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Abstract

Protein components of cell adhesion machinery show continuous renewal even in the static
state of epithelial cells and participate in the formation and maintenance of normal epithelial
architecture and tumor suppression. CADM1 is a tumor suppressor belonging to the immu-
noglobulin superfamily of cell adhesion molecule and forms a cell adhesion complex with an
actin-binding protein, 4.1B, and a scaffold protein, MPP3, in the cytoplasm. Here, we inves-
tigate dynamic regulation of the CADM1-4.1B-MPP3 complex in mature cell adhesion by
fluorescence recovery after photobleaching (FRAP) analysis. Traditional FRAP analysis
were performed for relatively short period of around 10min. Here, thanks to recent advances
in the sensitive laser detector systems, we examine FRAP of CADM1 complex for longer
period of 60 min and analyze the recovery with exponential curve-fitting to distinguish the
fractions with different diffusion constants. This approach reveals that the fluorescence re-
covery of CADM1 is fitted to a single exponential function with a time constant (t) of approxi-
mately 16 min, whereas 4.1B and MPP3 are fitted to a double exponential function with two
ts of approximately 40-60 sec and 16 min. The longer t is similar to that of CADM1, suggest-
ing that 4.1B and MPP3 have two distinct fractions, one forming a complex with CADM1

and the other present as a free pool. Fluorescence loss in photobleaching analysis supports
the presence of a free pool of these proteins near the plasma membrane. Furthermore, dou-
ble exponential fitting makes it possible to estimate the ratio of 4.1B and MPP3 present as a
free pool and as a complex with CADM1 as approximately 3:2 and 3:1, respectively. Our
analyses reveal a central role of CADM1 in stabilizing the complex with 4.1B and MPP3 and
provide insight in the dynamics of adhesion complex formation.
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Introduction

Cell adhesion machinery, composed of cell adhesion molecules, cytoskeletal proteins, and scaf-
folding proteins, are spatiotemporally regulated in the maintenance of epithelial structure. This
machinery includes tight junctions (T7]), adherens junctions (AJ]), and desmosomes, as well as
various other protein complexes that participate in cell adhesion in a static manner [1,2]. Main-
tenance of such cell-cell adhesion in epithelia also protects cells from malignant conversion, in-
cluding invasion and metastasis [3]. However, FRAP analysis has revealed that the protein
components of cell adhesion machinery show continuous renewal at the molecular level with a
halftime of recovery (t/,) of less than a few minutes even in the static state of epithelial cells.
For example, a membrane protein, occludin, and its cytoplasmic binding protein, ZO-1—
representative components of TJ]—are dynamically regulated in confluent cells with t;,, of 107s
and 98s, respectively, although TJ machinery is expected to be stably responsible for its strong
barrier function [4]. Similarly, A] component proteins, such as E-cadherin and its cytoplasmic
binding partners, B-catenin, o-catenin, and actin, are continuously exchanged with each other
in the static state of cell-cell adhesion [5]. Thus, cell adhesion machinery appears to be remod-
eled quite elaborately in the formation and maintenance of the epithelial architecture. Howev-
er, dynamic regulation of other cell adhesion molecule complex, as well as its individual
components, is not yet fully understood.

We have previously identified Cell adhesion molecule 1 (CADM1) as a tumor suppressor in
non-small cell lung cancer (Gene ID: 23705) [6]. CADM1 is an immunoglobulin superfamily
cell adhesion molecule (IgCAM) expressed in most of the epithelial and neuronal synapses [7],
and is also called TSLCI [6], Necl-2 [8], and synCAM1 [9]. In polarized epithelial cells,

CADM1 is not localized in TJ or AJ but expressed diffusely in the lateral membrane as homodi-
mers, trans-interacts with CADM1 from adjacent cells, and participates in cell adhesion [10].
Expression of CADMI in single-cell suspended MDCK cells causes cell aggregation in Ca>* or
Mg** independent manner [10]. The cytoplasmic domain of CADMI contains two protein in-
teraction motifs, a protein 4-binding motif (4.1-BM) and a class II PDZ-binding motif (PDZ-
BM). We have previously demonstrated that, through 4.1-BM, CADM1 interacts with protein
4.1B/DAL-1 [11], which further binds to spectrin, an actin-binding protein [12], and localizes
CADM.1 to the cell-cell contact sites with actin [11]. CADML1 is also associated with a member
of PDZ domain-containing membrane-associated guanylate kinases (MAGuKs), including
MPP1-3, CASK and Pals2 [8,9,13,14] through a class-II PDZ-BM. In HEK293 or Caco-2 cells,
depletion of CADM1 by siRNA led to loss of actin bundle maturation and epithelial morpholo-
gy [14]. On the other hand, MDCK cells expressing CADM1 show spread morphology like
that in an initial phase of cell adhesion when cultured on the immobilized extracellular frag-
ments of CADM1 through trans-homophilic interaction. This spread morphology is inhibited
by cytochalasin B, indicating that CADM1 transmits the cell attachment signals to the morpho-
logical changes through actin-reorganization [15]. In addition, expression of CADMI in
MDCK cells suppressed the epithelial to mesenchymal transition (EMT) triggered by HGF
treatment, whereas mutant CADM1 lacking its cytoplasmic fragment lost suppressor activity
of EMT by HGF [16]. Taken together, these findings suggest that CADM1-4.1B-MPP3 protein
complex is involved in the formation and maintenance of epithelial cell structure.

By contrast, CADM1 expression is often lost by promoter methylation in various invasive
cancers, including non-small cell lung cancer, breast cancer and pancreatic cancer [7]. 4.1B ex-
pression is also lost in lung, breast and renal cancers [17-19]. Notably, the expression of either
CADM]1, 4.1B or MPP3 is lost in 11 of 12 lung tumor cell lines, suggesting that these proteins
provide an important cascade for tumor suppressor. Correspondingly, restoration of CADM1
expression in human lung cancer cell line, A549, suppressed their tumorigenicity in nude mice,
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whereas mutant CADMI1 lacking its cytoplasmic domain, 4.1-BM, or PDZ-BM, lost its sup-
pressor activity in subcutaneous tumor formation in nude mice [20]. These findings suggest
that the ternary complex of CADM1-4.1B-MPP3 is also crucial for tumor suppression.

In physiological situations, CADM1 appears to be dynamically regulated on the plasma
membrane since rapid accumulation of CADM1 was observed in the early stage of cell-cell
contact, even though the amount of CADM1 protein was not changed before or after the for-
mation of cell-cell contact [10]. Expression of an appropriate amount of CADM1 is considered
to be important for epithelial structure/function, because formation of mature adhesion was
abrogated by the depletion of CADMI using its siRNA [14], and because wound healing in the
skin was impaired in the Cadm-deficient mice as well as in the Cadm1 transgenic mice [21].
Furthermore, we previously found that CADMI1-binding proteins 4.1B and MPP2 lost their
juxtamembrane localization and dispersed in the cytoplasm of cells when CADM1 was deplet-
ed, even though the amounts of 4.1B or MPP2 proteins were not affected [14]. These findings
suggest that appropriate amount of CADM1 expression regulates subcellular localization and
the stability of its binding proteins at cell-cell contact sites.

Here, we investigated the dynamic regulation of the CADM1 complex in epithelial cells,
MDCK. Although endogenous CADML1 is scarcely detected in MDCK cells, exogenous ex-
pression of CADM1 in MDCK cells leads to cell aggregation [10], suppresses experimental
EMT triggered by HGF [16], and induces spreading morphology caused by actin reorganiza-
tion and trans-homophilic interaction with immobilized CADM1 [15], indicating that
CADML1 plays physiological roles in the formation and maintenance of epithelial structure in
MDCK cells. FRAP analysis for 60 min and subsequentexponential curve-fitting demonstrat-
ed that CADM1 was present as a relatively stable fraction independent of the complex forma-
tion, whereas its binding proteins, 4.1B and MPP3, were present as a stable and a unstable
state, which might correspond to the fractions present as a CADM1 complex and a free
pool, respectively.

Results

Dynamics of CAMs in Confluent Cells Analyzed by t1,, and Mf

We initially analyzed the dynamics of two cell adhesion molecules, CADM1 and E-cadherin, as
well as B-actin, in confluent MDCK cells expressing these molecules tagged with GFP (G) or
YFP (Y) (S1A-S1C Fig.). Only a trace amount of CADM1 was endogenously expressed in the
parental MDCK cells. We found that CADM1-Y, like endogenous CADM1, was expressed in
cell-cell attachment sites on the membrane by con-focal microscopy and that CADM1-Y gave
a value similar to that of CADM1 by measuring the trans-epithelial resistance (TER) of epithe-
lial sheets formed by CADM1-Y transfected cells (S1D Fig.). These cells were continuously cul-
tured for additional 4 days after the cells reached confluence, and the dynamics of fluorescent
proteins in the cell-cell adhesion sites were examined using FRAP analysis. In this analysis, the
fluorescence of each protein was photobleached in part of a cell-cell contact site, and its recov-
ery was monitored for 10 min consistent with previous studies by other investigators (Fig. 1A)
[4,22]. Using conventional quantitative analysis, G-B-actin was rapidly exchanged with a t,, of
18.4 £ 5.5 sec and a Mf of 83.0 £ 5.0% (Fig. 1B-1D, S1 Table) similar to those previously re-
ported [5]. In this condition, the CADM1-YFP (CADM1-Y) and E-cadherin-GFP (E-cad-
herin-G) showed Mfs of 65.5 + 3.6% and 43.6 + 4.0%, respectively. The rates of exchange of
CADM1-Y and E-cadherin-G are shown with t;,, of 187 + 14 sec and 147 + 28 sec, respectively
(S1 Table). The dynamics of E-cadherin were similar to those previously reported, showing an
Mf range of 23-65% and a t;/, of 0.5-10 min [5,23].

PLOS ONE | DOI:10.1371/journal.pone.0116637 March 17,2015 3/15



@ PLOS | one

Dynamics of CADM1 by FRAP with Exponential Fitting

A

time (sec)
pre-bleach 150 450
=
a
<
(&
Q
©
1]
Q
w

250

NS
I ' .
0 [

CADM1-Y E-cad-G G-f-actin

(@]

- = N
e v o
o o o

t1/2 (sec)

(4]
(=]

(v o)

100

[=2]
o

[+
(=]

B
o

(% of initial value)

]
(=]

fluorescence intensity

0 - T T T T T

300 400 500
time (sec)

CADM1-Y E-cad-G G-p-actin

Fig 1. Conventional FRAP analysis of CAMs expressed in confluent MDCK cells. MDCK cells expressing CADM1-Y, E-cadherin-G, or G-B-actin were
analyzed using FRAP for 600 sec (short, A-D) after photobleaching. (A) Representative images before and at the time points indicated after photobleaching
are shown. ROls for photobleaching are indicated by red boxes. Bars, 5 um. (B) Fluorescence recovery curve of FRAP analysis. (C and D) Halftime of
recovery (ti,2, C) and mobile fraction (Mf, D). Data are mean + SEM. Statistical differences in t;,» and Mf in FRAP analysis for 10min were determined by
Student’s t-test. *, p< 0.05; **, p< 0.01; NS, no significant difference. (B—-D) n= 10, 5, and 8 for CADM1-Y, E-cadherin-G, and G-B-actin, respectively.

doi:10.1371/journal.pone.0116637.9001

One concern with these experiments is that the recovery curves of CADM1-Y and E-
cadherin-G did not reach plateaus within 10 min of analysis. Thus, we challenged to analyze

the fluorescence recovery for a longer time period, 60 min (Fig. 2A). We confirmed that the
fluorescence loss was not seen in the control ROI without analysis of long-term photobleaching
for 60 min (Fig. 2B). Regression analysis showed that t;,s of the CADM1-Y and E-cadherin-

G were 811.7 £ 179.3 sec and 879.5 + 149.4 sec, respectively, with Mfs of 107.7 + 4.5% and
117.8 £ 6.0%, respectively, when calculated using the equations for regression analysis de-
scribed in Materials and Methods (Fig. 2C, 2D and 2E, Table 1) [4, 25]. These t;/, and Mfs

are much larger than those in both CADM1-Y and E-cadherin-G obtained by 10-min FRAP
analysis. These results also show that FRAP analysis can be practically performed for longer
time period of up to 60 min.
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Fig 2. Dynamics of CAMs, CADM1, and E-cadherin in confluent MDCK cells. MDCK cells expressing CADM1-Y or E-cadherin-G were analyzed using
FRAP for 3,600 sec after photobleaching. (A) Representative images before and at the time points indicated after photobleaching are shown. ROls for
photobleaching are indicated by red boxes. Bars, 5 pm. (B) Fluorescence intensity in the control ROl without photobleaching. (C) Fluorescence recovery
curve of FRAP analysis. (D and E) Halftime of recovery (t;2, D) and mobile fraction (Mf, E). Data are mean + SEM. Statistical differences in t;,» and Mf in
FRAP analysis for 60min were determined by Student’s t-test. NS, no significant difference. (F-H) Single or double exponential curve fitting of fluorescence
intensities of CADM1-Y (F, n = 5), E-cadherin-G (G, n = 9), and G-B-actin (H, n = 8). Exponential fitting for FRAP signals was performed as described
previously [24]. To determine the time constant of fluorescence recovery at the cell-cell contact sites, the experimental data were plotted in a semi-logarithmic
scale, and regression analysis was performed using the following equation:y = yo + A; -exp(—x/7¢) + A exp(—x/12)

doi:10.1371/journal.pone.0116637.9002

PLOS ONE | DOI:10.1371/journal.pone.0116637 March 17,2015 5/15



@'PLOS ‘ ONE

Dynamics of CADM1 by FRAP with Exponential Fitting

Table 1. The time constant (t) of E-cadherin, CADM1, 4.1B and MPP3 analyzed by long-time.

CADM1-Y
(single?)
R? 0.936
yo0 0.921
+0.011
Al 0.503
+0.017
Tl 907.5s
+ 80.00s
A2
T2

@Single exponential-fitting;
PDouble exponential-fitting.

doi:10.1371/journal.pone.0116637.t001

Single transfectant Double tranfectant Double tranfectant
E-cadherin-G B-actin-G CADM1-Y G-4.1B CADM1-Y G-MPP3
(double®) (single?) (single?) (double®) (single?) (double®)
0.921 0.935 0.927 0.878 0.920 0.858
1.021 0.926 80.58 89.06 78.78 94.94
+0.030 $0.002 +1.36 +1.07 +1.22 +1.00
0.177 0.232 4515 26.46 48.65 31.25
+0.036 +0.011 +1.63 +3.73 +1.88 +3.16
97.55s 27.68s 1084s 62.65s 917.3s 41.21s
+41.97s +2.43s +113.4s + 19.60s +91.77s +11.27s
0.318 - 17.72 - 11.51
+0.020 - +2.32 - +1.69
1689s - 963.0s - 1010s
+462.3s - +275.1s - +372.7

Analysis of dynamic regulation of CAMs by exponential curve fitting

Next, we analyzed the recovery of FRAP signals using another approach by fitting them with
an exponential function for 60 min. If the recovery process is random, such as diffusion, the re-
covery of FRAP signals can be fitted by an exponential function [24], and if the recovery is
composed of two independent random processes, the recovery of FRAP signals would be fitted
by an exponential function with two different time constants and amplitudes. The recovery
curve of CADMI1-Y was fitted by a single exponential function with a t of 907.5 + 80.0 sec

(R? = 0.936), suggesting that CADM1-Y was stably localized at the cell-cell contact sites for an
average of about 15 min (Fig. 2F and Table 1). In contrast, the recovery of E-cadherin-G was
fitted by a double exponential function with a T of 97.5 + 41.9 sec (R*=0.921) and 1,689 + 462
sec, suggesting that E-cadherin-G at the cell adhesion sites was present in the mixture of an un-
stable fraction exchanged within a few minutes and a stable fraction, of which T is larger than
that of CADM1-Y (Fig. 2G and Table 1). On the other hand, B-actin showed rapid exchange in
this analysis with a single T of 27.7 + 2.4 sec (R* = 0.935), which is similar to that obtained in
short-term analysis (Fig. 2H and Table 1).

Two Different Time Constants of CADM1 Binding Proteins, 4.1B and
MPP3

Then, we examined the dynamics of components of the CADM1 complex. For this purpose,
MDCK cells expressing CADM1-Y were further transfected with G-4.1B or G-MPP3 (S1A-B
Fig.). Relative expression of CADM1-Y:G-4.1B is estimated to be 8:1, while that of CADM1-Y:
G-MPP3 is 1:2 by immunoblot analysis using anti-GFP antibody (S1C Fig.). In addition, rela-
tive expression of exogenous G-4.1B and G-MPP3 to endogenous 4.1B and MPP3 are 5:1 and
7:1, respectively (S1B Fig.). We performed FRAP analysis for 60 min using these cells and mon-
itored the fluorescence recovery of CADM1-Y and G-4.1B or G-MPP3 at the same time

(Fig. 3A and 3B). In the double transfectant of CADM1-Y and G-4.1B, the recovery curve of
CADMI-Y was fitted by a single exponential function with a T of 1,084 + 113.4 sec (R* = 0.927)
similarly to its single transfectant (Fig. 3C and Table 1), indicating that the stability of CADM1
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Fig 3. Dynamics of CADM1 and its binding proteins, 4.1B and MPP3, at cell-cell contact sites. MDCK cells expressing CADM1-Y and G-4.1B (A and C)
or G-MPP3 (B and D) were analyzed using FRAP until 3,600 sec after photobleaching. (A and B) Representative images before and at the time points
indicated after photobleaching are shown. ROIs for photobleaching are indicated by red boxes. Bars, 5 pm. (C and D) Single or double exponential curve
fitting of fluorescence intensities of cells expressing CADM1-Y/G-4.1B (C, n =7) and CADM1-Y/G-MPP3 (D, n = 8) as indicated in Table 1.

doi:10.1371/journal.pone.0116637.g003

is not dependent on its complex formation with 4.1B. In contrast, the recovery curve of G-4.1B
was fitted by a double exponential function with a short and long 1 of 62.6 + 19.6 sec and

963.0 + 275.1 sec (R* = 0.878), respectively. The long T of G-4.1B was similar to the T of
CADM1-Y, suggesting that G-4.1B with a long T would be present as a complex with CADM1-
Y, while G-4.1B with a short t would be present as a free pool of 4.1B. Similarly, CADM1-Y in
the double transfectants with G-MPP3 was fitted by single exponential function with a long t
0f 917.3 + 91.77 sec, whereas G-MPP3 in the same transfectants was fitted by a double expo-
nential function with a short t of 41.2 + 11.3 sec and a long  of 1,010 + 372.7 sec (R*=0.858),
where the longer 7 is similar to that of CADM1-Y (Fig. 3D and Table 1). These findings suggest
that G-4.1B and G-MPP3 would be present both as a free pool and as a complex with CADM1.
Then, we tried to estimate the fraction of molecules forming complexes with CADM1 by calcu-
lating the ratio of amplitudes of these two time constants. Based on comparing A; with A, in
our experiments, the ratio of G-4.1B and G-MPP3 present as a free pool and as a complex with
CADM1-Y was shown to be 26.5:17.7 (approximately 3:2) and 31.2:11.5 (approximately 3:1),
respectively (Fig. 4 and Table 1).

PLOS ONE | DOI:10.1371/journal.pone.0116637 March 17,2015 7/15



@ PLOS | one

Dynamics of CADM1 by FRAP with Exponential Fitting

A

CADM1-Y

=15 min

4.1B

MPP3

C
| ™ |
CADM1-Y CADM1-Y
=15 min =15 min
G-4.1B 4 D@ 4.1B o
=15 min O W -
MPP3 G-4.1B 21 min G-MPP3
=15 min G-MPP3

X =1 min

Fig 4. A schematic representation of the dynamics of the CADM1 complex. In confluent MDCK cells, CADM1-Y forms cis-dimers on plasma membranes
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MPPs and stably localized at the cell-cell contact sites with a time constant of approximately 16 min. In double transfectants of CADM1-Y and G-4.1B (B) or
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long-time constants, respectively. The time constant of each protein is indicated.

doi:10.1371/journal.pone.0116637.g004

The Rapid Movement of 4.1B and MPP3 Occurred within the Contact
Sites

Finally, we examined whether the rapid exchange of G-4.1B and G-MPP3 that was implied by
a short time constant occurred within the cell-cell contact sites or in the intracellular region by
using fluorescence loss in photobleaching (FLIP) analysis. MDCK cells expressing G-4.1B or
G-MPP3 were continuously bleached in a small region of the cell-cell contact sites (CS) or the
intracellular region (IC), and the fluorescence intensities of adjacent cell-cell contact regions
(ROI 1-4) were monitored for 10 min (Fig. 5A and 5B). We failed to continue FLIP analysis
for a longer time because the cells were severely damaged by continuous bleaching. The fluo-
rescence intensity of G-4.1B on adjacent cell-cell contact sites was not so much affected by
photobleaching in the IC (Fig. 5C). In contrast, bleaching at the CS drastically reduced the fluo-
rescence intensity of G-4.1B within the same contact site according to the distance from the
bleached region; G-4.1B in ROI 1 decreased more drastically as compared with that in ROI 3.
On the other hand, G-MPP3 localized at the cell-cell contact site was significantly reduced by
CS bleaching, while G-MPP3 was moderately affected by IC bleaching (Fig. 5D). These results
suggest that the fraction of G-4.1B with a short T of 1 min was exchanged mainly within the
juxtamembrane region, while that of G-MPP3 was replaced not only by G-MPP3 in the juxta-
membrane area, but also in the intracellular region.

Discussion

Dynamic regulation of cellular protein complex is important for understanding their physio-
logical and pathological significance in various biological phenomena, including cell-cell adhe-
sion. For investigating protein dynamics, FRAP and FLIP analyses are most potent and widely
used cell biological approaches. A number of previous studies have conventionally used non-
linear regression analysis with t;,, and Mf for the quantification of FRAP data, in which t,, has
been reported to be related to the diffusion coefficient [25]. We firstly examined the data by
non-linear regression analysis and confirmed that the present experiment worked well because
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monitored at ROls (regions of interest) 1-3 in CS-bleached cells and ROI 4 in IC-bleached cells for 600 sec. (C and D) Quantitative analysis of the
fluorescence intensities in the cell-cell contact sites adjacent to the photobleached regions shown in A and B as ROl 1-4. Quantification was performed in at
least three independent experiments, and a representative graph was shown.

doi:10.1371/journal.pone.0116637.g005

Mf and t;,, obtained in this study were equivalent to those reported previously. Then, we ana-
lyzed the data by another approach using an exponential fitting model because this tool can an-
alyze the dynamics of a system composed of multiple random processes, like reaction-diffusion
systems. If the signal is better fitted by two exponents, it is strongly suggested that the process
is composed of two independent random processes.

Another particular feature of this study is that we performed FRAP analysis for 60 min,
which is much longer than 10 min in most reported cases. The cytotoxic effect on the cells
caused by long exposure to a high-energy laser beam was a major obstacle that caused us to re-
strict the observation time to less than 10 min. However, thanks to recent advances in the sensi-
tivity of laser detector systems, long-term FRAP analysis using a low-energy laser beam for up
to 60 min becomes possible [26].
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In this study, we performed FRAP analysis for 60 min and analyzed the results by exponen-
tial curve-fitting. Exponential fitting analyses using the time constants of each protein provides
two critical biological findings. First, the dynamics of CADM1 with a single fraction is distinct
from that of E-cadherin with two fractions, indicating that CADML1 stability is not dependent
on the complex formation with 4.1B or MPP3. Trans-homophilic interaction of CADM1 from
adjacent cells could be the most important determinant of CADML1 stability in confluent cells
as examined in this study. However, considering that E-cadherin is also examined in conflu-
ence with trans-homophilic interaction, a single random process would be a unique feature of
CADMI in its dynamics. In the case of E-cadherin, a dynamic process mediated by endocytosis
[27,28] and another endocytosis-independent process, which would be mediated by lateral dif-
fusion, have been suggested [29,30].

In this connection, it should be noted that the long time experiment might not provide suffi-
cient data points for interpretation of the initial phase of less than 10 min. In fact, we have
found that the exponential fitting analysis of a protein in a computational model with t of 1.00 s
is poorly fitted to inappropriate T of 2.71 s when we analyze only 11 points that are extracted in
the initial phase (1 s) from total 51 points for 5 s (1 = 0.825 s), whereas it is well fit to T of 1.14 s
when we analyze 101 points in the initial phase (1 s) from total 501 points for 5s (= 1.05s)

(S2 Fig.). Therefore, careful interpretation of the dynamics of a molecule in the initial phase
would be necessary in FRAP analysis of a long time period.

The other important finding in this study is that 4.1B and MPP3 show two time constants
of approximately 40-60 sec and 16 min, where the larger ones are the same as that of CADM1
of approximately 16 min. This indicates that 4.1B and MPP3 have two distinct fractions in the
dynamics, one forming a complex with CADM1 and the other present as a free pool without
forming a complex (Fig. 4). In other words, our study demonstrates that CADM1 is a predomi-
nant protein that effectively recruits 4.1B and MPP3 to the cell membrane, indicating the im-
portance of the membrane protein CADMI in its complex formation with 4.1B and MPP3. It
should be noted, however, that the different expression levels of 4.1B and MPP3 relative to that
of CADM1 may affect the dynamics of these CADM 1-interacting molecules. In this connec-
tion, however, Foote HP reported that the dynamics of a tight junction protein ZO-1 was not
essentially changed between the cells overexpressing ZO-1 by plasmid transfection and those
expressing a physiological ZO-1 level by knock-in system. Additional studies on different cell
clones with different expression levels of 4.1B and MPP3 would be helpful to confirm the dy-
namics of CADM-1 and its binding proteins.

It is also noteworthy that mutant E-cadherin lacking catenin binding site still formed a clus-
ter at the cell-cell contact site [30], suggesting that the interaction of cell adhesion molecules
with its cytoplasmic binding proteins was not essential for its stable localization at cell-cell at-
tachment site. With the results from FLIP analysis, we propose that considerable portions of
4.1B and MPP3 are localized stably along the membrane by binding with CADM1, whereas the
remaining 4.1B and MPP3 are present as a free pool of rapid exchange. Free 4.1B would pool
under the plasma membrane, probably through interacting with the actin cytoskeleton along
the cortex in confluent cells. A portion of free MPP3 might also pool in the juxtamembrane
area, possibly through its direct interaction with protein 4.1s through the HOOK domain [31],
whereas another portion of the free MPP3 could be supplied from the intracellular region, pos-
sibly through protein trafficking as shown in other members of the MAGuK subfamily such as
ZO-1 and SAP97/hDlg [4,32]. The free pools under the membrane would be beneficial for
timely and coordinated remodeling of cell adhesion machinery of CADM1-4.1B-MPP3.

In this study, we could also show that the ratio of G-4.1B and that of G-MPP3 present as a
free pool and as a complex with CADM1-Y is approximately 3:2 and 3:1, respectively (Fig. 4
and Table 1). Considering that the fraction with slow-turnover is higher in 4.1B (40%) than in
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MPP3 (25%), possible difference in the sensitivity of 4.1B and MPP3 to IC bleaching may sim-
ply reflect lower turnover of 4.1B in CS rather than a different distribution. Moreover, these ra-
tios could be also affected by the expression level of CADM1-Y and G-4.1B or G-MPP3. In
fact, if we take it into account that the expression level of G-4.1B is much lower than that of
CADM1-Y in our experiment, presence of around 60% of G-4.1B as a free pool suggests that
CADM1-Y might associate with some other proteins, such as 4.1IN [33]. On the other hand,
higher expression of MPP3-G relative to that of CADM1 in the doubly transfected MDCK cells
could be one of the mechanisms to explain the high proportion of free MPP3-G.

To the best of our knowledge, this is the first demonstration of the dynamic analysis of mul-
tiple protein complexes of cell adhesion machinery using exponential curve-fitting of FRAP in
combination with FLIP analysis. We recognize that this is one of the approaches to understand
the dynamics of protein complex on the cell membrane and that some other approaches using
non-linear regression model [34] or reaction diffusion kinetics model [35] would be also appli-
cable and helpful to understand the whole view of the dynamic features of membrane proteins.
Although we interpreted the number of T as the number of different pools in which a protein
may exist in this study, a protein with a single pool may sometimes show two T in a model of
reaction diffusion kinetics, because fast diffusion kinetics followed by slow binding kinetics has
been reported to have two recovery components in a FRAP curve, although time scale of diffu-
sion is much faster than that of binding kinetics [34,35]. Moreover, anomalous diffusion FRAP
model could show a similar multi-component FRAP curve [36]. On the other hand, present
study demonstrates that 4.1B and MPP3 have a fast pool and a slow pool, each appears to be
corresponding to a free pool and a bound pool with CADM1 by analyzing the data by exponen-
tial curve fitting. This mathematical approach would shed new light on the mechanical under-
standing of the dynamics of protein complexes in the cells.

Materials and Methods
Cell culture and transfection

MDCK cells were cultured as described previously [10]. Cells were transfected with the rele-
vant plasmids using Lipofectamine LTX (Invitrogen) and selected with 200 ug/ml of hygro-
mycin (Invitrogen) or 500 pg/ml of Geneticin (Invitrogen). Stable cell clones of MDCK were
cultured for about 5 days after reaching confluence on ibidi-treated plastic bottom dishes

(ibidi).

Expression vectors

CADM1 expression vector has been described previously [6]. Human E-cadherin, and B-actin
cDNAs were cloned using RT-PCR from human lung poly A" RNA (Clontech), while human
4.1B and MPP3 cDNAs were cloned as described previously [11,13]. E-cadherin cDNA was in-
serted into pEGFP-N3, and B-actin, 4.1B, and MPP3 ¢cDNAs were cloned into pEGFP-C3
(Clontech) to obtain E-cadherin-GFP (E-cad-G), GFP-B-actin (G-B-actin), GFP-4.1B (G-
4.1B), and GFP-MPP3 (G-MPP3), respectively. To generate the expression vector of CADM1
tagged with YFP in the region between the extracellular and transmembrane fragments
(CADM1-Y), CADM1 (aa 1-373 and 374-443) and YFP cDNA were amplified separately
using PCR to generate overlapped fragments and fuse them using secondary PCR; the frag-
ments obtained were then cloned into pcDNA3.1/Hygro(+) (Invitrogen). The structure of
CADM1-Y is identical to that reported previously [37] and its localization and cell adhesion ac-
tivity was confirmed by confocal microscopy and TER, respectively. All constructs were se-
quenced to confirm the inserts.
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Fluorescence recovery after photobleaching (FRAP) analysis

A FRAP experiment was performed using Zeiss Ism 710 confocal microscope system with a
63x oil-immersion objective and a 3.2 AU pinhole corresponding to a 2.4 um section. Spectral
images within the 495-601 nm range were captured every 9.6 nm using 488 nm laser excita-
tion with 0.2-0.3% laser power and unmixed into GFP and YFP images online. A region of in-
terest (ROI) that covered one third of the cell-cell contact site was bleached using the
maximum laser power (488 nm) with 15 iterations. The fluorescence intensity immediately
after bleaching was set to 0. Images were taken every 15 sec for 10 min or every 60 sec for

60 min to monitor fluorescence recovery. Fluorescence of the ROIs was adjusted by back-
ground subtraction at each time point. No significant loss of fluorescence in cell-cell contact
sites without bleaching was confirmed throughout the experiments. The t;,, and Mf were ana-
lyzed with nonlinear regression software, Sigma Plot 11, using the following equations as re-
ported previously [4,25].

Iy + 1 X t/t1/2

I(t) =

1+t/t /2
Mf was determined as:
I —1
M _ _max 0
f 1-1,

Exponential fitting for FRAP signals was performed as described previously [24]. To deter-
mine the time constant (t) of fluorescence recovery at the cell-cell contact sites, the regression
analysis was performed using the following equation in OriginPro 8.5:

y =90+ Al - exp(—x/71) + A2 - exp(—x/12)

Fluorescence loss in photobleaching (FLIP) analysis

FLIP analysis was performed using the Nikon A1R microscope system with a 63x oil-immer-
sion objective and a 1.6 AU pinhole corresponding to a 1.2 pm section. ROIs on the cell-cell
contact site (CS) or intracellular (IC) region were bleached every 12-20 sec using 15% and 30%
of maximum laser power, respectively, and images were taken just after bleaching for 12 min.
Fluorescence of the ROIs in continuous bleaching and those in adjacent cell-cell contact sites
was quantified and adjusted similarly to the FRAP analysis.

Exponential fitting analysis of a computed model

A computed model of a protein dynamics was constructed by the data set given by
y=(1—exp™)(1+24y),

where A (= 0.2) is the amplitude of the white nose(y). v is-0.5 ~ +0.5 and tis 1 s. We examined
two cases at the total numbers of data point with 501 (S2A Fig.) and 51 (S2B Fig.), from which
101 and 11 points (S2C-D Fig., respectively) in the initial phase of 20% are extracted, respec-
tively, and used for the analysis of exponential curve fitting.

Statistical analysis

Statistical differences in t;,, and Mf in FRAP analysis for 10min were determined by Student’s
t-test.
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We used OriginPro 8.5.0] SR1 from OriginLab Coorporation for the exponential curve fit-
ting. This software fits given data points with various functions including single and double ex-
ponential functions, and gives us time constant(s), amplitude(s) together with R

Supporting Information

S1 Table. Mf and T, estimated by FRAP analysis for 10 min (short time) or 60 min (long
time).
(DOCX)

S1 Fig. MDCK cells expressing fluorescent proteins used for analysis. (A) A scheme of
CADM1-Y, E-cadherin-G, G-4.1B, and G-MPP3. (B) MDCK cells stably expressing fluores-
cence protein shown in A were analyzed by immunoblotting, using specific antibodies against
CADMI (c-18, upper left), E-cadherin (Clone 36, BD Biosciences, upper right), 4.1B (N, lower
left), or MPP3 (127, lower right) as described previously [14]. Black arrows indicate exogenous
proteins, while white arrows show endogenous proteins. (C) Double transfectants of CADM1-
Y and G-4.1B or G-MPP3 were analyzed by immunoblotting using mouse monoclonal anti-
GFP antibodies (Roche Diagnostics). Note that CADM1-Y-expressing clone was further trans-
fected with the expression vector of GFP-fusion protein to obtain CADM1-Y/G-4.1B and
CADM1-Y/G-MPP3 clones. The signal around 100 kDa in the lane of CADM1-Y/G-4.1B
could be degraded G-4.1B (asterisk). Expression of GAPDH was similarly analyzed as a loading
control. (D) Transepithelial resistance (TER) of MDCK cells expressing CADMs; cells were
cultured on a collagen I-coated Transwell membrane filter with a 3-um pore (BD) and analyzed
with a monitoring TER with cellZscope (CellSeed Inc.) until it reached a plateau at a conflu-
ence. Data are mean + SEM of two independent experiments. TER of MDCK cells were not af-
fected by overexpression of CAMs.

(TTF)

S2 Fig. Exponential fitting to data points generated by a theoretical model with nose. Data
points are generated by an equation y = (1-exp™)(1 + 2Ay), assuming a single random process.
A (=0.2) is the amplitude of the white nose (y). y is-0.5 ~ +0.5 and T is 1 s. An exponential fit-
ting to the data of 501 points for 5 s is almost perfect (t = 1.05 s in A), while there is a signifi-
cant error in the fitting to 51 points data (t = 0.825 s in B). Fitting to the initial 1 s data with
101 points, which are extracted from A is fairly good (C), but fitting to 11 points from B is
poor, although R%is0.925 (D).

(TTF)
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