-amplifying” (TA) stage of development [1,5]
(Fig. 1K). Surprisingly, despite reduced neurogenesis in tfap2a”” mutants and tfap2a mor-
phants, the number of neurod+ TA cells was greater than normal at every time point examined
(Fig. 3B, E, H, J). Conversely, despite the large increase in neurogenic specification caused by
overexpression of tfap2a at 24 hpf, the number of neurod-expressing TA cells was reduced at
all time points through 48 hpf (Fig. 3C, F, I, ]). We hypothesized that changes in the size of the
++ hs@24 hpf

tfap2a mutants hs:tfap2a@24h

37 hpf 30 hpf

TN
poJnau

48 hpf

[ ++ control

W +/+ hs@24 hpf

M tfap2a MO

M ttap2a mutants
M hs:tfap2a@24 hpf
W hs:tfap2a@20 hpf

24 30 37 40 44 48 hpf

Fig 3. Tfap2a regulates the number of transit-amplifying SAG precursors. (A-l) Cross-sections (medial
left, dorsal up) at the level of the utricular macula showing neurod expression in +/+ control, tfap2a mutants
and hs:tfap2a embryos. Wild-type and hs:tfap2a embryos were heat shocked at 24 hpf. Disruption of tfap2a
leads to accumulation of excess TA cells whereas tfap2a overexpression decreases the number of the TA
cells. The outer and inner edges of the otic vesicle are outlined in each image. (J) Mean and standard
deviation of the total number of neurod positive SAG precursors for the genotypes and conditions indicated in
the color key (counted from serial sections, n = 3—6 ears per time point). Asterisks (*) indicate significant
differences from control specimens.

doi:10.1371/journal.pgen.1005037.g003
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TA pool reflect changes in the overall pace of neuronal differentiation. To test this we exam-
ined expression of Isl1, a marker of mature SAG neurons. We observed that tfap2a” mutants
and tfap2a morphants produced fewer than normal neurons despite the increased number of
neurod+ cells (Fig. 4E-H, T). The deficiency in neuronal maturation persisted in tfap2a” mu-
tants through at least 72 hpf (S2 Fig.). In contrast, activation of hs:tfap2a had the opposite ef-
fect. Activation of hs:tfap2a during placodal stages elevated accumulation of Isl1+ neurons at
30 hpf, and the fold-stimulation was progressively increased with successively later stages of ac-
tivation (Fig. 4M). Activation of hs:tfap2a at 24 hpf led to maximal accumulation of neurons,
with nearly twice the normal number of Isl1+ neurons observed in transgenic embryos at

30 hpfand 37 hpf (Fig. 4I-L, M, T). Interestingly, transgene activation at these early stages en-
hanced accumulation of anterior (vestibular) SAG neurons but not posterior (auditory) neu-
rons (Fig. 4D, L). However, activating hs:tfap2a expression at 29 hpf increased accumulation of
both anterior and posterior neurons (Fig. 4N-P), consistent with our previous findings that au-
ditory neurons are specified at later stages than vestibular neurons [5]. Together these data in-
dicate that disruption of tfap2a inhibits neurogenesis and slows neural maturation, whereas
misexpression of tfap2a stimulates neuroblast specification and accelerates

subsequent differentiation.

Importantly, although activation of hs:tfap2a at 24 hpfled to elevated accumulation of ma-
ture neurons through 37 hpf, the number of mature neurons fell dramatically thereafter to
roughly half normal by 48 hpf (Fig. 4T). This decline was preceded by a marked increase in the
rate of apoptosis amongst mature neurons (Fig. 4Q-S, U). Elevated cell death possibly reflects
insufficient duration of earlier stages of differentiation and consequent misregulation of factors
required for neuronal survival (see below).

Effects on patterning in the otic vesicle

To determine whether the above changes in SAG development resulted from mis-patterning of
the otic vesicle, we examined expression of several regional markers. In tfap2a”~ mutants and
tfap2a morphants, domains of the dorsal marker dix3b and the ventrolateral marker otx1b
were slightly contracted (Fig. 5B, E). Domains of pax5, an anterior-ventral marker of the utric-
ular macula, and pou3f3b, a posterior-medial marker of the saccular macula were not altered
(Fig. 5H, K). Additionally, sensory epithelia appeared to develop normally and there were no
obvious changes in hair cell development through 54 hpf (Fig. 5M). Activation of hs:tfap2a at
24 hpfled to weak contraction otx1b but a substantial expansion of the dIx3b (Fig. 5C, F). pax5
was expressed in its normal domain but at a reduced level (Fig. 5L). Expression of pou3f3b was
normal (Fig. 5I) and there were no changes in accumulation of hair cells through 54 hpf

(Fig. 5M). Thus, gross patterning in the otic vesicle was nearly normal in tfap2a” mutants and
morphants, though substantial changes were seen in one marker (dix3b) following overexpres-
sion of tfap2a. Such changes in gene expression likely reflect changes in cell signaling as
described below.

Effects on Notch and Fgf signaling

We next investigated whether Tfap2a activity influences Notch and Fgf signaling, pathways
known to regulate development of SAG neurons. For example, Delta-Notch signaling is nor-
mally activated by neurogenic factors Ngnl and Neurod and serves as a feedback inhibitor of
neurogenesis [2,33,34]. Disruption of Delta-Notch signaling leads to excess neural specification
and precocious differentiation [35], similar to the effects of misexpression of tfap2a. Here we
observed that expression of deltaA and deltaB was increased in tfap2a”” mutants and, converse-
ly, delta gene expression was strongly impaired following overexpression of tfap2a (Fig. 6A-F).

PLOS Genetics | DOI:10.1371/journal.pgen.1005037 March 17,2015 7/23
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standard deviation of the total number of TUNEL positive SAG neurons at the indicated times in control
embryos and hs:tfap2a embryos (counted from serial sections, n = 3—6 ears per time point). Asterisks (*)
indicate statistically significant differences compared to control embryos.

doi:10.1371/journal.pgen.1005037.g004
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images (dorsal up, anterior left) showing dorsolateral views of the otic vesicle (outlined) in control embryos,
tfap2a”” mutants and tfap2a morphants, and hs:tfap2a embryos for the indicated genes at 26 hpf. (M) Mean
and standard deviation of the total number of hair cells in utricular and saccular maculae of control and hs:
tfap2a embryos and tfap2a morphants at the indicated times (n = 24 embryos each). Data were obtained by
counting GFP-positive hair cells in the sensory epithelia of brn3c:Gfp transgenic embryos. Accumulation of
hair cells was normal except in tfap2a morphants at 36 hpf (*), which showed a small but significant decrease
relative to the control.

doi:10.1371/journal.pgen.1005037.g005

Similar changes were observed for the Notch target gene her4, which increased in tfap2a”~ mu-
tants and decreased following activation of hs:tfap2a (Fig. 6G-I). Thus Tfap2a appears to inhib-
it Notch activity during development of SAG neurons by inhibiting expression of

Notch ligands.

Fgf signaling has a more complex role in neural development in the ear. At early stages spec-
ification of neuroblasts requires Fgf. As development proceeds, however, rising levels of Fgf5
secreted by mature SAG neurons terminates specification of new neuroblasts and delays differ-
entiation of TA cells into mature neurons [5] (Fig. 1K). Weak impairment of Fgf signaling can
prolong neurogenesis and accelerate neural differentiation, mimicking aspects of the tfap2a
overexpression phenotype. We therefore examined expression of various fgf genes in the otic
vesicle. Knockdown of tfap2a did not appear to alter expression of fgf3, fgf8, or fgf10a (Fig. 6K,
N, Q). Activation of hs:tfap2a at 24 hpf led to reduced expression of fgf3 and fgf8, but expres-
sion of fgf10a was not altered (Fig. 6L, O, R). To look for changes in Fgf signaling, we examined
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Fig 6. Tfap2a regulates the level of Fgf and Notch Signaling in the otic vesicle. (A-V) Whole-mount images (dorsal up, anterior left) showing dorsolateral
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n = 3-6 ears per time point). Asterisks (*) indicate statistically significant differences between the groups indicated in brackets.

doi:10.1371/journal.pgen.1005037.g006

expression of Fgf-target genes spry4, etv4 (pea3) and etv5b (erm). Although etv4 and etv5b ex-
pression appeared normal in #fap2a morphants (S3D, H Fig.), spry4 was expressed at higher
levels and in a broader domain than normal in tfap2a” mutants, indicating that Fgf signaling
was elevated (Fig. 6S-T). Conversely, activation of hs:tfap2a at 24 hpf reduced expression of
etv4, etv5b and spry4 by 26 hpf, indicating a reduced level of Fgf signaling (Fig. 6U-V, S3A-]
Fig.). Fgf signaling remained reduced through 28 hpf but started to recover after 30 hpf as
transgene activity decayed (S3K-Q Fig.). Thus, Tfap2a appears to limit Fgf signaling, in part
through reducing expression of fgf genes.
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To test whether Tfap2a can influence Fgf signaling independently of ligand expression, we
co-misexpressed tfap2a and fgf8. While activation of hs:fgf8 led to global upregulation of etv5b,
co-activation of hs:tfap2a with hs:fgf8 at 24 hpf partially suppressed expression of etv5b
(Fig. 6W-X). This indicates that tfap2a can inhibit Fgf signaling at a level downstream of
ligand accumulation.

To test the functional significance of elevated Fgf signaling in tfap2a morphants, we exam-
ined whether weakly inhibiting Fgf signaling could rescue the neurogenic deficiencies in tfap2a
morphants. Indeed, reducing the level of Fgf signaling via low-level activation of hs:dnfgfr1
(dominant-negative Fgf receptor) at 35°C restored ngnl+ cell counts to normal in tfap2a mor-
phants (Fig. 6Y-Z). This suggests that elevated Fgf signaling partially accounts for the reduced
neuroblast specification in ffap2a morphants and mutants.

Because Tfap2a appears to dampen both Fgf and Notch signaling, we tested whether weak-
ening both pathways by other means could mimic the effects of tfap2a overexpression. Low
level activation of hs:dnfgfrl at 36.5°C increased the number of ngnl+ neuroblasts in the ear by
~30% (Fig. 7B, M). Similarly, reducing the level of Notch signaling by treatment with the
gamma-secretase inhibitor LY411575 increased the number of ngnl+ cells in the otic vesicle by
~50% (Fig. 7C, M). Combining these conditions to reduce both Fgf and Notch signaling further
increased neuroblast specification, closely mimicking the effects of activating hs:tfap2a at 24
hpf (Fig. 7D, M). Likewise, inhibiting both Fgf and Notch together reduced the number of neu-
rod+ cells in the TA pool and increased accumulation of Isl1+ neurons through 37 hpfin a
manner similar to activating hs:tfap2a at 24 hpf (Fig. 7E-O). Moreover, embryos inhibited for
both Fgf and Notch signaling showed a dramatic loss of mature SAG neurons after 37 hpf,
again mimicking the effects of hs:tfap2a activation (Fig. 70). Interestingly, inhibition of either
Fgt or Notch alone caused similar but more modest acceleration of neural differentiation, but
such conditions did not lead to subsequent loss of mature neurons after 37 hpf (Fig. 70). This
is possibly because differentiation, though accelerated relative to control embryos, is still slow
enough to allow expression of all factors essential for survival. Finally, activating hs:tfap2a at 24
hpf combined with conditions to inhibit Fgf and Notch did not further increase accumulation
of Isl1+ neurons at 37 hpf (54 Fig.). Thus, reducing both Fgf and Notch signaling is sufficient
to recapitulate all observed effects of tfap2a overexpression.

Tfap2a regulates transit amplification independently of earlier stages

We considered the possibility that the ability of Tfap2a to alter development of SAG cells out-
side the ear could arise secondarily from perturbation of earlier developmental stages within
the otic vesicle. To test whether Tfap2a can specifically influence cells after delamination (with-
out altering early development within the otic vesicle), we activated hs:tfap2a at 40 hpf when
neurogenesis has ceased in the otic vesicle. Recall that transgene activation fails to prolong or
reinitiate neuroblast specification at this stage (Fig. 2L). Regardless, overexpression of tfap2a at
40 hpf still reduced the number of neurod+ cells and led to an increase in Isl1+ neurons at 50
hpf (Fig. 8B, F, M, N). Misexpression of tfap2a also reduced the total number of cells in the TA
pool that incorporated BrdU (Fig. 8], O). However, this was proportional to the reduction in
the total number of neurod+ cells (Fig. 8P), consistent with acceleration of the entire TA pool.
A notable difference from earlier activation is that activating hs:tfap2a at 40 hpf did not lead to
apoptosis of SAG neurons at later stages, as the number of Isl1+ cells remained elevated and in
fact continued to increase through at least 72 hpf (Fig. 8B, F, N). The same effects were ob-
tained by directly inhibiting both Fgf and Notch signaling after 40 hpf (Fig. 8C, G, K M-P).
Conversely, misexpressing Fgf8 and NICD (Notch intracellular domain) by heat shock activa-
tion at 40 hpf led to accumulation of more TA cells and fewer mature neurons than normal at
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Fig 7. Reducing Fgf and Notch levels mimics the effects of tfap2a overexpression. (A-L) Cross-
sections (medial left, dorsal up) passing just posterior to the utricular macula and showing expression of ngn1
at 28 hpf (A-D), or sections passing through the utricular macula and showing neurod at 37 hpf (E-H) or Isl1 at
37 hpf (I-L) in wild-type control (A, E, I), hs:dnfgfr1 embryos (B, F, J), LY411575 inhibitor treated wild-type
embryos (C, G, K) and LY411575 inhibitor treated hs:dnfgfr1 embryos (D, H, L). All specimens were treated
with 0.3% DMSO and heat-shocked at 24 hpf. The otic vesicle is outlined in each image. (M, N) Mean and
standard deviation of the total number of ngn1 positive cells in the otic epithelium at 28 hpf (M) and total
neurod positive SAG precursors at 37 hpf (N) for the genotypes and treatments indicated in the color key
(counted from serial sections, n = 3—6 ears per time point). Asterisks (*) indicate significant differences from
control embryos and filled squares indicate significant differences relative to hs:dnfgfr1 embryos treated with
LY411575. (O) Mean and standard deviation of the total number of Isl1 positive SAG neurons at different
times for the genotypes and treatments indicated in the color key (n = 6—15 embryos each). In (O) differences
between control and experimental specimens were significant at each time point. In addition, LY411575
treated hs:dnfgfr1 embryos were significantly different from hs:dnfgfr1 alone or LY411575 treatment alone.

doi:10.1371/journal.pgen.1005037.g007

50 and 72 hpf, indicating a delay in neuronal differentiation (Fig. 8D, H, M, N). Moreover, acti-
vating Fgf and Notch together increased the percentage of neurod+ cells that continue to incor-
porate BrdU (Fig. 8L, O, P), suggesting that the majority of cells in the TA pool persist in a
relatively immature stage of SAG development. Thus, manipulating tfap2a, or Fgf and Notch
signaling directly, can alter the rate of differentiation of TA cells even when earlier develop-
ment within the otic vesicle has occurred normally. On the other hand, survival of mature SAG
neurons requires normal development at early stages.
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between control and experimental specimens were significant at all time points, except that hs:fgf8+hs:gal4/
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doi:10.1371/journal.pgen.1005037.g008

Tfap2a acts non-autonomously

It is noteworthy that tfap2a is not normally expressed in the TA pool or mature neurons, yet
knockdown or misexpression of tfap2a alters the rate of differentiation and survival of these
cells. This raised the possibility that Tfap2a could act non-autonomously on cells outside the
ear. To test directly whether tfap2a can act non-autonomously, we generated genetic mosaics
by transplanting wild-type cells into hs:tfap2a host embryos. We reasoned that if hs:tfap2a
were to act non-autonomously, activating the transgene in host cells should be able to prevent
wild-type cells from responding to Fgf sources in the otic vesicle. In support, activation of hs:
tfap2a at 24 hpf suppressed etv5b expression in the majority (73.5%) of transplanted wild-type
cells by 26 hpf (Fig. 9C-E), indicating that tfap2a acts non-autonomously to modulate the re-
sponse to Fgf. In contrast, all wild-type donor cells transplanted into wild-type host embryos
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Fig 9. Tfap2a regulates SAG development non-autonomously. (A-D) Whole-mounts (dorsal up, anterior
left) and cross-sections (just posterior to utricular macula, medial to the left) showing both bright-field and
corresponding fluorescent images of +/+ host embryos (A, B) and hs:tfap2a host embryos stained for etv5b
expression (blue) and showing transplanted wild-type donor cells (red). Positions of wild-type cells that fail to
express etv5b are highlighted with arrows in (C, D). (E) Summary of mosaic analysis showing the number of
+/+ or hs:tfap2a host embryos examined and the number of +/+ donor cells expressing etv5b over the total
number of donor cells that populated the ventral half of the otic vesicle. (F-H) Expression of etv5b at 26 hpfin
a control (F), a DM-treated hs:tfap2a embryo (G) and DM-treated wild-type embryo (H). All specimens were
treated with 1% DMSO and heat-shocked at 24 hpf. (I-L) Expression of bmp7a at 26 hpf in a control (1, J),
tfap2a”” mutant (K) and hs:tfap2a embryo (L). Wild-type and hs:tfap2a embryos were heat shocked at 24 hpf.

doi:10.1371/journal.pgen.1005037.g009

showed normal expression of etv5b in the otic vesicle (Fig. 9A, B, E). Thus Tfap2a non-
autonomously inhibits Fgf signaling in the otic vesicle.

Bmp7a mediates the effects of Tfap2a

Bmp signaling is well known to antagonize Fgf signaling in a variety of developmental contexts.
Here we found that blocking Bmp signaling with the pharmacological inhibitor dorsomorphin
(DM) [36] strongly suppressed the ability of hs:tfap2a to reduce Fgf signaling. For example,
etv5b expression was nearly normal in the otic vesicle 2 hours after the activation of hs:tfap2a
when embryos were also treated with DM (Fig. 9F, G). DM treatment alone had negligible ef-
fects on expression of etv5b (Fig. 9H). We next surveyed expression of various bmp genes fol-
lowing activation of tfap2a and identified bmp7a as a likely candidate for mediating its effects
on Fgf signaling. bmp7a is normally expressed in cells at the anterior and posterior ends of the
otic vesicle, and at a lower level in a ventrolateral domain that overlaps the tfap2a expression
domain [37] (Fig. 91-], compare with Fig. 1C). Expression of bmp7a was nearly abolished in
tfap2a” mutants (Fig. 9K). In contrast, activation of hs:tfap2a strongly upregulated bmp7a ex-
pression in the otic vesicle as well as in surrounding tissues (Fig. 9L). In contrast to bmp7a, we
observed no consistent changes in expression of bmp2b or bmp4 following manipulation of
tfap2a function (S5 Fig.), indicating that changes in bmp7a are relatively specific. Together,
these data suggest that tfap2a positively regulates bmp7a, which in turn restricts the level of Fgf
signaling during otic development.

We next examined whether Bmp signaling mediates the effects of tfap2a on Notch activity.
In support, blocking Bmp with DM rescued expression of deltaB and her4 following activation
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Fig 10. Bmp signaling mediates the effects of Tfap2a on SAG development. (A-L) Cross sections
(medial left, dorsal up) through the otic vesicle just posterior to the utricular macula showing expression of
her4 (A-D) and deltaB (E-H) at 26 hpf and ngn1 (I-L) at 28 hpf in control embryos (A, E, |), hs:tfap2a embryos
(B, F, J), DM-treated hs:tfap2a embryos (C, G, K) and DM-treated wild-type embryos (D, H, L). All specimens
were treated with 1% DMSO and heat-shocked at 24 hpf. (M-P) Mean and standard deviation of the total
number of deltaB or her4 expressing cells inside the otic vesicle or in the TA pool at 26 hpf under conditions
indicated in the color key (counted from serial sections, n = 3—-6 ears per time point). (Q-S) Mean and
standard deviation of the total number of ngn7+ cells at 28 hpf (Q) and Isl1+ SAG neurons at 30 hpf (R) and
37 hpf (S) under the conditions indicated in the color key. Asterisks (*) indicate statistical differences between
the groups indicated in brackets.

doi:10.1371/journal.pgen.1005037.g010

of hs:tfap2a at 24 hpf (Fig. 10A-L, M-P). Treatment with DM alone caused a slight but signifi-
cant increase in the number of cells expressing deltaB and her4 (Fig. 10D, H, I-L). Thus the
ability of tfap2a to restrict Notch signaling requires elevated Bmp signaling.

Finally, we tested whether the effects of tfap2a on SAG development also require Bmp sig-
naling. Blocking Bmp after activating hs:tfap2a at 24 hpf restored neuroblast specification to
normal in 6 out of 8 specimens (Fig. 10I-L, Q). Similarly, accumulation of mature Isl1+
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neurons was nearly normal in 12 out of 15 embryos at 30 hpf (Fig. 10R) and was restored to
normal in all specimens at 37 hpf (n = 15) (Fig. 10S). DM treatment alone caused a slight but
significant reduction in neuroblast specification and accumulation of mature SAG neurons
(Fig. 10Q-S). Together, these findings support a model in which tfap2a regulates the level of
bmp7a expression in the otic vesicle, which in turn restricts Fgf and Notch signaling to control
the amount, duration and speed of SAG development.

Discussion

We have shown that Tfap2a regulates development of SAG neurons by modulating Fgf, Notch
and Bmp signaling. Tfap2a overexpression promotes neurogenic specification in the otic vesi-
cle and accelerates subsequent differentiation of TA precursors into mature neurons. Con-
versely, disruption of tfap2a reduces the number of ngnl+ neuroblasts and decreases the rate of
neuroblast differentiation. The neurogenic effects of tfap2a overexpression result from inhibi-
tion of Notch and Fgf signaling, which normally serve to restrict neuroblast specification and
delay differentiation. The effects of Tfap2a appear to be mediated by Bmp7a, which is upregu-
lated in response to Tfap2a activity. Bmp signaling in turn antagonizes Fgf and Notch signaling
to promote specification and terminal differentiation of SAG precursors. These findings are
novel and clarify several aspects of SAG development, which are discussed further below.

Coordination of Fgf and Notch

The interplay between Fgf and Notch is complex and dynamic, and levels must be precisely bal-
anced for proper development of the SAG. A low-to-moderate level of Fgf is required to initiate
neurogenesis by activating expression of ngnl [5,7,38-40], which in turn activates expression
of Notch ligands [2,34]. Notch activity serves to limit and slow neurogenesis [33,34]. Neuro-
genesis is also inhibited at later stages by rising levels of Fgf5 derived from mature neurons [5]
(Fig. 1K). Without proper modulation by tfap2a, both Fgf and Notch signaling quickly become
overactive, which terminates specification prematurely and impedes maturation of neuroblasts
in the TA pool, thereby leading to under-production of mature SAG neurons.

While too much Fgf and Notch activity clearly impairs neurogenesis, insufficient levels are
ultimately far more damaging to SAG development. Conditions that reduce Fgf and Notch sig-
naling (e.g. overexpression of tfap2a) cause dramatic acceleration of differentiation and over-
production of neurons, most of which later die upon maturation. Neuronal death appears to
arise secondarily from acceleration of early stages within the otic vesicle, as accelerating later
stages does not lead to neuronal death. It is likely that early neuroblast differentiation is espe-
cially sensitive to acceleration due to insufficient buildup of factors needed for survival and
function of mature neurons. In contrast, an important attribute of the TA pool is that the rate
of differentiation can be regulated without compromising subsequent neuronal survival. The
TA pool represents a relatively stable population of slowly cycling progenitors that must be
maintained to meet the needs of the growing larva or to regenerate new neurons following
damage [5]. It is likely that tfap2a is needed only transiently in the otic vesicle to prolong speci-
fication and establish a healthy progenitor population. Once neuroblast specification has termi-
nated, however, downregulation of tfap2a appears necessary to allow Fgf and Notch signaling
to rise sufficiently to balance rates of proliferation vs. differentiation in the TA pool.

The role of Bmp

We have shown for the first time a role for Bmp in SAG development. Numerous earlier stud-
ies have shown that Bmp regulates morphogenesis of semicircular canals [41-44] and numer-
ous aspects of development of sensory epithelia [45-49]. Bmp has also been found to promote
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SAG survival and neurite outgrowth in chick explant cultures [50]. However, no previous stud-
ies have detected a role in specification or differentiation of SAG neurons. Abello et al. [38] re-
ported that blocking Bmp signaling did not alter the size of the neurogenic domain in the chick
otic vesicle; and mosaic misexpression of an activated form of Bmp receptor did not inhibit
neurogenesis, though the possibility that it may have accelerated neurogenesis was not exam-
ined. In comparison, we find that tfap2a activates expression of bmp7a and that blocking Bmp
signaling reverses the effects of tfap2a overexpression. Treating wild-type embryos with DM
partially mimics the effects of disrupting tfap2a. The more severe defects caused by tfap2a loss
of function could indicate that additional factors help mediate the effects of Tfap2a. Alterna-
tively, Bmp7a could act partly through non-canonical signaling, similar to the role of Bmp7 in
establishing tonotopy in the organ of Corti in mouse [46]. The specific requirement for Bmp7a
in SAG development cannot be assessed by examining bmp7a mutants because development of
the otic placode is severely compromised [51]. Development of lines to conditionally disrupt or
misexpress bmp7a could resolve many of these issues.

Interestingly, in zebrafish Bmp effectors Smadl and Smad5 are specifically upregulated in
delaminated SAG cells [37,52] (Fig. 1K). This constitutes an unusual form of regulation be-
cause smadl/5 genes are broadly expressed with relatively little variation in the level of expres-
sion. Elevated levels of Smad1/5 accumulation could render SAG precursors outside the ear
especially sensitive to Bmp, explaining how Bmp expressed within the otic vesicle could have
such a profound effect on development of TA cells.

Regulation of tfap2a

We do not yet know how tfap2a is regulated in the otic vesicle. We detect no changes in expres-
sion after manipulating levels of Fgf, Notch, Bmp, Wnt or ngnl. It is possible that expression of
tfap2a in the otic placode and otic vesicle reflects auto-regulatory maintenance from earlier
stages. During gastrulation tfap2a is induced by Bmp in non-neural ectoderm where it func-
tions as a competence factor for preplacodal development [9]. Once induced Tfap2a acts to
maintain its own expression even if Bmp is subsequently blocked [11]. This is an important as-
pect of regulation because dorsally expressed Bmp-antagonists are required to initiate prepla-
codal development near the end of gastrulation [9,53-55]. Although expression of tfap2a could
simply persist in the otic placode through self-maintenance, it is not clear how expression be-
comes restricted to ventrolateral cells in the otic vesicle. A similar pattern is seen in the chick
otic vesicle, possibly indicating a conserved mechanism ([56]; Fig. 1). Identifying factors that
regulate tfap2a in zebrafish and chick will likely shed light on general mechanisms of otic pat-
terning and specific mechanisms of otic neurogenesis.

Materials and Methods
Fish strains and developmental conditions

The wild type strains were derived from AB line (Eugene, OR). Transgenic lines used in this
study include Tg(hsp70:tfap2a)™* [11], Tg(hsp70:fgf8a)*"” (571, Tg(hsp70Ldnfgfr1-EGFP)""
[58], Tg(hsp701:gal41.5)k“‘4 [59], Tg( UAS:myc—Notch1a—intra)km3 [60] and Tg(brn3c:gap43-
GFP)*** [61]. These transgenic lines are referred as hs:tfap2a, hs:fgf8, hs:dnfgfr1, hs:gal4/UAS-
NICD and brn3c-GFP respectively. Mutant line tfap2a™®'’ [62] was used for most loss of func-
tion studies. Mutants were identified by characteristic phenotypes showing expected Mendelian
frequencies. Except where noted, embryos were maintained at 28.5°C in fish water containing
0.008% Instant Ocean salts, methylene blue and PTU (1-phenyl 2-thiourea, 0.3 mg/ml, Sigma)
to block melanin formation. Embryos were staged according to standard protocols [63].
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Gene misexpression and morpholino injection

To activate heat-shock inducible transgenic lines, heterozygous transgenic embryos were incu-
bated at 39°C for 30 minutes except where noted. Under this condition, activation of hs:tfap2a
at 24 hpfled to a detectable increase in tfap2a levels by the end of the heat-shock period. Maxi-
mal tfap2a expression was seen at 25.5 hpf and the tfap2a levels remained elevated in the otic
vesicle thorough at least 29 hpf (S1 Fig.). Since the complete blockage of Fgf signaling inhibits
neurogenic specification in the otic vesicle [5], weak attenuation of Fgf signaling was achieved
by activation of hs:dnfgfrl at 35°C for 30 minutes (Fig. 6) or at 36.5°C for 30 minutes (Fig. 7).
After the heat-shock, embryos were incubated at 33°C until fixation. In some loss of function
experiments, tfap2a was knocked down by injecting embryos at the 1-cell stage with approxi-
mately 5 ng of tfap2a morpholino oligomer (MO). The sequence of tfap2a MO has been tested
previously for specificity and efficiency [64].

Pharmacological treatments

Notch signaling was blocked by treating embryos with LY411575 diluted from a 10 mM stock
in DMSO to a final concentration of 30 uM in fish water. Bmp signaling was blocked by Dorso-
morphin (Sigma, P5499) diluted from a 10 mM stock solution into a final concentration of 100
uM in fish water. Treatments were carried in a 24-well plate with a maximum of 15 embryos
per well in a volume of 500 pl each.

In situ hybridization and immunohistochemistry

In situ hybridization and antibody staining was carried out as described previously [65-67].
In situ TUNEL assay was performed by using Promega terminal deoxynucleotidyl
transferase (M828A) according to the manufacturer’s protocol. Following primary and sec-
ondary antibodies were used in this study: anti-Islet1/2 (Developmental Studies Hybridoma
Bank 39.4D5, 1:100 for whole-mount, 1:250 for cryo-sections), anti-BrdU (Beckton-
Dickinson, 1:250) and Alexa 546 goat anti-mouse IgG (Invitrogen A-11003, 1:50 for whole-
mount, 1:250 for cryo-sections). Cryo-sectioning and BrdU labeling were carried out as de-
scribed previously [5]. Whole-mount stained embryos were sectioned except for Figs. 1,7
and S4 where anti-islet1/2 staining was performed on sections using standard whole

mount protocols.

Cell transplantation

Wild-type donor cells were injected with the lineage tracer (tetramethylrhodamine labeled,
10,000 MW, lysine-fixable dextran in 0.2 M KCI) and transplanted into non-labeled hs:tfap2a
embryos at blastula stage.

Chick experiments

Embryonic day 3 (E3) and E4 chick embryos were fixed and embedded in gelatin (7.5% gelatin,
15% sucrose in PBS). 14um thick sections were collected on Superfrost Plus slides. For AP2a
and Jagged-1 co-detection, slides were boiled in 10mM citric acid for 10 minutes prior to anti-
body application and then incubated in 0.012% hydrogen peroxide for 15 minutes at room
temperature. The 3B5 AP2a monoclonal antibody developed by Trevor Williams was obtained
from the Developmental Studies Hybridoma Bank developed under the auspices of the
NICHD and maintained by the University of Iowa, Department of Biology, Iowa City, IA
52242. AP20 antibody was diluted 1:100 and Jagged-1 polyclonal antibody (Santa Cruz Bio-
technology H-114) was diluted 1:200 in blocking buffer (PBS with 0.02% Tween-20, 0.1%
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Triton X-100, and 10% goat serum). Staining was detected with biotinylated mouse secondary
antibody (Mouse Vectastain ABC kit) in conjunction with PerkinElmer TSA Plus Cyanine-3
System and AlexaFluor 488 conjugated rabbit secondary antibody diluted 1:500 in A+B sub-
strate solution (AlexaFluor goat anti-rabbit, Invitrogen). All slides were mounted in Fluoro-
mount G (Southern Biotech).

Statistics

For pairwise comparisons, student’s t-tests were used to evaluate significance. For experiments
involving more than two groups significance was evaluated using one-way ANOV A and Tukey
post-hoc HSD tests.

Ethics statement

The studies described herein were fully compliant with federal guidelines and TACUC-ap-
proved Animal Use Protocol number 2012-011.

Supporting Information

S1 Fig. Heat-shock activation of hs:tfap2a transgene leads to transient misexpression of
tfap2a. (A-L) Whole-mount images (dorsal up, anterior left) showing tfap2a expression in
wild-type and hs:tfap2a embryos. Embryos were fixed and stained at indicated intervals after
the end of a 30-minute heat-shock initiated at 24 hpf.

(TTF)

S2 Fig. Maturation of SAG neurons remains deficient in #ffap2a mutants at 3 dpf. (A-F)
Cross-sections (dorsal up, medial left) pass through the anterior (A, B), middle (C, D), and pos-
terior (E, F) parts of the otic vesicle and show islI staining in a wild-type embryo (A, C, E) and
a tfap2a mutant (B, D, F) embryo at 72 hpf. (G) Mean and standard deviation of the total num-
ber Isl1+ SAG neurons in wild-type (n = 3) and tfap2a mutant (n = 4) embryos at 72 hpf
(counted on serial sections). Asterisk (*) indicate statistically significant difference compared
to wild-type embryos.

(TTF)

S3 Fig. tfap2a inhibits Fgf signaling in the otic vesicle. (A-]): Cross-sections (dorsal up, me-
dial left) passing through the otic vesicle just posterior to the utricle showing expression of etv4
(A-D), etv5b (E-H) and sprouty4 (I, J) in heat-shocked wild-type (A, E, 1), hs:tfap2a (B, F, ]),
non-heat shocked wild-type (C,G) and tfap2a morphant (D,H) embryos at indicated time
points. (K-P): Whole-mount images (dorsal up, anterior left) showing dorsolateral views of the
otic vesicle (outlined) stained for etv5b expression in heat-shocked wild-type and hs:tfap2a em-
bryos at indicated times.

(TIF)

S4 Fig. Inhibition of Notch and Fgf signaling in hs:tfap2a embryos does not enhance the ef-
fects of hs:tfap2a activation. (A-I): Cross-sections at the level of utricular macula (medial to
the left, dorsal up) show bright field (A, D, G), fluorescent (B, E, H) and merged (C, F, I) images
for neurod (blue) and islI (red) in heat-shocked wild-type, hs:tfap2a and LY 411575 treated hs:
tfap2a+ hs:dnfgfrl embryos at 37 hpf. All specimens were treated with 0.3% DMSO and heat-
shocked (39°C, 30 minutes) at 24 hpf. (J) Mean and standard deviation of the total number of
is1+ neurons at 37 hpf under the conditions indicated in the color key (n = 10-15 specimens
each). (K) Mean and standard deviation of the total number of #nrd+ neuroblasts at 37 hpf
under the conditions indicated in the color key (n = 3-6 ears each, counted from serial
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sections). Both experimental conditions were significantly different compared to controls. n.s.,
no statistical difference between the groups indicated in brackets.
(TIF)

S5 Fig. The effects of tfap2a overexpression and knock-down on bmp2b and bmp4 expres-
sion. (A-H): Whole-mount images (dorsal up, anterior left) showing dorsolateral view of the
otic vesicle (outlined) for bmp2b (A-D) and bmp4 (E-H) expression for the indicated genotypes
and conditions. Activation of hs:tfap2a appears to reduce expression of both genes in portions
of the otic vesicle, but bmb2b is upregulated in the hindbrain (B) and bmp4 is upregulated in
the dorsal part of the otic vesicle (F). Knocking down tfap2a had little or no effect on either
gene (D, H).

(TTF)
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