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Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) induces a weak immune response enabling it to persist
in different organs of infected pigs. This has been attributed to the ability of PRRSV to influence the induction of
cytokine responses. In this study, we investigated the cytokine transcriptional profiles in different compartments of
the mediastinal lymph node of pigs infected with three genotype 1 PRRSV strains of differing pathogenicity: the low
virulence prototype Lelystad virus (LV), and UK field strain 215–06 and the highly virulent subtype 3 SU1-Bel isolate from
Belarus. We have used a combination of laser capture micro-dissection (LCM) followed by real time quantitative PCR
(RT-qPCR) and immunohistochemical (IHC) detection of immune cell markers (CD3, CD79a and MAC387) and RT-qPCR
quantification of PRRSV and cytokine transcripts. Compared to mock infected pigs, we found a significant downregulation
of TNF-α and IFN-α in follicular and interfollicular areas of the mediastinal lymph node from 3 days post-infection (dpi) in
animals infected with all three strains. This was accompanied by a transient B cell depletion and T cell and macrophage
infiltration in the follicles together with T cell depletion in the interfollicular areas. A delayed upregulation of IFN-γ and
IL-23p19 was observed mainly in the follicles. The PRRSV load was higher in all areas and time-points studied in the
animals infected with the SU1-Bel strain. This paper describes the first application of LCM to study the cytokine transcript
profiles and virus distribution in different compartments of the lymph node of pigs.
Introduction
Porcine reproductive and respiratory syndrome (PRRS)
is characterized by respiratory disease in neonatal and
growing pigs and reproductive failure in gilts and sows
(increased number of abortions, mummified foetuses,
stillbirth and weak-born piglets) [1-3]. PRRS is considered
one of the most economically important swine infectious
diseases around the world, with estimated losses of up to
$664 million annually in the USA alone [4,5].
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PRRS virus (PRRSV) is classified into two genotypes,
type 1 (European or PRRSV-1) and type 2 (North
American or PRRSV-2) [6]. In addition, a high degree
of genetic variation in both genotypes has been found,
with PRRSV-1 having been divided into 3 subtypes: pan-
European subtype 1 and East European subtypes 2 and 3
[7], with the possibility of a fourth subtype being
suggested [8]. Significant differences in virulence have also
been described between PRRSV-1 subtypes, with the
East European subtype 3 seemingly comprising the most
virulent strains [9-11].
PRRSV shows a marked tropism for cells of the

monocyte-macrophage lineage [12]. The main target of
PRRSV are alveolar and other tissue macrophages, and
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to a lesser extent, monocytes and dendritic cells [13].
Absent or weak interferon alpha (IFN-α) secretion [14]
and a consequent weak and delayed cell-mediated
immune response with low levels of IFN-γ has been
described following PRRSV infection [15,16]. Pigs infected
with PRRSV have also shown a delayed production of
neutralizing antibodies [17]. PRRSV replication has
been reported in lymphoid organs [18,19] however
studies have also shown a lack of homogeneity in
proinflammatory cytokine responses [20-22]. This sug-
gests a role for this tissue in the pathogenesis of
PRRS but also highlights the need for comparative
in vivo studies using PRRSV-1 strains which differ in
their virulence. The porcine lymph node (LN) has a
dense medulla, where T cells are predominant and
which lacks sinuses and cords. The LN cortex is
divided into two differentiated areas the follicles (F)
and interfollicular (IF) areas. The F is a B cell rich
area that also contains follicular dendritic cells (fDC) and
CD4+ T helper cells that collaborate in antigen presentation
to B cells and subsequent antibody production. The IF area
is rich in T cells [21,22]. It has been proposed that
the immunopathogenesis of porcine circovirus 2
(PCV2) infection is associated with follicular changes
in lymph nodes [23], and it is suggested that this
could also be the case for PRRSV infection.
Transcriptional expression profiling studies can aid to

the understanding of infection biology and the molecular
basis of disease [24]. Several studies have analysed the
host transcriptional profiles during PRRSV infection
in different organs by taking small pieces of tissue
[25-28], but none have addressed transcriptional profil-
ing in defined tissue structures. Laser capture micro-
dissection (LCM) is a powerful tool for the acquisition of
homogeneous cell populations or specific tissue struc-
tures which can be analyzed by a variety of molecular
biology techniques and aid disease pathogenesis inves-
tigations [29-31].
The main aim of this study was to compare the cyto-

kine transcriptional profiles in different compartments
of lymph nodes from pigs infected with three PRRSV-1
strains of defined virulence. This study included the
prototype Lelystad virus (LV) and a field strain from the
UK (215–06), both categorized as low virulence subtype
1 viruses, and a divergent and highly pathogenic Eastern
European subtype 3 strain from Belarus (SU1-Bel). Using
LCM followed by quantitative reverse transcriptase
PCR (RT-qPCR), viral RNA and cytokine transcripts
were measured in the F and IF areas of mediastinal
lymph nodes (Med-LN) collected at selected time-points
post-infection. To further contextualize these data, T
cells, B cells and macrophages were immunolabelled
to characterize these cell populations within the lymph
node compartments.
Material and methods
Viruses
Three PRRSV-1 strains were used in this study: the LV-Ter
Huurne was selected as the prototype subtype 1 strain
(kindly provide by Anne Marie Rebel, CVI Lelystad, The
Netherlands) [11]; the subtype 1 215–06 strain was isolated
in 2006 from the serum of a post-weaning piglet showing
signs of wasting and poor condition on a farm in England
and isolated at the Animal and Plant Health Agency
(APHA, Addlestone, UK); and the highly pathogenic
subtype 3 strain SU1-Bel, isolated at the APHA from lung
tissue of a pig from Belarus (kindly provided by Dr Tomasz
Stadejek, Warsaw University of Life Sciences, Poland)
was also included. Virus propagation was carried out
as previously described [10].

Animals and experiment design
Seventy-six specific-pathogen-free five-week-old male
piglets from a PRRSV and PCV2 seronegative farm in
the Netherlands were used in this study. These animals
were matched by weight and randomly allocated to four
groups; for the control group 16 animals were allocated,
whereas for each infected group 20 animals were used.
Each group was housed in separate rooms, which
allowed the free airflow from the outside, and were
allowed to acclimatise for 14 days prior to the experiment.
Measures were taken to prevent cross-contamination
between groups, including the change of clothes and
equipment between each room. At seven weeks of age, 3
groups of piglets were inoculated intranasally with 1.5 mL
of complete Roswell Park Memorial Institute medium
supplemented with 10% FBS (cRPMI) containing 105 50%
tissue-culture infective dose (TCID50) of PRRSV-1 strain
(LV, 215–06 and SU1-Bel, respectively). The remaining
control group was inoculated intranasally with 1.5 mL of
uninfected porcine alveolar macrophage cryolysate in
cRPMI. Four animals in the control group and five from
each virus-inoculated group were euthanized at 3 and at
7 days post-infection (dpi). All remaining animals were
euthanized at 35 dpi. This experiment was performed in
accordance with the Animals (Scientific Procedures) Act,
1986, UK, following approval of the APHA Ethical Review
Committee. A clinical scoring system with predefined
humane endpoints was used to prevent undue suffering.

Clinical signs, gross pathology and histopathology
Pigs were monitored daily throughout the study, and
clinical signs, including rectal temperatures, were scored
and recorded as previously described [10]. The Med-LN is
the main draining lymph node for the apical and medial
lobes of the lungs. Since PRRSV is most frequently
detected in these lung lobes [32], Med-LN was selected
for this study and the gross pathology evaluated during
post-mortem examination. For the analysis by RT-qPCR, a
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piece of 10×10×3 mm of Med-LN was embedded and
cryopreserved in optimal cutting temperature (OCT)
compound (Sakura Finetek Europe B.V., The Nederland)
as previously described [33]. For histopathology examin-
ation, the remaining Med-LN samples were fixed in 10%
buffered formalin, routinely processed, embedded in
paraffin-wax, and 4 μm tissue sections stained with
haematoxylin and eosin. The histopathological lesions
were evaluated in these slides using a light microscope.

Immunohistochemistry (IHC)
The immunolabelling of cell markers was done using the
avidin-biotin complex method (ABC Vector Elite, Vector
laboratories, USA) as described previously [19,34]. Briefly,
4 μm thick sections were dewaxed and rehydrated,
followed by endogenous peroxidase inhibition with 3%
H2O2 in methanol for 30 min. Depending on the epitope
of interest, antigen retrieval in the tissue sections was
performed by enzymatic trypsin/alpha-chymotrypsin (for
CD3 and MAC-387) or by microwaving the sections in
citric acid pH6.0 (for CD79a) or pH6.0 citrate buffer (for
PRRSV nucleocapsid N protein). The slides were mounted
in a Sequenza Immunostaining Centre (Shandon Scien-
tific, UK) and washed with Tris buffered saline (TBS;
pH 7.6, 0.005 M; Sigma–Aldrich, UK) and incubated for
30 min at room temperature with 100 μL per slide of block-
ing solution. The primary antibodies used were monoclonal
anti-human CD3 (1:1000; Dako, UK), monoclonal anti-
human CD79a (1:400; Dako, UK), and monoclonal
anti-human MAC-387 (1:100; AbDSerotec, UK). Each
antibody was applied for 1 h at room temperature. In each
case, the corresponding biotinylated secondary antibody
(Vector Laboratories, UK) was then incubated for
30 min at room temperature. Slides were then incu-
bated for 30 min with avidin-biotin complex and labelling
performed using 3,30-diaminobenzidine tetrahydrochloride
(DAB; Sigma-Aldrich, UK). Sections were counterstained
with Mayer’s haematoxylin, dehydrated and mounted.
Positive and negative controls, as well as isotype controls,
were included in each IHC run.
The immunolabelled Med-LN sections were examined

by light microscopy, and immunolabelling measure-
ments recorded using a score ranking from −3 to 0
(cellular depletion) and from 0 to 3 (cellular increment)
compared to the control group. Positive scale: 0 = absence
(<1 positive cell/structure); 1 = scarce (1–10 positive
cells/structure); 2 mild-moderate (11–30 positive cells/
structure); 3 abundant (>31 positive cells/structure).
Negative scale: 0 = absence (no different to control
group); −1 = scarce (5% less positive cells compares
with control group); −2 mild-moderate (6-10% less
positive cells compares with control group); −3 abun-
dant (more than 10% less positive cells compares with
control group).
Laser capture microdissection (LCM)
Frozen OCT-embedded Med-LNswere cut to 10 μm
thick sections using a cryostat. Tissue sections were
placed on membrane-coated slides (PEN-Membrane
2.0 μm; Leica Microsystems, Germany). The cryostat was
treated with RNAZap Solution (Life Technologies, UK)
between each sample in order to avoid cross-contamination
of RNA. Sections were air-dried and fixed in 70% ethanol
for 5 min and stained with RNase free haematoxylin
for 1 min. Two consecutive Med-LN tissue sections
were used per animal. All observed F and peripheral
IF were dissected and captured separately in RNase-free
PCR tubes (Greiner bio-one, UK) using a laser micro-
dissector (Leica LMD6500, Leica, Germany). The samples
were immediately frozen and stored at −80 °C until labora-
tory processing.

RNA extraction and reverse transcription quantitative
polymerase chain reaction (RT-qPCR)
For each sample, total RNA was extracted using the
RNA queous-Micro Kit (Ambion,Life Technologies, UK)
following the manufacturer’s instructions for LCM samples,
including the DNase I treatment and DNase inactivation
steps. The total RNA was quantified using Qubit 2.0
Fluorometer (Life Technologies) and all samples adjusted
to an RNA concentration of 2 ng/μL).
PRRSV infection kinetics in the F and IF areas of

Med-LN were studied by measuring viral RNA. PRRSV
RT-qPCR was performed as previously described [35].
Briefly, 2 μL of sample or standard PRRSV-1 RNA dilutions
were added as template to the QuantiTec Probe RT-PCR
Kit (Qiagen, UK) following the manufacturer’s instructions
for a total volume of 25 μL. Data was analysed by
changes in the cycle threshold (Ct), and results were
calculated as 38 – Ct, which represented the difference
between the last cycle of the PRRSV RT-qPCR and
the Ct for each sample.
Primers and TaqMan probe sets for porcine cytokines

were synthesized by Sigma-Aldrich (Table 1). All cytokines
primer pairs produced amplicons smaller than 150 base
pairs (bp). All primer and probe sets were optimized for
our laboratory conditions.
In order to obtain complementary DNA (cDNA)

reverse transcription was carried out using the SuperScript
VILOTM cDNA Synthesis Kit (Applied Biosystems, UK)
and cDNA was stored at −80 °C until laboratory process-
ing. 2 μL of cDNA diluted 1:100 in RNase free water was
used as template for each cytokine qPCR, using the EX-
PRESS qPCR Supermix (Invitrogen) with ROX reference
dye in a total volume of 20 μL. Thermal cycling conditions
were 2 min at 95 °C, 45 cycles of denaturation at 95 °C for
15 s and annealing/extension at 60 °C for 1 min. Reverse
transcription negative controls and non-template controls
were included. PCR plates were centrifuged prior to



Table 1 Primers and probes used for qPCR

Gene Primer Forward Primer Reverse Probe

nM nM nM

β-Actin 5´-cactcctaacgctgtggatcag-3´ 5´-ccacttaactatcttgggcttatcg-3´ 5´-[6FAM]-cacgtgcttcacgcggcagc-[TAM]-3´

300 300 50

TNF-α 5´-tggccccttgagcatca-3´ 5´-cgggcttatctgaggtttgaga-3´ 5´-[6FAM]-ccctctggcccaaggactcagatca-[TAM]-3´

900 600 50

IFN-α 5´-tcagctgcaatgccatctg-3´ 5´-agggagagattctcctcatttgtg-3´ 5´-[6FAM]-tgacctgcctcagacccacagcc-[TAM]-3´

150 600 50

IFN-γ 5´-gaaaagctgattaaattccggtag-3´ 5´-aggttagatcttggtgacagatc-3´ 5´-[6FAM]-tctgcagatccagcgcaaagccatcag-[TAM]-3´

300 900 50

SOCS1 5´-ttcttcgccctcagtgtgaa-3´ 5´-ggcctggaagtgcacgc-3´ 5´-[6FAM]-ttcgggccccacaagcatcc-[TAM]-3´

300 300 50

IL-10 5´-tgagaacagctgcatccacttc-3´ 5´-tctggtccttcgtttgaaagaaa-3´ 5´-[6FAM]-caaccagcctgccccacatgc-[TAM]-3´

300 300 150

TGF-β 5´-agggctaccatgccaattt-3´ 5´-ccgggttgtgctggttgt-3´ 5´-[6FAM]-cactcagtacagcaaggtcctggctctgta-[TAM]-3´

600 600 50

IL-23p19 5´-agaagagggagatgatgagac-3´ 5´-agcaggactgactgccgtcc-3´ 5´-[6FAM]-ctgaggatcacagccatccccgc-[TAM]-3´

900 300 50
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amplification using the Strategene MX3000P qPCR System
(Stratagene, UK). Fold-change of cytokine expression was
calculated using the 2-ΔΔCt method [36] and β-actin was
used as the endogenous calibrator; which was selected due
to its stable expression in porcine lymphatic tissue [37].
Relative gene expression results are presented on a base 2
logarithmic scale.

Statistical analysis
Statistical analyses were performed using SPSS 15.0 soft-
ware (SPSS Inc., USA) and graphs were prepared using
SPSS 15.0 software (SPSS Inc., USA) and GraphPad
Prism 5 (GraphPad Software, Inc., USA). To determine
the non-normal distribution of all data a Kolmogorov-
Smirnov test was used. Non-normal distributed data
was then analysed using a non-parametric test. The
Kruskal-Wallis test was performed to analyse the mean
parameters (PRRSV RNA load, immunolabelled cells and
cytokine expression) between the animal groups (Control,
LV, 2015–06, and SU1-Bel) at three different time-points
post inoculation (3 dpi, 7 dpi, and 35 dpi). Thereafter,
we performed multiple comparisons using the non-
parametric Mann–Whitney-U test with Bonferroni
correction as post-hoc to determine significant indi-
vidual differences. Finally, the presence of differences
between results obtained in F and IF tissues were
assessed using the non-parametric Wilcoxon signed-
rank test. The correlations between PRRSV RNA and
cytokine transcripts were determined by Spearman’s
Rho analysis. A p value of less than 0.05 was considered
significant.
Results
Clinical signs, gross pathology and histopathology
Rectal temperatures remained within the physiological
range in control as well as infected animals, except for
SU1-Bel infected animals that showed hyperthermia at
3, 8–10 dpi (over 40 °C). Only SU1-Bel infected animals
developed elevated clinical sign scores (mean score from
5 to 10) compared with the rest of animals in this study
(mean clinical score only up to 3) [10]. Macroscopically
at post-mortem, a mild to moderate enlargement of
Med-LN was observed in infected animals at 3 and 7
dpi, while at 35 dpi no Med-LN damage was observed
[10]. The control animals did not show any lesions during
the study. The histopathological analysis of Med-LN
revealed the presence in the lymphoid follicles of a
mild hypertrophy of germinal centres and the pres-
ence of apoptotic bodies at 3 and 7 dpi. At 35 dpi
virus-infected groups showed no significant histological
lesions.

PRRSV RNA quantification
All PRRSV RNA measurements are shown in Figure 1.
All PRRSV infected animals showed a higher PRRSV
RNA load at 3 and 7 dpi than at 35 dpi (p < 0.05). No
viral RNA was detected in control animals (data not
shown). The LV group showed at 3 dpi higher viral RNA
in the IF area of Med-LN (38 - Ct = 18.89 ± 1.27 SD;
p < 0.05). At 7 dpi the viral RNA amount was similar
between Med-LN compartments (38-Ct = 18.89 ± 1.90 SD;
38 - Ct = 19.09 ± 0.58 SD; F and IF areas respectively). At
35 dpi the LV RNA was significantly reduced in Med-LN



Figure 1 PRRSV viral load in mediastinal lymph node. PRRSV RNA was quantified by RT-qPCR and data represented by changes in the cycle
threshold (Ct) in F and IF areas of Med-LN of LV (A), 215–06 (B) and SU1-Bel (C) infected animals. Differences between distinct PRRSV-1 infected groups
are showed for 3 (D), 7 (E), and 35 (F) days post-infection. This figure showed the median of each group ± SD. In control animals the viral RNA were not
detected (data not shown). Identical superscript letters indicate no significant difference (p> 0.05), whereas different superscript letters indicate statistically
significant differences (p< 0.05) between the same compartment among different groups (a, b, and c for follicle; a´, b´, and c´ for interfollicular area).
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compartments (38 - Ct = 13.98 ± 1.23; 38 - Ct = 10.46 ±
4.76; F and IF area respectively; p < 0.05) (Figure 1A).
The PRRSV-1 215–06 RNA was detected at 3 dpi

mainly in IF area of Med-LN (38 - Ct = 12.16 ± 2.02;
p < 0.05). At 7 dpi the 215–06 RNA increased to the high-
est level seen in the study in this group, and was higher in
IF area than in F (38 - Ct = 17.27 ± 2.16; 38 – Ct = 15.55 ±
2.96; respectively; p < 0.05). Interestingly the 215–06
virus was only detected in F of Med-LN at 35 dpi (38 -
Ct = 10.94 ± 2.55; p < 0.05) (Figure 1B).
At 3 dpi PRRSV-1 SU1-Bel RNA was mostly detected in

IF (38 - Ct = 21.03 ± 2.43; p < 0.05), whereas at 7 dpi
SU1-Bel RNA was mostly found in F (38 - Ct = 22.20 ±
0.85; p < 0.05). At 35 dpi the SU1-Bel RNA decreased but
was statistically significant in both Med-LN compart-
ments although predominantly detected in F of Med-LN
(38 - Ct = 16.49 ± 1.88; p < 0.05) (Figure 1C).
The SU1-Bel group showed the higher load of viral

RNA in both Med-LN compartments at each time-point
throughout this study (Figures 1D-F; p < 0.05). At 3 dpi,
PRRSV RNA was mainly detected in IF areas (Figure 1D),
where the 215–06 RNA amount was statistically signifi-
cant lower than in LV and SU1-Bel groups (p < 0.05).
PRRSV RNA remained higher in IF compartment at 7
dpi for LV and 215–06 groups, but it was higher in F of
SU1-Bel-infected pigs (p < 0.05; Figure 1E). By 35 dpi,
the SU1-Bel RNA in F was statistically significant higher
than in LV infected group (p < 0.05), and in both groups
it was significant higher than in F of Med-LN of 215–06
infected animals (p < 0.05; Figure 1F).

Immunohistochemistry (IHC)
CD3 immunolabelling defined the T cell population loca-
tions in Med-LN [38,39]. During this study the number of
T cells was found to be increased in F of Med-LN at 7 dpi
in all infected animals compared with the control animals
(2 semi-quantitative immunolabelled cells [s-qic] for LV
and 215–06 groups and 3 s-qic for the SU1-Bel group;
p < 0.05). At 35 dpi this follicular T cell population
remained statistically higher in LV infected animals
(2 s-qic for LV; p < 0.05; Figure 2A). Conversely, the
number of T cells decreased in the Med-LN IF from



Figure 2 Immunolabelled cell populations in mediastinal lymph
node of PRRSV-1 infected pigs. A. CD3 staining for T cells detection;
it was observed a general T cell depletion during this study for all
PRRSV infected groups, otherwise the T cell immunolabeled cells
increased in F at 7 dpi. B. CD79a staining for B cell staining in follicle,
where was evidence a B cell depletion at 3 and 7 dpi for all PRRSV
infected animals. C. Macrophage detection with MAC-387 staining, the
amount of immunolabeled macrophages increased along this study in
SU1-Bel infected pigs. The bars represent s-qic mean values; asterisks
indicated the statistically significant differences (p < 0.05) against the
control group. It is important to note that only a few animals in the
control groups showed a higher number of immunolabeled cells in
the follicle compared to the rest of animals within this group. For this
reason there is a bar in some control groups.
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3 dpi in LV (−1 s-qic; p < 0.05) and SU1-Bel inoculated
animals (−2 s-qic; p < 0.05), remaining lower than control
animals at 7 and 35 dpi for all infected animals (−2 s-qic
for LV and 215–06, and from −2.5 to −1 s-qic for SU1-Bel;
p < 0.05; Figure 2A).
The immunolabelling of the pan-B cell surface protein

CD79a [40,41] showed B cells only in the F of Med-LN.
In all infected animals these cells decreased in number
compared with control animals at 3 dpi (−1 s-qic for LV
and 215–06 and −2 s-qic for SU1-Bel groups; p < 0.05) and
7 dpi (−1 s-qic for LVand −2 s-qic for both 215–06 and
SU1-Bel groups; p < 0.05). At 35 dpi the B cell population
did not show a statistically significant change between the
infected and control groups (Figure 2B).
Macrophages were identified through MAC-387

imunolabelling of Med-LN sections [21,42]. In the F,
macrophage numbers were found to be statistically
increased in SU1-Bel infected animals at 3 and 7 dpi
(1 s-qic on both days; p < 0.05). In the IF areas of
SU1-Bel infected animals, the macrophage population was
increased at all time-points (from 2 to 1 s-qic; p < 0.05).
However the animals inoculated with LV and 215–06
PRRSV strains showed a smaller increase in macrophages
in the IF area only at 7 dpi (1 s-qic; p < 0.05; Figure 2C).
Representative images of CD3, CD79a and MAC387

IHC staining in all the groups are shown in Figure 3.

Cytokine gene expression in Med-LN compartments
To assess immune responses against the selected
PRRSV-1 strains within the different Med-LN compart-
ments, IFN-α, TNF-α, IFN-γ, IL-23p19, SOCS1, IL-10 and
TGF-β transcript levels were measured by RT-qPCR
and compared against control animals (Figure 4). The
suitability of the RNA quality was confirmed by test-
ing expression of β-actin in the samples. All cDNA
samples produced a positive amplification to each
gene by qPCR.
Compared to control animals, in both studied LN

compartments the IFN-α was generally downregulated in
all infected groups and time-points, which was statistically
significant for all PRRSV-1 strains at 7 dpi (p < 0.05), when
the SU1-Bel group showed the lowest IFN-α transcript
levels. The IFN-α remained downregulated at 35 dpi
in the Med-LN of 215–06 and Su1-Bel infected pigs
(p < 0.05; Figure 4A). TNF-α expression was downregulated
in IF area of Med-LN of LV infected pigs at 3 dpi (p < 0.05)
and in Med-LN of 215–06 group at 35 dpi (p < 0.05;
Figure 4B) compared with the control groups. IFN-γ was
significantly upregulated in F of Med-LN of LV (p < 0.05)
and SU1-Bel infected pigs at 7dpi (p < 0.05); on the other
hand the IFN-γ was significant downregulated in IF area of
Med-LN of 215–06 infected animals at 35 dpi (p < 0.05;
Figure 4C). At 35 dpi, IL-23p19 was statistically significant
upregulated in F of all infected groups (p < 0.05; Figure 4D).



Figure 3 Representative images of CD3, CD79a and MAC387 IHC staining in mediastinal lymph node. CD3 (A, B, C, D), CD79a (E, F, G, H) and
MAC387 (I, J, K, L) in mediastinal lymph nodes of control pigs (A, E, I) and infected with LV (B, F, J), 215–06 (C, G, K) and SU1-Bel (D, H, J) strains, at
7 dpi. An increased in the number of CD3+ cells is observed in the lymphoid follicles from all infected groups together with a depletion of these cells
in the interfollicular areas. A decrease in the number of CD79a cells in the follicles is also observed in all the infected groups. A substantial increase in
the number of MAC387 is observed in the follicles and interfollicular areas from SU1-Bel infected animals (L) together with a mild increase in the LV (J)
and 215–06 (K) groups. Original magnification: 20x.
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No significant differences in the expression IL-12 mRNA
were detected during the study (data not shown). SOCS1
transcript levels were not statistically significantly reg-
ulated for any infected group during the first week of
this experiment. However at 35 dpi, SOCS1 transcript
levels were increased in the IF area of the Med-LN of
animals from the 215–06 group (p < 0.05; Figure 4E).
At 7 dpi the IL-10 gene expression was significantly
downregulated in the F of both 215–06 and SU1-Bel
groups (p < 0.05) and in the IF area (p < 0.05; only
215–06 group). In contrast, IL-10 was significantly
upregulated in IF area of Med-LN of the LV infected
group (P < 0.05; Figure 4F). TGF-β was statistically signifi-
cantly downregulated at 3 dpi in IF areas of Med-LN of
215–06 and SU1-Bel infected animals (p < 0.05), at 7 dpi
in Med-LN of SU1-Bel group (p < 0.05), and at 35 dpi in
IF area of Med-LN of 215–06 infected pigs (p < 0.05);
contrary, it was statistically upregulated in F of the LV
group at 35 dpi (p < 0.05; Figure 4G).
The statistically significant correlations between gene

expression of immune genes in Med-LN compartments
and LV, 215–06 and SU1-Bel PRRSV RNA are respectively
represented in the Tables 2, 3 and 4.
Discussion
This study reveals additional data generated from an animal
experiment conducted at APHA as part of the EU FP7
PoRRSCon project [10,43]. This study was conceived
to directly compare the modulation of immune response
transcripts from defined Med-LN compartments of pigs
experimentally infected with PRRSV-1 strains of varying
virulence.
Pigs infected with the SU1-Bel PRRSV strain have

shown greater Med-LN gross pathology compared with
the pan-European subtype 1 strains LV and 215–06 [10].
In the present study the highest PRRSV RNA levels were
detected in the IF area of Med-LN, which suggest that
PRRSV was entering from the apical and medial lung
lobes [32] to the Med-LN via draining lymphatics
vessels. We have previously shown that for all PRRSV
infected groups, the virus load in serum showed a peak at
7 dpi decreasing until 28 dpi, whereas in bronchoalveolar
lavage fluid (BALF) the virus persisted until 35 dpi [10].
Interestingly, despite its enhanced virulence the levels of
virus in both circulation and BALF were lowest in
SU1-Bel infected animals. In contrast, in the present
analysis we have detected the higher levels for SU1-Bel in



Figure 4 Cytokine gene expression in mediastinal lymph node compartments. Log 2 Fold change in transcript level of IFN-α (A), TNF-α (B),
IFN-γ (C), IL-23p19 (D), SOCS1 (E), IL-10 (F) and TGF-β (G) gene expression relative to the control gene β-Actin; which was calculated by 2-ΔΔCt

method. Log2 fold change of gene expression in follicle (F), interfollicular area (IF) or total Med-LN lymph node (T) values are depicted. Green
boxes indicate upregulation and red boxes indicate downregulation as the key showed. The statistically significant differences (p < 0.05) with
control group are indicated by asterisks on the boxes.

Table 2 Correlations between LV RNA and the gene expression of TNF-α, IFN-α, IFN-γ, SOCS1, IL-23p19, IL-10 and TGF-β
IFN-α IFN-γ IL-23 SOCS1 IL-10 TGF-β ORF7 PRRSV

TNF-α F 0.857** 0.094 −0.102 0.064 0.160 0.964** −0.077

IF 0.184 0.469 0.643* 0.471 0.687** 0.479 −0.190

T 0.750** 0.248 0.031 0.091 0.305 0.921** −0.043

IFN-α F −0.255 −0.351 0.009 −0.201 0.901** −0.110

IF 0.307 0.276 −0.086 0.094 0.619* −0.663**

T −0.142 −0.156 −0.132 0.167 0.880** −0.301

IFN-γ F 0.342 0.607* 0.131 −0.082 0.413

IF 0.220 0.680** 0.100 0.282 0.144

T 0.167 0.649** 0.222 0.008 0.438

IL-23 F 0.239 0.112 −0.179 −0.208

IF 0.109 0.553* 0.183 −0.231

T −0.004 0.395 −0.106 −0.154

SOCS1 F 0.809 −0.063 0.527*

IF 0.310 −0.016 0.303

T 0.211 −0.139 0.486

IL-10 F −0308 0.397

IF 0.116 −0.332

T 0.144 −0.151

TGF-β F −0.206

IF −0.557*

T −0.245

*p < 0.05; **p < 0.01. F (follicle of Med-LN), IF (interfollicular area of Med-LN) and T (Total cortical compartments of Med-LN).
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Table 3 Correlations between 215–06 RNA and the gene expression of TNF-α, IFN-α, IFN-γ, SOCS1, IL-23p19, IL-10
and TGF-β

IFN-α IFN-γ IL-23 SOCS1 IL-10 TGF-β ORF7 PRRSV

TNF-α F 0.66 −0.015 0.679* 0.462 −0.169 0.919** 0.099

IF −0.149 0.490* 0.239 0.081 0.204 0.438 0.133

T −0.010 0.349 0.380 0.123 0.254 0.386 −0.024

IFN-α F −0.316 −0.482 −0.445 −0.666* 0.073 0.129

IF 0.145 0.091 −0.399 −0.137 0.188 0.252

T −0.077 0.070 −0371 −0.476* 0.378 0.205

IFN-γ F 0.016 0.193 0.257 0.067 0.612*

IF 0.002 −0.385 −0.123 0.808** 0.661**

T −0.068 0.133 0.178 0.436 0.524*

IL-23 F 0.233 0.266 0.526 −0.208

IF 0.135 0.324 −0.225 0.017

T 0.395 0.403 0.070 −0.022

SOCS1 F 0.362 0.420 −0.013

IF 0.374 −0.267 −0.221

T 0.560* 0.206 −0.201

IL-10 F −0.173 −0.114

IF −0.261 −0.334

T 0.124 −0.341

TGF-β F 0.235

IF 0.582*

T 0.276

*p < 0.05; **p < 0.01. F (follicle of Med-LN), IF (interfollicular area of Med-LN) and T (Total cortical compartments of Med-LN).
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Med-LN compared with the subtype 1 strains, which
suggest that this PRRSV-1 subtype 3 strainmay infect LN
resident/transient cell populations more efficiently and
this could be linked to the higher pathogenicity of this
strain. In support of this data, the PRRSV N protein has
been detected by IHC mainly in the cytoplasm of macro-
phages of the Med-LN of infected pigs from on 3, 7 and
35 dpi, with highest levels of immunolabelled cells found
in SU1-Bel infected animals [43].
The use of LMD in the present study, enabled for the

first time the measurement of PRRSV-1 RNA within
different Med-LN compartments. The results showed
the presence of PRRSV in the F of the Med-LN at 35 dpi
albeit at low levels, according with a previous report that
described the detection of infectious PRRSV in lymphoid
tissues for several months [39]. We hypothesize that
PRRSV may interact with fDC in secondary lymph
organs, such as the Med-LN, and this could impair fDC
presentation of PRRSV antigens to B cells, which could
contribute to the lack of production of neutralizing anti-
bodies detected in this [10] and other PRRSV infection
studies. PRRSV presence in follicles of Med-LN and the
non-neutralizing Ab secretion at 35 dpi suggest a role of
fDC in the immunopathogenesis of PRRSV.
The B and T cell depletion observed in F and IF areas
of Med-LN during this study are in accordance with
previous reports that showed B and T cell depletion in
cortical areas of secondary lymph organs such as the
thymus [44] and lymph nodes [45] of PRRSV infected
pigs. The immune cell depletion in lymphoid tissues
has recently been associated to apoptotic cell death
indirectly induced in bystander cells by PRRSV infected
cells [46]. We showed a T cell increase in the F, mostly at
7 dpi, that could be related to the migration of CD4+

helper T cells to the F area to assist the induction of B cell
responses. During this study the macrophage population
increased in the Med-LN, especially for the SU1-Bel
group, which indicates that the SU1-Bel strain induces a
higher inflammatory response in the lung than the other
PRRSV-1 strains tested, in accordance with previous
reports [9,11].
Production of type I IFNs (IFN-α/β) is critical to activa-

tion of the innate immune response against viral infection,
as well as regulation of the induction of the adaptive
immune response [47,48]. We detected either no changes
or lower IFN-α transcript levels for all PRRSV inoculated
groups, most noticeably at 7 dpi, which likely plays a role
in delaying the onset of an effective innate immune



Table 4 Correlations between SU1-Bel RNA and the gene expression of TNF-α, IFN-α, IFN-γ, SOCS1, IL-23p19, IL-10
and TGF-β

IFN-α IFN-γ IL-23 SOCS1 IL-10 TGF-β ORF7 PRRSV

TNF-α F −0.047 −0.146 0.651** −0.254 0.292 0.471 −0.683**

IF −0.419 −0.188 0.107 −0.211 −0.404 0.167 −0.240

T −0.138 −0.165 0.436 −0.164 −0.181 0.266 −0.549*

IFN-α F −0.401 0.060 −0.449 0.165 0.649** −.273

IF −0.186 −0.557* −0.258 0.339 0.193 −0.044

T −0.402 −0.250 −0.629* 0.373 0.433 −0.265

IFN-γ F −0.040 0.432 −0.327 −0.229 0.353

IF 0.298 0.300 −0.347 −0.079 0.082

T 0.147 0.476 −0.169 −0.267 −0.74

IL-23 F −0.037 0.004 0.455 −0.416

IF 0.594* −0.318 −0.216 −0.124

T 0.496* −0.178 −0.573* −0.530*

SOCS1 F −0.406 −0.481 0.515*

IF 0.002 −0.341 −0.245

T −0.121 −0.181 −0.089

IL-10 F 0.088 −0.384

IF −0.283 −0.108

T −0.246 −0.093

TGF-β F −0.541*

IF 0.052

T −0.263

*p < 0.05; **p < 0.01. F (follicle of Med-LN), IF (interfollicular area of Med-LN) and T (Total cortical compartments of Med-LN).
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response [14,49]. We showed that PRRSV can reduce the
transcription of TNF-α which would also impair innate
immune response and to delay the adaptive immune
responses [50,51]. Interestingly, the IFN-α and TNF-α
gene expression were positively correlated in LV infected
pigs, both LV and SU1-Bel RNA levels were negatively
correlated with the IFN-α gene expression, and SU1-Bel
RNA levels were negatively correlated with the TNF-α
gene expression. These results suggest that PRRSV
downregulates these cytokine gene inductions at the
site of infection, in agreement with previous studies
[52]. These results also support the hypothesis that
PRRSV-1 subtype 3 strains have developed the most
efficient strategies to avoid the host immune responses
among the PRRSV-1 genotype viruses. The upregulation
of IFN-γ expression at 7 dpi is evidence of a delayed adap-
tive immune response in all PRRSV inoculated groups, as
it has been previously described [53,54]. During this study
a positive correlation between IFN-γ gene expression and
PRRSV LV and 215–06 strains suggests that PRRSV-1
subtype 1 induction of IFN-γ expression depends directly
on the presence of virus. It has been described that SOCS
proteins are a pivotal regulator in both innate and
adaptive immune responses [55]. Specifically SOCS1
acts as a negative regulator of IFN-γ signaling, inhibiting
the activation of STAT1 and thereby the expression of
IFN-γ mediated genes [56]. SOCS1 induction in PRRSV
vaccinated/infected pigs has been described [57,58], which
suggests SOCS1 expression in infected cells may be a
mechanism to evade the host immune response.
Nevertheless, the positively correlation of SOCS1 and
IFN-γ gene expression in the LV group could be a result
of its negative feedback control system. Additional in vitro
experiments may be used to elucidate the proposed
SOCS1 induction by PRRSV during the initial phase of
virus infection.
The IL-23 protein is an IL-12p40-IL-23p19 hetero-

dimer that is secreted by antigen presenting cells such as
macrophages and DCs. This cytokine is necessary for the
differentiation and survival of Th17 cells, which can
induce a pro-inflammatory reaction and the secretion of
TGF-β [59]. In this study we did not detect IL-12p40
transcripts; this could be explained by the transcription
kinetics of this cytokine being earlier or later compared
with the tissue sample collection points. The IL-23p19 is a
limiting factor to produce a biologically active IL-23
protein, as IL-23p19 is not secreted in the absence of
the IL-12p40 chain [60] and the IL-23p19 induction



García-Nicolás et al. Veterinary Research  (2015) 46:34 Page 11 of 13
is typically lower than that of IL-12p40 [61]. In the
present study, IL-23p19 was upregulated from 7 dpi,
and this was statistically significant at 35 dpi in the F for
all PRRSV groups, which suggest that PRRSV may modu-
late the cytokine environment to drive the differentiation
of Th17 as opposed to antiviral Th1 cells.
The IL-10 transcription levels showed considerable

variation between PRRSV strains as previously described
[62]. Therefore, this study supports the idea that the
induction of IL-10 as a mechanism to delay the host
immune response is not a common strategy among
the PRRSV-1 genotype. The TGF-β gene expression
was either unaffected or downregulated in agreement
with previous findings [63], and this may explain why a
positive correlation between TGF-β and other cytokines
were detected in this study.
The standard techniques used to take samples for

mRNA extraction cannot select different tissue structures
in the way that LMC can. We therefore conclude that
LMC in combination with RT-qPCR is a powerful tool to
enable the differentiation of transcriptomic profiles
between different Med-LN compartments of PRRSV-1
infected pigs. In this study we show several examples
that demonstrate how the immunopathogenesis of
PRRSV-1 infection is associated with the site of infection;
for instance, PRRSV-1 SU1-Bel showed a higher tissue
pathogenesis and virulence compared with PRRSV-1
subtype 1 strains. We have also provide further evidence
that PRRSV-1 strains avoid the innate immune response
in infected pigs through the downregulation of IFN-α and
TNF-α in F and IF areas of Med-LN, and inducing a T and
B cell depletion in the cortex of Med-LN.
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