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Abstract

Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation
driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at
the population level has shown that the expanding pancreas progenitors can initially give
rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5,
giving rise to endocrine cells and ductal cells. However, the dynamics of individual progeni-
tors balancing self-renewal and lineage-specific differentiation has never been described.
Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution
of individual cells to the global behaviour and demonstrate three modes of progenitor divi-
sions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a pro-
genitor and an endocrine progenitor. Quantitative analysis shows that the endocrine
differentiation process is consistent with a simple model of cell cycle—dependent stochastic
priming of progenitors to endocrine fate. The findings provide insights to define control pa-
rameters to optimize the generation of 3-cells in vitro.

Author Summary

In order to form organs of the right size and cell composition, progenitor cells must bal-
ance their proliferation and their differentiation into functional cell types. Here we study
how individual progenitor cells in the developing pancreas execute their choices to either
expand their pool or differentiate into hormone-producing endocrine cells. Using live mi-
croscopy to track the genetically marked progeny of single cells, we reveal that after they
divide, individual cells generate either two progenitors, two cells on the endocrine path, or
one progenitor and one cell on the endocrine path. Quantitative analysis shows that endo-
crine differentiation is largely stochastic and that the probability of progenitor cell differ-
entiation by the end of mid-gestation is about 20%. We propose a model in which the
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production of a progenitor and a differentiated cell in the pancreas results from the sto-
chastic induction of differentiation in one daughter after cell division, rather than the un-
equal partitioning of molecules between two daughters at the time of division, as observed
in the nervous system. Furthermore, when two daughters become endocrine cells, this re-
sults from the induction of differentiation followed by cell division—rather than two inde-
pendent induction events. This model may be applicable to other organs and provides
insights to optimize the generation of B-cells in vitro for diabetes therapy.

Introduction

The pancreas is an organ performing vital exocrine and endocrine roles in nutrient metabolism
and glucose homeostasis. In the mouse, multipotent pancreatic progenitor cells (MPCs)
emerge from the endoderm around embryonic day 9.0 (E9.0) [1]. This population, character-
ized by the expression of transcription factors PDX1 (GenBank NP_032840), SOX9 (GenBank
NP_035578), and HNF1B (GenBank AAH25189), eventually gives rise to all three major cell
lineages of the pancreas: endocrine, acinar, and ductal [2-4]. Following early progenitor expan-
sion, three-dimensional (3-D) organization of the pancreatic epithelium leads to the generation
of an apico-basally polarized [5-7], branched tubular network. By E13.5, it exhibits its final
functional compartmentalization: the distal tip domains give rise to the acinar cells of the exo-
crine lineage [8], whereas the SOX9"/HNF1B" proximal trunk domain is bipotent at the popu-
lation level, giving rise to the ductal and endocrine cells [3]. The endocrine lineage arises from
transient NEUROG3" (GenBank AAI04328.1) endocrine progenitors, as demonstrated by line-
age tracing studies [2] and the absence of all pancreatic endocrine cells in Neurog37/ ~ mice [9].
NEUROG3" endocrine progenitors originate from pancreatic progenitors expressing PDX1/
SOX9/HNF1B during the early phases of MPC expansion and during the secondary transition
spanning E12.5-15.5, with specific endocrine subtypes being specified during discrete time
windows [10]. Whereas the majority of NEUROG3™ endocrine progenitors are post-mitotic
[11] and unipotent, giving rise to only one endocrine subtype [12], we do not know whether in-
dividual PDX1/SOX9/HNFI1B pancreatic progenitors give rise to both ductal and endocrine
cells or are heterogeneous, encompassing cells with pre-specified lineage-restricted potentials.
In this study, we ask how individual pancreas progenitors contribute to the population dynam-
ics enabling organ expansion and endocrine differentiation.

Over the last few years cell-labelling and tracing methods have brought forth quantitative
descriptions of cell differentiation. In homeostatic systems, for instance, the maintenance of a
hierarchy of stem and differentiating cells can be accounted for by populations of equipotent
progenitors exhibiting probabilistic fate choices [13-15]. An attempt to extrapolate these no-
tions to developing systems has encountered some difficulties because, in these instances, the
growth of the tissue needs to be taken into consideration. Notwithstanding these complica-
tions, lineage analysis of progenitor cells in the vertebrate retina indicates that, similarly to the
abovementioned homeostatic systems, the distribution of clone sizes is compatible with a
model in which progenitors stochastically divide in three modes: (1) symmetric self-renewing,
(2) asymmetric, and (3) symmetric differentiating divisions [16-20]. Contrary to homeostatic
systems, however, the probabilities of each division mode are not assumed to be fixed but to
vary over time, following phases of proliferation and differentiation. These models have proven
successful in explaining the distributions of clone sizes but do not explain the observed fre-
quencies of each division type. Alternative models have been put forward that invoke deter-
ministic asymmetric inheritance of differentiative cues at the time of division [21-24]. In
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general, how decisions of single cells contribute to global organ growth and differentiation in
developing organs remains an open question.

Here we test some of these notions in the context of the emergence of endocrine progenitor
cells from uncommitted pancreatic progenitors in the embryonic pancreas. This developmental
model has a simple lineage configuration, with a reduced number of fates over well-character-
ized time windows, and thus provides an optimal testing framework. We use 3-D live imaging
of pancreatic explants ex vivo and in vivo, together with lineage tracing at a clonal density, to
address the dynamics of the progenitors of the endocrine lineage. In addition to monitoring
their lineage, we determined measurements for cell cycle length, synchrony, and differentiation
dynamics of these progenitors. This revealed three types of pancreatic progenitor behaviours:
(1) symmetric progenitor self-renewal, (2) symmetric endocrinogenic divisions leading to two
NEUROG3" endocrine progenitors, and (3) asymmetric divisions generating a pancreatic pro-
genitor and an endocrine progenitor. By live tracing individual cell fate specification events, we
uncover the relationship between Neurog3 expression timing and mitosis. We identify major
differences in the onset of Neurog3 transcription between cells stemming from symmetric and
asymmetric divisions, and further show that this onset is highly synchronized between sym-
metrically generated sibling cells. Our analysis of such findings leads to a novel interpretation
of the choice between symmetric and asymmetric cell divisions. We posit that asymmetric cell
divisions are the result of the stochastic induction of endocrine fate in one of the progenitor
daughters, rather than a decision made during cell division. Alternatively, if this progenitor di-
vides a last time after induction, which is expected if the induction happens late in G1, the divi-
sion will be seen as symmetric differentiative. These results argue against conventional views of
asymmetric inheritance of differentiative cues at the time of division [21-24] and are instead
consistent with a model of cell cycle-dependent stochastic specification of organ-specific
progenitors.

Results

Time-Lapse Imaging Enables Pancreas Progenitor Tracking in Three
Dimensions

To study how individual pancreatic progenitors contribute to pancreas expansion and to moni-
tor their differentiation into endocrine progenitors, we conducted live imaging of explants of
dorsal pancreatic buds from E12.5 Pdx1'"/*;tetO-H2B-GFP embryos (Fig. 1A). The buds were
dissected and laid on a fibronectin-coated coverslip bottom plate, where they grew (Fig. 1B)
[25,26]. After 24 h of settling time, we initiated high-magnification time-lapse live imaging in
3-D with 6-min intervals for up to 24 h. Nuclear H2B-GFP fusion protein enabled us to observe
cell divisions and to track individual cell nuclei. At the end of the experiment, the explants
were fixed and immunostained for markers of pancreatic progenitors (SOX9) and endocrine
progenitors (NEUROGS3) (S1F-I Fig.), while preserving the native green fluorescent protein
(GFP) signal (S1G Fig.), which enabled us to match to the cells from the last frame of the time-
lapse movies. The SOX9" cells constituted the majority of GFP™ epithelial cells (S11 Fig.), and
NEUROG3" cells were mainly observed in the middle trunk region of explant (S1H Fig.) [8].
In spite of the constant exposure to laser, explants grew, showed active cell movements, apico-
basal polarization, branching, acini morphogenesis, and differentiation similarly to explants
that were not subjected to imaging (SIA-E,],N,O Fig. and S1 and S2 Movies). After 18-24 h of
time-lapse imaging (42-48 h post-dissection), NEUROG3™ cells were detected by immunos-
taining, showing that the differentiation process occurred ex vivo, albeit less efficiently than in
vivo (S1 Table).
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Fig 1. Live imaging reveals both asymmetric and symmetric emergence of NEUROGS3 cells. (A) Scheme summarizing the genetic strategy to visualize
PDX1* pancreatic progenitors for live imaging. (B) Scheme of imaging and analysis. Pancreatic explants from E12.5 Pdx17*/*;tetO-H2B-GFP embryos are
cultured, and 3-D time-lapse imaging is done for 18—24 h. Then, the explants are immunostained for markers, and endocrine progenitor (NEUROGS3) cells
are back- and forward-tracked. (C) Model of pancreatic progenitor divisions. A PDX1* progenitor can produce two PDX1*/SOX9* progenitor daughters, two
NEUROGS" endocrine progenitor daughters, or one PDX1*/SOX9* daughter and one NEUROG3" daughter. (D) Still images of live imaging in 3-D maximum
intensity projection from S3 Movie, illustrating a symmetric (P/P) division producing two progenitor daughters (blue spots). White nuclei correspond to
H2B-GFP signal in the cells originating from the pancreas epithelium. (E) Still images from S3 Movie, illustrating an asymmetric (P/N) division producing two
daughters with different fates (red spots). (F-1) Images of fixed explant with native GFP and nuclear staining DRAQ5 overlay (F) and immunostained for
NEUROGS (G) and SOX9/aPKC (H). Blue spots correspond to cells in (D) and red spots to cells in (E). Inset in (H) shows high magnification image of SOX9
staining. Note both blue spotted cells are SOX9*, but only one red spotted cell is SOX9°" (H), and the other red spotted cell is NEUROG3* (G). (J) Still
images from S4 Movie, demonstrating a symmetric (N/N) division producing two daughters with the same fate (pink spots). (K—N) Images of fixed explant with
native GFP (K) and immunostained for NEUROG3 (L) and SOX9/aPKC (M). Pink spots correspond to cells in (J), and both are NEUROG3*/SOX9™. Inset in
(L) shows NEUROGS staining (four NEUROG3™* cells in a row) in high magnification. (O) Analysis of progenitor division patterns from live imaging. Total cell
divisions are counted from four cropped positions from four live imaging movies, and fraction of NEUROGS3-producing cell divisions is calculated from the
corresponding positions (yellow bar over grey bar). NEUROGS3-producing divisions (pink, blue, and purple bars) are counted from entire position of four
movies. (P) Analysis of NEUROGS3 emergence from four live imaging movies. 18.4% + 5.0% cells emerge through P/N divisions, and 29.8% * 14.2% through
N/N divisions. 29.3% + 5.9% do not exhibit prior division, and 22.4% + 10.6% were either lost (17.5% + 7.7%) or dead (8.9% * 3.4%). Cells lost or gone out of
frame were categorized as indeterminable (purple bar). Numbering denotes elapsed time in h:min, and in the cell division diagrams P indicates progenitor
and N, NEUROGS (D,E,J). Scale bars, 20 um. Histograms and error bars represent the mean and standard deviation (n = 4). See S2 Table for further data.

doi:10.1371/journal.pbio.1002111.g001

Pancreatic Progenitors Divide in Three Different Modes That
Differentially Contribute to Pancreas Expansion and Endocrine
Differentiation

To determine how single progenitor cells contribute to balancing global pancreas expansion
with endocrine progenitor generation (Fig. 1C), we systematically back-tracked NEUROG3"
endocrine progenitors in 3-D, as well as a random subset of SOX9" pancreatic progenitors that
were identified from immunostaining images and mapped onto the last frame of time-lapse
movies. Once a cell division was observed through back-tracking, the sister cell was then for-
ward-tracked, and its fate was determined by referring to the immunostaining. The tracking re-
vealed that pancreatic progenitors divided in one of three different modes. The first type of
division was symmetric, giving rise to two SOX9" progenitor cells (P/P division; S3 Movie and
Fig. 1D,F-1). The second type was asymmetric, giving rise to a SOX9"/NEUROG3™ pancreatic
progenitor and a NEUROG3" endocrine progenitor (P/N division; S3 Movie and Fig. 1E,F-1).
The last type was symmetric endocrinogenic, producing two NEUROG3" cells (N/N division;
S4 Movie and Fig. 1J-N). In order to quantitatively account for each division mode, we ana-
lysed 1,628 divisions comprising all observed division events of Pdx1'"""*;tetO-H2B-GFP cells
from randomly selected positions from four time-lapse movies. Thus, non-NEUROG3-produ-
cing divisions include both bi-potent progenitors and acinar cells, since Pdx1" cells are multi-
potent at E13.5. This quantification revealed 6.6% * 1.6% of divisions producing endocrine
progenitors, and 93.4% * 1.6% generating either progenitors or exocrine cells (Fig. 10 and S2
Table). Of all the divisions producing NEUROGS3 cells that could be tracked, 56.3% + 13.8%
produced a SOX9" cell and a NEUROG3" cell (P/N division), and 43.7% + 13.8% produced
two NEUROG3"™ cells (N/N division; Fig. 10). We could determine the origin of approximately
half of NEUROG3" cells through P/N or N/N divisions in the past 24 h, while some NEU-
ROG3" cells either did not exhibit prior division or were either lost or dead during tracking
(Fig. 1P). Cell death might be a consequence of the explant culture since apoptosis is very rare
in the pancreas epithelium in vivo [27]. Taken together, these results show that at E13.5-14.5
most progenitors undergo symmetric renewing divisions, accounting for pancreas size in-
crease, while the remaining progenitors are approximately evenly split into those undergoing
symmetric endocrinogenic division and asymmetric division.
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Clonal Analysis Confirms the In Vivo Existence of Three Progenitor
Division Types Based on Their Progeny

While ex vivo imaging enables constant monitoring of cell behaviours, it is performed in a
somewhat artificial context. In order to determine whether pancreas progenitors undergo the
same pattern of symmetric and asymmetric divisions in an in vivo context, we devised a clonal
lineage tracing strategy (Fig. 2A) using Hnf1bCreER mice. Previously, this line was used to
demonstrate that the E13.5 HNF1B" progenitor cells give rise to ductal and endocrine cells [3].
This could be accounted for either by individual cells giving rise to endocrine and ductal cells
or by heterogeneity among HNF1B™ cells, some giving rise to endocrine cells and others to duc-
tal cells. To investigate this question, we subjected pregnant mice carrying E13.5 Hnf1bCreER;
mT/mG embryos to a single low-dose intraperitoneal injection of 4-hydroxytamoxifen

(Fig. 2B) to label pancreatic progenitors at a clonal density. We optimized conditions for clonal
tracking leading to two-cell clones at E14.5 (Fig. 2B-G, S3 Table, and S5 Movie). Since we
know from the time-lapse experiments that the majority of daughters from the same cell do
not move more than 30 um apart, we called labelled cells within 30 pm of each other a clone
(S8 Fig.). Reiterations with a 60 um radius led to similar outcomes. Whole-mount immunos-
taining of 22 pancreata and detection of 244 two-cell clones revealed that the majority of pro-
genitors in which the fate could be determined divided symmetrically (P/P; Fig. 2E) into two
SOX9™ progenitors (59.8%; Fig. 2H). This proportion is lower than the 93.4% found in the ex-
plants, in part because the cells traced by HNF1B are a subgroup of PDX1" and SOX9" cells
traced in the explants and some of the latter will give rise to acinar cells [2,4]. In vitro lineage
tracing with Hnf1bCreER;mT/mG explants showed that 6.3% of clones became endocrine (52
Fig. and S$4 Table). This shows that the in vivo differentiation process is more efficient than in
vitro differentiation. After the 24-h tracing period, we could not yet observe any INSULIN*
clones in vivo, suggesting NEUROG3™ or SOX9™ clones might be in transition to endocrine dif-
ferentiation. Of the NEUROG3-producing two-cell clones in which the fate of both daughters
could be determined, 61.8% were asymmetric, generating one NEUROG3" daughter and a
SOX9™" progenitor (P/N; Fig. 2F,H), and the remaining were symmetric with two NEUROG3"
daughters (N/N; Fig. 2G,H). As a consequence, more NEUROG3" cells originated from sym-
metric divisions (Fig. 2I). These results thus provide in vivo evidence of asymmetric and sym-
metric endocrinogenic progenitor divisions, as well as of symmetric renewal of progenitors,
confirming the modes of divisions detected by the explant tracking data.

From the above data with regard to fate-determinable two-cell clones, we estimated ex-
pected ratios of P/P, P/N, and N/N divisions to be 69.9%, 18.6%, and 11.5%, respectively, after
excluding indeterminable clones. Progenitors undergoing symmetric differentiating divisions
will contribute all of their progeny to the differentiated pool, whereas asymmetrically dividing
progenitors will contribute only one half of their progeny to this pool. We can therefore direct-
ly estimate the probability of differentiation of new-born cells to be 20.8% ([0.5 x 18.6] +
11.5)%, which is consistent with a net expansion of developing pancreas (S1.5 Text).

If sibling cells adopted their fate independently of each other, the expected fractions for
each division type would be 62.7% for symmetric proliferative, 4.3% for symmetric differentia-
tive, and 33% for asymmetric. Notably, these last two fractions deviate from the experimentally
reported ones (Fig. 2H), contradicting the hypothesis of independent sibling fate allocation.
This is further supported by statistical tests indicating a significant divergence from the inde-
pendence ratios (S1.5 Text). Similar calculations can be made on the in vitro data leading to the
same conclusion that a single conversion event leads to symmetric endocrine cell production
(Fig. 10 and S1.5 Text).
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localized Tomato (mT) is excised, allowing mG expression. (B) Schematic overview of the lineage tracing strategy used to trace the fate of progeny from
single progenitor cells labelled at clonal density. E13.5 pregnant mice carrying Hnf1bCreER;mT/mG embryos received a single intraperitoneal injection of
0.175 mg 4-OH tamoxifen. After 24 h, pancreata were subjected to whole-mount immunostaining, imaging, and 3-D reconstruction to detect recombined two-
cell clones. (C) Model of two-cell clone lineage tracing. A HNF1B* progenitor can produce two SOX9* progenitor clones, two NEUROG3* endocrine
progenitor clones, or one PDX1*/SOX9* and one NEUROG3™ clones. (D) Maximum intensity projection of 3-D reconstructed E14.5 dorsal pancreas after
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immunostaining for E-CADHERIN, SOX9, and GFP. Arrowheads indicate clones displaying recombination of the mT/mG reporter, detected by anti-GFP
immunostaining, while membrane Tomato signal was diminished during staining process. (E) Optical sections from a whole-mount imaged dorsal pancreas
demonstrating symmetric generation of SOX9* progeny (P/P) from a single dividing progenitor cell. (F) Optical sections demonstrating clonal progeny with
asymmetric fates, generating one NEUROG3* and one SOX9* daughter (P/N). (G) Optical sections demonstrating clonal progeny with symmetric
NEUROGS" fates (N/N). (H) Quantification of two-cell clone fate patterns after in vivo lineage tracing. 244 two-cell clones derived from 22 dorsal pancreata
were scored according to SOX9 and NEUROGS status. Indeterminable refers to clones that could not be categorized because of one or both daughters
being both SOX9- and NEUROG3-negative afterimmunostaining. (I) Quantification of the number of NEUROG3* cells generated by the different clone
patterns. 84 NEUROG3" cells were detected in 63 NEUROG3* two-cell clones. Indeterminable refers to clones in which the second daughter was neither
NEUROGS3- nor SOX9-positive. Scale bars, 100 um (D) and 3 um (E—G). Histograms represent the mean (n = 22). See S3 Table for further data.

doi:10.1371/journal.pbio.1002111.g002

A New Neurog3-RFP Reporter Reveals Synchrony in Differentiation and
Differentiation Delays Suggestive of Cell Cycle-Dependent Priming

To investigate the dynamics of differentiation, we generated transgenic Neurog3-RFP reporter
lines that can be used for live imaging together with H2B-GFP (Figs. 3A,B and S3A,B). Immu-
nostaining for NEUROG3 and comparison with red fluorescent protein (RFP) from E14.5
Neurog3-RFP pancreas revealed that 40.1% + 4.5% of NEUROG3" cells were co-expressing
RFP, while the remaining NEUROG3™ cells were RFP~ (S3C,D Fig.). Some discrepancies may
be expected because of the transient nature of Neurog3 expression and the different onset and
decay kinetics of the RFP protein compared to the NEUROGS3 protein (S1.3 Text). Moreover,
77.1% + 2.8% of RFP" cells were NEUROG3™ due to probable delay and perdurance of RFP as
compared to that of NEUROGS3 [28], as also seen for other reporters [29-31]. This mainte-
nance was attested by the detection of hormones in 18.5% + 2.3% of RFP™ cells. To further ad-
dress the reliability of the reporter and assess its incidence in our analysis, we compared this
line to the enhanced yellow fluorescent protein (EYFP) knock-add-on allele, which has been re-
ported to show a greater overlap with NEUROGS3 protein [29] and which is, in principle, less
susceptible to exogenous chromatin environments, being in the endogenous locus. Our imag-
ing of explants expressing one allele of EYFP and one of RFP (S4A,B Fig.) showed that all REP*
cells were also EYFP™ (S4C Fig. and S5 Table), indicating no false positives due to genomic en-
vironment. Single cell tracing showed that RFP was turned on 4.7 + 1.1 h after EYFP was de-
tected (S4D Fig.); 11.6% + 3.7% of EYFP™ cells never became RFP”, indicating the system was
largely faithful.

From time-lapse imaging extended to 48 h, we could observe a dynamic change of RFP sig-
nal in single cells from the onset of fluorescence: gradual increase and a subsequent decrease,
which reflects the transient expression of NEUROGS3 [32]. Our analysis predicts a short half-
life of 5-6 h for RFP in a cell, most probably due to continuous laser exposure. We estimate a
“perdurance” of detectable fluorescence of more than 20 h (see S5 Fig. and S1.3 Text) and a
minimum delay between cell priming and RFP onset of approximately 5 h. Monitoring all
events of RFP onset (n = 323; Fig. 4A) initially suggested waves of cellular differentiation at the
tissue level. However, statistical analysis of the timing of onset events showed that these are
also compatible with a stochastic process of cell differentiation with homogeneous differentia-
tion rate (i.e., a Poisson process) throughout the imaging period (S6 Fig. and S1.4 Text). While
we cannot rule out a periodic process underpinning Neurog3 expression, confirmation of this
would require more data points.

Similar to earlier tracking, RFP" cells were back-tracked from the last time point in time-
lapse movies, their prior division was monitored, and sister cells were forward-tracked. Quanti-
fications (S6 Table) revealed that among the RFP-producing divisions where the fate of the two
sisters was determinable, as follows: 60.2% + 11.9% were asymmetric divisions producing a
progenitor and a RFP* daughter (P/R; S6 Movie, and Fig. 3C-G,N), and 39.8% + 11.9% were
symmetric divisions producing two RFP" daughters (R/R; S7 Movie, and Fig. 3H-N). In these

PLOS Biology | DOI:10.1371/journal.pbio.1002111 March 18,2015 8/25



el e
@ : PLOS | BIOLOGY Cell Cycle-Dependent Endocrine Differentiation in the Pancreas

A B PDX1 PDX1 PDX1
Pdx1 [ TTA
tetO ]Af? Af?
Wl [[128GFP [ Af? Af?
Neurog3| RFP Newrog RFP

SOX9/aPKC
Neurog3-RFP

GFP
SOX9/aPKC
Neurog3-RFP

N

g 1 O T 17,

2 ® B indeterminable IS

S 0.8 1 daughter 8 =

% 06 I ceaii o ost a No prior div S 06

3 v : =

S M symmetic 5 WSss s

S 04 5 ’ 504

8 Asymmetric = Through ©

= 02 I sy o | symmglric dv % 0.2
“] Through '
0. . asymmetric div

0
NEUROG3 RFP  in vivo
tracking  tracking tracing

RFP- ymmetric
producing VS,
divisions  asymmetric

PLOS Biology | DOI:10.1371/journal.pbio.1002111 March 18,2015 9/25



el e
@ : PLOS | BIOLOGY Cell Cycle-Dependent Endocrine Differentiation in the Pancreas

Fig 3. Extended live imaging with Neurog3-RFP reporter reveals the dynamics of progenitor cell cycle and differentiation. (A) Scheme summarizing
the genetic strategy to visualize PDX1* pancreatic progenitors and NEUROG3* endocrine progenitors for live imaging. (B) Model of pancreatic progenitor
divisions with a Neurog3-RFP reporter. After second division of self-renewing progenitors, cell cycle length can be obtained. Using the Neurog3-RFP
reporter, endocrine differentiation timing and synchrony can be obtained. (C) Stillimages from S6 Movie, demonstrating an asymmetric (P/R) division
producing one Neurog3-RFP* daughter and two other granddaughters (white spots) from a Padx1!™/*;tetO-H2B-GFP;Neurog3-RFP explant. After the first
division, one daughter turns on RFP (before elapsed time 30:00), and later the other daughter divides, producing two granddaughters (at elapsed time 42:12).
(D-G) Images of fixed explant with native GFP (D) and immunostained for SOX9/aPKC (E) and Neurog3-RFP (F, staining for MYC-tag). White spots
correspond to cells in (C), and one is RFP* and two granddaughters are SOX9* (E,F). Inset in (E) shows high magnification image of SOX9 staining. (H) Still
images from S7 Movie, demonstrating a symmetric (R/R) division producing two Neurog3-RFP* daughters (grey spots). After the division, both daughters
turn on RFP. (I-M) Images of fixed explant with native GFP (I) and immunostained for SOX9/aPKC (J), NEUROGS (K), and Neurog3-RFP (L, staining for
MYC-tag). Both daughters are NEUROG3*/RFP*. (N) Fraction of RFP-producing cell divisions. Each category (pink, blue, and purple bars) was counted from
three movies. (O) Analysis of RFP emergence from three live imaging movies. In three cases, RFP* cells divided producing two RFP* cells each (cyan bar),
and the majority of RFP* cells were either lost or moved out of frame during back-tracking (indeterminable, purple bar). (P) Fraction of asymmetric versus
symmetric cell divisions from three different measurements: NEUROGS tracking, Neurog3-RFP tracking, and in vivo clonal analysis. All three measurements
exhibit equivalent rates of divisions. Numbering denotes elapsed time in h:min, and in the cell division diagrams P indicates progenitor and R, Neurog3-RFP
(C, H). Scale bars, 20 ym. Histograms and error bars represent the mean and standard deviation (n = 3). See S6 Table for further data.

doi:10.1371/journal.pbio.1002111.g003

long time-lapse movies, many RFP™ cells moved out of frame or were lost due to weak GFP sig-
nal before acquiring RFP expression (Fig. 30 and S6 Table). Excluding those indeterminable
REFP cells, 18.8% + 6.6% were generated through P/R division, 25.0% + 10.0% through R/R divi-
sion, and 3.2% * 2.8% through RFP division, while no division was seen during the movie du-
ration for 53.0% * 10.3% of RFP cells (Fig. 30). These RFP tracking results thus confirmed the
calculated proportions of asymmetric versus symmetric divisions established from the previous
live imaging and in vivo clonal analysis (Fig. 3P).

The dynamic reporter revealed highly synchronized differentiation after divisions produc-
ing two NEUROGS3 cells, the RFP signal being detected in both daughters within 0.8 + 0.4 h of
each other (Fig. 4B, correlation coefficient between lag times 0.98 + 0.002). This outstanding
synchrony confirms that it is unlikely that the two daughters are induced by independent
events and suggests that mother cells have been primed to differentiate into NEUROGS3 cells
prior to their division. This observation further suggests a defined time between priming and
NEUROGS3 expression (or its RFP proxy). In addition, asymmetrically generated NEUROG3
cells exhibited a significantly longer lag time between the division and RFP onset, as shown in
Fig. 4C, further supporting an interplay between cell cycle, the differentiation priming event,
and the division mode.

These results on the contrasting dynamics of differentiation between cells stemming from
symmetric versus asymmetric division events are obtained with the RFP reporter, for which we
have established a false negative rate of 11.6% (S4C Fig.). This implies that, far from amplifying
the differences between the dynamics of differentiation between the two groups, we might be
underestimating them. Specifically, our reporter may miss a subset of Neurog3-expressing cells,
thus leading to mis-allocation of around 11.6% of symmetric events to asymmetric and there-
fore homogenizing the two categories and reducing the differences between them (See below).

A Model of Cell Cycle—-Dependent Stochastic Priming of Progenitors
Provides Quantitative Insight into the Dynamics of Cell Differentiation

To try to understand the mechanism underlying the emergence of endocrine progenitors, we
devised a simple mathematical model [33] of cell proliferation dynamics based on the lineage
and differentiation dynamics data. The model is based on the premise that proliferating pro-
genitor cells primed for Neurog3-dependent differentiation might either exit the cell cycle and
become terminally differentiated or commit to complete the cell cycle and produce two termi-
nally differentiated cells via mitosis (Fig. 5A-C). Thus in this model there are three, rather than
two, cell types: (i) NEUROG3-primed (N) cells, which are post-mitotic; (ii) cells primed for
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Fig 4. Analysis of differentiation and cell cycle dynamics from live imaging. (A) Analysis of Neurog3-RFP onset in four locations from three different
time-lapse movies (n = 56, 89, 54, and 125, respectively). Each vertical bar symbol indicates an onset event, and the yellow area displays the probability,
obtained by kernel density estimation, of an event occurring over time. These suggest that cell differentiation might not be a homogeneous process; however,
further statistical analysis does not rule out this possibility (S1.4 Text). (B) Lag time of Neurog3-RFP onset between daughters derived from symmetric (R/R)
divisions (n = 19). Symmetrically fated daughters exhibited synchronized expression of Neurog3-RFP, as pointed out by the highly correlated lag time
between division and RFP onset (inset). (C) Lag time between division and Neurog3-RFP onset in asymmetric (P/R, n = 27) versus symmetric (R/R, n = 38)
divisions. Note the data are pooled from three live imaging movies. RFP cells from P/R divisions took a significantly longer time to turn on RFP than cells from
R/R divisions. Black-outlined red circles from P/R division (n = 14) indicate P/R divisions producing grand-daughters through progenitor daughter division. (D)
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Doubling time of progenitors originating from either symmetric (P/P, black circle) or asymmetric (P/N and P/R, pink circle) divisions. Doubling time of
asymmetrically generated progenitors took longer than symmetrically generated progenitors. Statistical analyses were done using two-tailed Mann-Whitney
test. *** p < 0.0001 and * p =0.04 (C,D).

doi:10.1371/journal.pbio.1002111.g004

differentiation but committed to cell cycle completion (L cells); and (iii) progenitor (P) cells,
which will not differentiate (Fig. 5D). We assigned a probability g (the differentiation probabil-
ity) for the differentiation of progenitors and a probability, 6, for primed cells to become N

(1- 6 to become L). Thus, the model describes the differentiation process in terms of two proba-
bilities, which can be directly inferred from the lineage data (S1.6 Text), i.e. it has no free pa-
rameters. From the in vivo clonal analysis data, we estimate 8 = 56.5% and, as we have already
seen, q = 20.8%. This means that approximately one-half of the progenitors primed for differ-
entiation become post-mitotic (P—N; 56.5%), while the other half (P—L[—N/N]; 43.5%) will
undergo one last division before differentiating. Because this latter group of cells (L) is transient
and contributes terminally differentiated cells (N), its expected abundance in the tissue is resid-
uary. The model predicts that, at any given time, only 9.8% of cells in the developing tissue are
primed progenitors committed to division-cycle completion (L), yet this small fraction ac-
counts for 93.8% of the symmetric differentiative divisions (L—N/N) and might therefore ex-
plain our observation that the fates of sibling cells are linked (S1.6 Text). The remainder of
symmetric differentiative divisions is interpreted to result from random, independent priming
in two sister P cells.

The model also allows multiple interpretations for the probability of becoming L versus N
(e.g., exposure to differentiation signals, gene expression noise, etc.). One such interpretation is
the timing of the priming event after division (i.e., @ can be construed as accounting for a cell
cycle restriction point). For instance, if a cell is primed early after division it might differentiate
and halt the cell cycle, whereas if the priming event occurs late in G1, the cell might have al-
ready committed to cell cycle completion. Such specific reading of the model, which we adopt
hereafter, leads to a few qualitative predictions on the dynamics of differentiation. First and
foremost, the vast majority of sibling cells (93.8%) from symmetric divisions will have a per-
fectly synchronized differentiation program. According to the model, differentiated cells stem-
ming from symmetric divisions shall turn on the differentiation program, on average, much
earlier than those from asymmetric divisions (S1.6 Text). To quantitatively account for these
predictions and compare them to the experimental data, we performed computational simula-
tions of the model (n = 10,000 clones, S11 Fig.) including the observed variability in the cell
cycle length as well as the dynamics of the fluorescent reporter (Figs. 5E-G, S9, S11 and S1.3,
S1.4, and S1.6 Text; data deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.
4b58d [34]). The simulations reproduced the differences in the onset of the reporter in cells
stemming from symmetric versus asymmetric divisions (Figs. 5E,F, S6E,F, and S9) and also for
the high degree of synchronization between sibling cells (Figs. 5G, S6G, and S9). Furthermore,
when we included the 11.6% false negative rate in the reporter (S4C Fig.) of the model, the re-
sults were not significantly affected (S10 Fig. and S1.6 Text).

The results of the model led us to experimentally characterize the cell cycle. We used FACS-
sorting of Pdx1'""/*;tetO-H2B-GFP*;Ngn3-RFP~ cells marking pancreatic progenitors at E14.5
to establish their cell cycle partition and observed that 69% were in GO/G1, 27% in S and 5% in
G2/M, whereas 98% of Neurog3-RFP" cells were in GO/G1 (S7 Fig.). The progenitors thus
spend the majority of their time in G1. Our hypothesis is that priming in early G1 would lead
to differentiation and exit of the cell cycle, and its mother would thus have an apparent asym-
metric cell division. In contrast, priming in late G1 after the cell has committed to complete the

PLOS Biology | DOI:10.1371/journal.pbio.1002111 March 18,2015 12/25
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endocrine progenitors post-mitotic, the progenitor may be induced to differentiate into endocrine progenitor, but has not yet finished the cell cycle before the
cell actually differentiates into an endocrine progenitor. Therefore, to complete the cell cycle, a recently differentiated NEUROGS cell may divide and give rise
to two NEUROGS3 daughters. (D—F) We have developed a mathematical model of cell cycle—dependent stochastic priming of progenitors to endocrine fate.
(D) Schematic of the model in which pancreatic progenitors (P, green circles) stochastically are primed for differentiation with probability g. Primed cells can
either exit the cell cycle and differentiate into NEUROGS (N) with probability 6 or conclude the cycle (L) and give rise to two NEUROGS cells. (E) The
proposed model accounts for the observed frequencies of each division mode and predicts differential RFP onset dynamics in asymmetric and symmetric
divisions. “Experiment*” bar in Asymmetric category denotes asymmetric divisions accounting for a RFP daughter and a self-renewing RFP~ daughter

(n = 14), whereas “Experiment” bar includes all the asymmetric divisions (refer to Fig. 4C). (F) The model with experiment-matching number of clones (out of
10,000 simulated clones) predicts a larger lag time between division and RFP onset in cells stemming from asymmetric divisions versus symmetric divisions.
(G) Correlation of RFP lag times between sibling cells predicted by the model also matches that which was experimentally measured.

doi:10.1371/journal.pbio.1002111.g005

cell cycle through DNA replication and mitosis would lead to an apparent symmetric differen-
tiative cell division.

Finally, simulations also predicted the existence of a residual fraction of primed cells that
would turn on the reporter immediately before dividing. Noticeably, although most RFP" cells
did not divide, we observed 3 cases of RFP" cell division producing six cells (Fig. 6, S8 Movie,
and S6 Table) and thus accounting for 3.2% + 2.8% of all tractable RFP cells. The average time
between RFP signal acquisition and division was 1.7 £ 0.8 h. This result is in agreement with
the previous estimations of the progression of NEUROGS3 cells through S-phase (BrdU incor-
poration) [11] and further shows that the NEUROGS3 cells can exceptionally progress through
mitosis at an early stage of their life [29].

Analysis of the Expansion Potential of Progenitors

The longer movies enabled the observation of multiple rounds of division and the quantifica-
tion of cell cycle parameters (Fig. 3B). They first confirmed that the daughter cells qualified as
progenitors after asymmetric cell division based on SOX9 expression (Fig. 1H) were function-
ally behaving as progenitors. Indeed, among P/R divisions (n = 27), we observed 14 events
where the RFP™ daughter divided, producing second-generation progeny (S6 Movie and

Fig 6. A small number of Neurog3-RFP cells divide into two NEUROG3" cells. (A) Stillimages from S8 Movie, demonstrating division of Neurog3-RFP
cell (white spots) in RFP channel from a Pdx1"/*;tetO-H2B-GFP;Neurog3-RFP explant. (B-F) Images of fixed explant with native GFP (B) and
immunostained for Neurog3-RFP (C, staining for Myc-tag), NEUROGS (D) and Sox9/aPKC (E). Both daughters are NEUROG3*/RFP*. Numbering denotes
elapsed time in h:min (A). Scale bars, 20 pm.

doi:10.1371/journal.pbio.1002111.g006
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Fig. 3C). Of those 14 cases, we observed two events where one or both granddaughters divided
again, producing third-generation progeny. For all of those, immunostaining at the end point
revealed that the RFP™ progeny were SOX9™ progenitors (Fig. 3E). In such cases, we could cal-
culate the doubling time of daughter progenitor divisions, and we compared it between P/P
and P/N or P/R divisions (Fig. 4D). The doubling time of self-renewing progenitors from P/P
divisions was shorter than that from P/N or P/R divisions (p = 0.04,21.0 + 2.4 hand 26.5+ 7.3 h,
respectively). Moreover, the distribution of data points was greater in the asymmetric cell divi-
sions. Finally, the time-lapse movies revealed that pancreatic epithelial cells were highly dynamic
and that two daughters migrated to distances up to 64 um apart from each other in the 24 h fol-
lowing division regardless of division mode (S8 Fig.).

Discussion

In this study, we elucidate the contribution of single cell decisions to the balance between ex-
pansion and differentiation in the pancreas. Our lineage analysis, combining in vivo genetic
clonal tracing with dynamic imaging in explants, reveals the existence of three kinds of divi-
sions: symmetric progenitor self-renewal, symmetric endocrinogenic divisions leading to two
NEUROG3" endocrine progenitors, and asymmetric divisions generating a pancreatic progeni-
tor and an endocrine progenitor. Furthermore, we show that progenitors are stochastically
primed for endocrine differentiation, and that timing of induction in NEUROG3" cells within
the cell cycle establishes the division mode. Whereas late-induced cells complete the cell cycle,
resulting in a differentiative symmetric division, early induced cells exit the cell cycle, in which
scenario their mother would have produced asymmetric progeny. The results can alternatively
be interpreted as HNF1B" cells being a mix of three pre-determined populations, amongst
which only one is truly bipotent. However, the clonal analysis performed in vitro shows differ-
ent proportions of P/P, P/N, and N/N divisions as compared to in vivo, which would not be ex-
pected if the three HNF1B* subpopulations were predetermined (unless some would
preferentially die, which was not observed). Our data is most consistent with a model in which
all progenitors are similar, except for their cell cycle stage, and can be primed for endocrine
specification with a differentiation probability of around 20% in vivo. Future studies should re-
veal how this probability changes with time. For example, how it evolves to the cessation of dif-
ferentiation at the end of gestation, leading to homeostatic conditions that rely primarily on
slow self-duplication of differentiated populations [35]. On the other hand, a first phase of
symmetric progenitor expansion followed by an increase in the probability of differentiation
minimizes the time to form mature organs [36] and may also be expected to occur in the pan-
creas. Analogous studies are also needed in the human pancreas, as the size of the organ and
the length of the differentiation stage are much greater, and several parameters such as cell
cycle length of progenitors, probability of differentiation, and ratio of symmetric and asymmet-
ric differentiative divisions may differ.

The high correlation between our in vivo and in vitro results (Fig. 3P) rules out erroneous
interpretations due to in vitro artefacts and biases caused by subpopulations of progenitors
marked by HNFI1B at low tamoxifen doses. Spatially, the endocrinogenic divisions were ob-
served in the centre of the pancreas where the HNF1B™ progenitors reside, but no areas of pref-
erential symmetric or asymmetric division were observed.

Our dynamic data, including the synchrony in differentiation of symmetrically produced
endocrine progenitor cells and their shorter lag from division to differentiation, argue that the
specification event can occur at different phases in the cell cycle conditioning the ability to exe-
cute a final division or not (Fig. 5A,B). This is further supported by our analysis of the cell
cycle-dependent priming model, which displays a good fit to the experimental results and
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provides a causal understanding of the dynamics of the process. The model proposes parame-
ters g and 0 that can be measured in other systems to test its prevalence, and our analysis of
previous data in other organs suggests that it may be more general rather than specific to the
pancreas [33].

Although the molecular mechanisms of Neurog3 priming remain to be elucidated, especially
whether it is under cell-intrinsic or extrinsic control, our data provide information on the gen-
eral principles. Intrinsic control may be based on asymmetric inheritance of molecular compo-
nents during division [21-24] or incremental or oscillatory expression of transcriptional
determinants [37]. Our results strongly argue against the iterative asymmetric inheritance of
differentiation cues at the time of division, as seen in Drosophila neurogenesis and also re-
ported in the mouse brain [24]. Indeed, if the specification was determined at the time of divi-
sion, the differentiation should occur after the same lag time in symmetric and asymmetric cell
divisions. Moreover, the lag time between division and Neurog3-RFP onset is very heteroge-
neous ranging from 0 to 20 h (Fig. 4C), which is difficult to reconcile with a specification occur-
ring at the time of division. If either cumulative increase or oscillations of an intrinsic
determinant promoting endocrine fate lead to differentiation, the progeny of progenitor
daughters arising from asymmetric division may exhibit an endocrinogenic bias. On the con-
trary, these progeny were all SOX9" progenitors, which would rather suggest a negative bias.
However, the movie duration might have been too short to observe differentiation after the sec-
ond division. Moreover, we observe a slower doubling time of progenitor daughters from an
asymmetric division, which may result from the inheritance of a factor that slows down the cell
cycle [38-40]. Incremental specification could explain why the cell cycle time is also more het-
erogeneous in these progenitors. Our analyses are also compatible with extrinsic specification,
for example, in the context of Notch-Delta-mediated lateral inhibition [41]. The apparent dis-
crepancy with differentiation in the nervous system where uneven splitting of molecular cues
at mitosis leads to asymmetric cell division requires further investigations in both systems.
When quantified, the ratios of asymmetric and symmetric differentiation events are very simi-
lar in the pancreas and the nervous system [33], and our model would be compatible with the
observation that lengthening of G1 impacts the cell division modes in the cortex [30]. Thus, an
assessment of the differentiation dynamics in the nervous system similar to ours would be use-
tul, and the possible existence of asymmetrically inherited of cues in mitotic cells in the pancre-
as can also be considered.

Our results reveal that the balance between expansion of progenitors and endocrine differ-
entiation can potentially be regulated by either controlling the probability of endocrine cell in-
duction or its timing in the cell cycle to boost the generation of endocrine cells in vitro for a cell
therapy of diabetes. Our approach paves the way to establish how the frequency of division and
the ratio of the different types of divisions vary over time and how their balance is controlled
by signalling pathways such as Notch and FGF.

Materials and Methods
Mice
Genetically engineered mice used for this study were as follows: Pdx1'™/* [42], tetO-
HIST1H2BJ/GFP (tetO-H2B-GFP) [43], Hnfl1bCreER [3], Gt(ROSA)26Sortm4(ACTB-tdTo-
mato,-EGFP)Luo/] (mT/mG) [44], Neurog3-EYFP [29], and Neurog3-RFP (S3 Fig.). For em-
bryonic stage, noon of the day when vaginal plug appeared was referred as E0.5.

The Neurog3-RFP transgenic construct (S3A Fig.) was generated by fusing 7.6 kb of the
Neurog3-promoter [2] with a reporter construct composed of a chimeric intron; turbo RFP
(Evrogen); a nuclear localization signal (NLS); a Myc-tagC; a bovine growth hormone
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polyadenylation signal (bGH-PolyA). Transgenic mouse lines were obtained by pronuclear in-
jection of the construct (Transgenic Core Facility, EPFL, Switzerland). Two different lines were
obtained initially, exhibiting similar levels of RFP signal detectable by a wide-field fluorescent
microscope, and one of the lines was used for this study. All animals were handled humanely
according to the authorized protocols of Switzerland and Denmark.

3-D Live Imaging and Cell Tracking

Dorsal pancreata from E12.5 Pdx1"™/*;tetO-H2B-GFP or Pdx1'™*;tetO-H2B-GFP;Neu-
rog3-RFP were cultured on a fibronectin (Sigma)-coated coverslip, adapted from the previously
published protocol [25]. GFP and RFP were readily detectable under wide-field fluorescent mi-
croscopes. We used a culture medium composed of Medium 199, 10% fetal calf serum, 1%
Fungizone, and 1% penicillin/streptomycin (all from Gibco). After 24 h of culture that enabled
stabilization of explant flattening to approximately 80 pm thick, pancreatic explants were im-
aged at a single-cell resolution using Leica SP5 or SP8 confocal microscopes with a 63X glycerol
immersion objective in a humidified, heated, CO,-controlled chamber. Tiled positions (9 [3x3]
or 12 [3x4] tiles) were scanned in 256x256-280x280 format with around 40 um Z-stack (voxel
size, 0.506x0.506x1.3 pm>-0.880x0.880x1.25 pm”) every 6 min for 18-48 h. The GaAsP hybrid
detection system (Leica HyD™) enabled a substantial reduction of laser power by 62.5% and in-
crease in signal-to-noise ratio resulting in reduced scanning time, compared to conventional
photomultiplier detectors. At each time point, it usually took approximately 5 min and 30 s to
scan 9-12 tiled positions in 3-D. At the end point of image acquisition, the explants were fixed
and prepared for whole-mount immunostaining.

Tiled images were stitched using either Leica AF6000 software or a custom-built Massive
Stitcher plugin (Bioimaging and Optics Platform, EPFL, Switzerland) in Fiji. Imaris (Bitplane,
Switzerland) software was used to track cells and their divisions in 3-D maximum intensity
projection. Once immunostaining was done, NEUROG3" endocrine progenitor cells from
staining images were manually identified on the last frame of time-lapse movies with Pdx1"/*;
tetO-H2B-GFP explants by GFP superimposition. The identified endocrine progenitors were
first back-tracked to monitor their prior divisions. Once a division was observed, the other sis-
ter was forward-tracked to the final frame, and its fate was determined from the immunostain-
ing images. For time-lapse movies from explants with Ngn3-RFP in addition to Pdx1*/*;
tetO-H2B-GFP, RFP" cells were back-tracked, and the fate of each sister was determined by
immunostaining. For the quantification of total cell divisions, due to the technical difficulties
in tracking all Sox9™ cells from the immunostaining, we did not trace all the individual cells
from those 1,628 divisions, but rather subtracted the tracked divisions that produced NEU-
ROGS3 cells from the total number of divisions.

In Vivo Clonal Analysis

Pregnant mice carrying Hnf1bCreER;mT/mG embryos were injected intraperitoneally with
0.175 mg 4-hydroxy (4-OH) tamoxifen (H6278, Sigma Aldrich) at E13.5. 4-OH tamoxifen was
prepared as a 10 mg/mL stock in 90% corn oil and 10% ethanol and diluted to obtain the de-
sired dose. Embryos were harvested at E14.5, and the dorsal pancreas was isolated and sub-
jected to whole-mount immunostaining for GFP, SOX9, and NEUROGS, as indicated below.
The fixation procedure eliminates native GFP and Tomato signals. After whole-mount immu-
nostaining, dorsal pancreata were dehydrated through an ascending methanol series and sub-
jected to clearing in a 1:2 solution of benzyl alcohol to benzyl benzoate (BABB). Cleared
samples submerged in BABB were mounted on glass depression slides and imaged whole-
mount using a Leica SP8 confocal microscope with a 20X oil objective at a 1024x1024 format.
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3-D reconstruction of whole-mount imaged pancreata was performed using Imaris (Bitplane),
enabling detection of recombined clones while preserving the spatial organization of the pan-
creas, thereby ensuring detection of clonal progeny by allowing interclone distance measure-
ments. Two-cell clones were identified in 3-D space, and categorized according to SOX9 and
NEUROGS3 status. Recombined cells were only considered to be of clonal origin if the distance
between recombined cells was less than 30 pm after the tracing period, based on live imaging
data (S8 Fig.). The results were not sensitive to this parameter as using 60 pm as a maximal dis-
tance to be considered as a clone led to the same proportion of the three types of division (S2
Data).

Hnf1bCreER;mT/mG embryos were also used for in vitro clonal analysis by explanting pan-
creata at E13.5 and growing these at the air-liquid interface on 0.4 um filters (Millipore). Ex-
plants were subjected to a 6 h pulse of 25 nM 4-OH tamoxifen in 100% ethanol to induce
labelling at clonal density. Following tracing for 48 h, explants were fixed and subjected to
whole-mount staining and imaging as indicated below.

Immunohistochemistry

Whole-mount immunostaining was performed after live imaging or for pancreata harvested
from the lineage tracing. After fixation with 4% paraformaldehyde (PFA) for 5 min on ice,
samples were washed in phosphate buffered saline (PBS) for 5 min three times. Then, they
were dehydrated through 50% and 100% methanol, and could be stored at —20°C until later
use. When ready, samples were rehydrated through 50% methanol and washing solution,
PBS+0.5% Triton X-100 (Tx100). Throughout the procedure, all the solutions contained 0.5%
Tx100, and all the incubation was undergone in 4°C. After blocking overnight in blocking solu-
tion (1% Bovine serum albumin+0.5% Tx100), samples were incubated with primary antibod-
ies (S7 Table) in blocking solution for 24-48 h. After washing, secondary antibodies were
applied overnight, followed by washing. Alexa fluorophore conjugated secondary antibodies
(Invitrogen) were used. Stained explants were kept in PBS and imaged using a confocal micro-
scope. For quantification from explants, NEUROG3" cells were counted manually, and
H2B-GFP™ cells were counted using a custom-made macro in Fiji.

Immunostaining of frozen sections from E14.5 Neurog3-RFP pancreata was performed as
previously described [6], and images were taken with a Leica DM5500 microscope. Quantifica-
tion was obtained by manually counting immunopositive cells on every sixth section.

Statistical Analysis and Probabilities

Statistical analyses were done by two-tailed Mann-Whitney U-test using GraphPad Prism soft-
ware. Values were presented as the mean + standard deviation.

Supporting Information

S1 Data. Excel spreadsheet containing, in separate sheets, the numerical data and statistical
for Fig panels 10, 1P, 2H, 21, 3N, 30, 3P, 4A, 4B, 4C, 4D, 5E, 5F, 5G, 6, and Model formu-
las.

(XLSX)

S2 Data. Excel spreadsheet containing, in separate sheets, the numerical data and statistical
for Supplementary Fig panels S2, S3C, $4C, $4D, S4E, S5A, S5B, S6B, S7A, S7B, S7C, S7D,
S8, and other data.

(XLSX)
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S1 Fig. 3-D live imaging of dividing cells in pancreatic explants. (A-E) Still images of 24-h
live imaging in 3-D maximum intensity projection from S1 Movie, showing an overall growth
of explant and cell divisions. Numbering denotes elapsed time in h:min. (F-I) Images in 3-D
projection of fixed explant with native GFP (G) and immunostained for NEUROG3 (H) and
SOX9 (1). Inset shows NEUROG3™ cells (H, nuclear signal; arrowheads) in high magnification.
Channels in (H) and (I) are masked by native GFP channel (G) to exclude non-specific back-
ground in mesenchymal regions. (J-O) Images in 3-D maximum intensity projection of immu-
nostained control explant without imaging and laser exposure. The overall morphology after
48 h of culture, equivalent to 24-h live imaging, reveals that the epithelium branches (J). The
white square is an area zoomed in (K-O). Cells in the trunk region are differentiating into
NEUROG3" endocrine progenitors (M, nuclear signal). The epithelium is intact as shown by
E-CADHERIN staining (M), and branching ducts and acini are apically polarized as revealed
by aPKC staining (O). Arrowheads in (K) indicate endocrine cell clusters. The blue channel
(M) is masked by the native GFP channel (L) to exclude non-specific background in mesenchy-
mal regions. A Z-stack is shown in S2 Movie (J-O). Scale bars, 50 um.

(TTF)

S2 Fig. NEUROG3" endocrine progenitor generation is more efficient in vivo than in vitro.
Comparison of two-cell clone frequency distribution from in vivo clonal analysis (left column,
n = 244), and in vitro clonal analysis (right column, n = 96) using E13.5 HnflbCreER;mTmG
explants cultured on filters.

(TIF)

S3 Fig. Neurog3-RFP transgenic line. (A) Construct. A 7.6 kb Neurog3 promoter region is
linked to an intron, open reading frame of turboRFP, which contains a nuclear localization sig-
nal (NLS) and a Myc-tagC (Myc), and a bGH-PolyA signal (PolyA). The transgenic construct
injection resulted in two transgenic mouse lines. (B) Optical section of a pancreatic explant
from a Pdx1'™ *;tetO-H2B-GFP;Neurog3-RFP embryo, immunostained for NEUROGS3 (blue),
SOX9 (white) and aPKC (white). The RFP (red) and GFP (green) channels are native signals
from each fluorescent protein. (C) Characterization of Neurog3-RFP in the E14.5 pancreas:
Proportion of RFP" (immunostained for Myc) (red) and RFP~ (white) in NEUROG3™ cells,
and proportion of NEUROG3™, Hormones" (identified by INSULIN [INS] and GLUCAGON
[GCG]), and NEUROG3 /Hormones~ in RFP™ cells. (D) Optical section of E14.5 Neurog3-RFP
pancreas, immunostained for NEUROG3 (cyan), RFP (Orange; immnostained for Myc), and
INS and GCG (Magenta). White arrowheads indicate REP*/NEUROG3" cells, and yellow ar-
rowheads indicate RFP*/NEUROG3 ™ cells. Scale bars, 20 um. Histograms and error bars repre-
sent the mean and standard deviation (n = 4).

(TIF)

$4 Fig. Comparison of Neurog3-RFP transgenic line to Neurog3-EYFP knock-add-on line.
(A) Scheme summarizing the genetic strategy to evaluate Neurog3-RFP fidelity compared to
Neurog3-EYFP. (B) Scheme of imaging and analysis. Pancreatic explants from E12.5 Neuro-
g3-EYFP; Neurog3-RFP embryos are cultured, and 3-D time-lapse imaging is done for over 48
h. Then, EYFP- and RFP-expressing cells are tracked. (C) Quantification of EYFP and RFP
cells at time 0 of time-lapse movies. Note that EYFP*/RFP™ bar (orange) includes cells that are
initially RFP™ but acquire RFP over time, whereas EYFP*/RFP~ bar indicates cells express
EYFP only throughout the movie. All RFP* cells are EYFP™ (brown bar). Histograms and error
bars represent the mean and standard deviation (n = 3). (D) Lag time of RFP onset after EYFP
onset. RFP expression is delayed by 4.7 (+ 1.1) h in EYFP™ cells. (E) Fluorescence intensity of
EYFP and RFP in four cells in time-lapse movies. The green and red lines indicate EYFP and
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REFP signals, respectively. Note RFP signal is delayed by several hours, and both EYFP and RFP
signals have similar trend of increase and decrease over time. See S5 Table for further data.
(TIF)

S5 Fig. Dynamics of Neurog3-RFP during 48-hour time-lapse. (A) Fluorescence intensity of
individual Neurog3-REP cells over time. Different coloured lines indicate individual RFP cells.
(B) Normalized fluorescence of all the RFP signals from (A) and aligned by 25% intensity to
time 0. Black line indicates average intensity of all RFP signals. (C) Estimation of RFP half-life.
Red line indicates the trend of exponential decay. RFP half-life is estimated as 5.3 h.

(TTF)

S6 Fig. Analysis of Neurog3-RFP onset from time-lapse movies. (A) RFP onset time distri-
bution from four time-lapse movie positions (n = 56, 89, 54, and 125). Each circle indicates
onset time of RFP cell. Red, blue, and yellow circles indicate RFP cells arising from asymmetric,
symmetric, and RFP divisions, respectively. (B) Analyses of RFP onset Coefficient of Variance
and sliding window for oscillatory patterns. The Coefficient of Variance of each time-lapse
onset distribution is equivalent to a homogeneous process, which is equal to 1.

(TTF)

$7 Fig. Cell cycle analysis of e14.5 Pdx1'"*/*;tetO-H2B-GFP;Neurog3-RFP pancreata. (A)
Flow cytometry of dissociated pancreatic cells from pooled pancreata from a litter (10 embryos:
2 GFP'/RFP*, 1 GFP", 1 RFP", and 6 negative pancreata) for DNA content by DAPI staining.
(B) Cell cycle analysis of pancreatic progenitors (Pdx1""*'*;tetO-H2B-GFP) by DAPI-stained
DNA content. This panel shows 66.3% of cells in G1/GO0 phase, 29.2% in S phase, and 4.5% in
G2/M phase. (C) Cell cycle analysis of endocrine progenitors (Neurog3-RFP) by DAPI-stained
DNA content. Note 97.2% of cells in G1/GO0 phase, 1.6% in S phase and 1.2 in G2/M phase, as
endocrine progenitors are mostly post-mitotic. (D) Average cell cycle of pancreatic progenitors
(n=3).68.7% % 2.1% of cells are in GO/G1, 26.6% * 2.4% in S phase, and 4.7% * 1.2% in G2/
M phase.

(TTF)

S8 Fig. Distance between two daughters relative to time after division. The x-axis represents
the time between division and NEUROG3 end-point immunostaining. White triangles show
the distance between two progenitor daughters originating from symmetric divisions (P/P),
pink triangles, distance between one progenitor and one NEUROGS3 cell from asymmetric divi-
sions (P/N), and blue triangles, distance between two NEUROGS3 cells from symmetric divi-
sions (N/N). Distance from P/P divisions was measured one frame prior to daughter divisions,
which indicates doubling time between mother and daughter divisions. There is therefore no
data point before 18 h. Regardless of the cell division mode, the distance between daughters in-
creased, as time after division increased (Pearson’s r, 0.81 [P/P], 0.33 [P/N], and 0.27 [N/N]).
All three different modes of division showed statistically significant correlations between
daughter distance and time: P/P division, p = 0.0025, P/N division, p = 0.0012, and N/N divi-
sion, p = 0.016. The grey line indicates 30 pm threshold used for in vivo clonal analysis for two-
cell clone boundaries. 90.2% of all data are under this threshold.

(TTF)

S9 Fig. A model of cell cycle-dependent stochastic priming of progenitors to endocrine fate
accounts for the observed RFP onset dynamics. Monte Carlo simulations of clone expansion
according to the model. Each newly born cell is randomly assigned a cell cycle length from a
Gamma shifted (A) with mean and variance matching the experimentally measured. (B) Distri-
bution of times from division to the priming event for cells stemming from P and L cells. Note
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that in the latter the priming event occurs prior to division. (C) Distribution of times from divi-
sion to the priming event for cells stemming from AD and SD divisions. (D) Distribution of set
times for a reporter with constant delay. (E) Lag time between the reporter onset in sibling
cells. The simulations anticipate a high degree of synchronization. (F-H) Effect of heterogene-
ity in the reporter delay. (F) The distribution of delays of the reporter onset is assumed Gauss-
ian. Variability in the reporter delay has little impact in the distribution of lag times in ACD
and SCD originated cells (G) and in the synchronization of sibling cells (H).

(TIF)

S10 Fig. Model results including cell misclassification. In order to account for the effect of
possible misclassification biases in the distribution of lag times, we performed an in silico mis-
classification experiment. We randomly sampled 11.6% of simulated cells stemming from sym-
metric divisionand classified them as stemming from asymmetric division. The resulting
distribution of reporter onset lag times for this latter group features a tail at low times that
might partly account for the observed (cf. Fig. 4C). This tail in the distribution, however, does
not substantially affect the average lag time.

(TTF)

S11 Fig. Representative in silico clone lineages generated. Temporal evolution of the expan-
sion of five representative clones obtained with Monte-Carlo simulations of the model (g = 0.2,
0 = 0.55). X- axis indicates experimental time. All simulations start at time zero with one pro-
genitor cell (P, green circle) whose cell cycle phase is set uniformly at random and run for

150 h. Progenitor cells continuously divide according to the distribution of cell cycles in S9A Fig.
Stochastic priming events are indicated by red diamonds. Events occurring early following cell di-
vision lead to cells exiting the cell cycle and differentiating (N cells, orange circles). Events taking
place later on lead to primed cells that are already committed to complete the cell cycle (L cells,
yellow circles) and that will give rise to two differentiated post-mitotic cells (N cells).

(TTF)

S1 Movie. Time-lapse movie in 3-D maximum intensity projection of pancreatic epithelial
cells. Pancreas from E12.5 Pdx1'"*/";tetO-H2B-GFP embryo was cultured on a fibronectin-
coated coverslip plate for 24 h prior to live imaging. The explant was imaged in 3-D every 6
min in 12 positions (3x4 tiles), which were stitched after 24 h acquisition. This movie demon-
strates overall expansion of explant and pancreatic progenitor divisions. Time indicates a time-
lapse elapsed time in h:min:s. Frame rate: 10 frames per second (fps).

(MP4)

S$2 Movie. Z-stack of stained pancreatic explant after 48 h of culture. The control explant
was immunostained for endocrine progenitor, NEUROG3 (blue), epithelial membrane marker,
E-CADHERIN (red), and apical membrane marker, aPKC (white). Green channel is native
GFP signal. Lumenized branches of epithelium are visible, and nuclear signal of NEUROG3*
cell are found in the epithelium. Blue channel is masked by native GFP channel to exclude
non-specific back-grounds in mesenchymal region. Frame rate: 10 fps.

(AVI)

$3 Movie. Time-lapse movie exhibiting symmetric (P/P) and asymmetric (P/N) pancreatic
progenitor divisions. Two cell divisions are tracked in this movie (blue spots and red spots).
One daughter of red spot (top; NEUROG3" from immunostaining in Fig. 1G) was back-
tracked from the last frame of the movie, and the other daughter was forward-tracked after the
division was monitored. By referring to immunostaining at the end of the time-lapse imaging
(Fig. 1), blue spotted daughters are symmetrically fated (P/P), as pancreatic progenitors
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(SOX9"), whereas red spotted daughters are asymmetrically fated (P/N), one as pancreatic pro-
genitor (SOX9") and the other as endocrine progenitor NEUROG3"). Pdx1 1TAS
tetO-H2B-GFP signal is presented in white channel. Time indicates a time-lapse elapsed time
in h:min:s. Frame rate: 6 fps.

(MP4)

S$4 Movie. Time-lapse movie exhibiting symmetric (N/N) cell division. At the last frame, one
daughter (red spot; NEUROG3" from the immunostaining, Fig. 1L) was back-tracked and the
other daughter was forward-tracked once the mother division was monitored. Referring back
to immunostaining, the other daughter was NEUROG3", as well, demonstrating symmetric
endocrinogenic division (N/N). Pdx1'™/*;tetO-H2B-GFP signal is presented in white channel.
Time indicates a time-lapse elapsed time in h:min:s. Frame rate: 6 {ps.

(MP4)

S5 Movie. 3-D reconstruction of whole-mount imaged Hnfl1bCreER;mT/mG E14.5 dorsal
pancreas after 24 h of in vivo lineage tracing at clonal density. Imaris software was used to
perform a 3-D reconstruction of dorsal pancreas after masking of background signal in the sur-
rounding mesenchyme. Staining for E-Cadherin (white) enables outlining of the pancreatic ep-
ithelium, while membrane GFP (green) represents labelled clones. After 360° spinning, a SOX9
symmetric two-cell clone is shown in high magnification with SOX9 in blue. Next, a NEU-
ROG3 symmetric two-cell clone is displayed in high magnification, showing NEUROGS3 in
magenta. Frame rate: 15 fps.

(MP4)

$6 Movie. Time-lapse movie exhibiting asymmetric (P/R) cell division from Pdx1'™/*;
tetO-H2B-GFP;Ngn3-RFP pancreatic explant. After the mother division at elapsed time
09:30:00.000 (white spots), one daughter acquires RFP signal at 19:42:00.000, whereas the
other daughter divides at 42:12:00.000. Referring to immunostaining (Fig. 3E,F), the grand-
daughters are progenitors (SOX9"), demonstrating asymmetric (P/R) division. Left panel,
GFP/RFP channels and right panel, RFP channel. Time indicates h:min:s. Frame rate: 6 fps.
(MP4)

$7 Movie. Time-lapse movie exhibiting symmetric (R/R) cell division from Pdx1""/*;
tetO-H2B-GFP;Ngn3-RFP pancreatic explant. After the mother division at elapsed time
08:54:00.000 (white spots), and one daughter turned RFP on at 18:24:00.000 and the other at
20:54:00.000. Subsequent immunostaining revealed that both of RFP" daughters were still
NEUROG3" but SOX9™ (Fig. 3H). Left panel, GFP/RFP channels and right panel, RFP channel.
Time indicates a time-lapse elapsed time in h:min:s. Frame rate: 10 fps.

(MP4)

S8 Movie. Time-lapse movie exhibiting symmetric cell division of Ngn3-RFP cell. In rare
occasions, RFP* cell divides soon after acquiring RFP signal, producing two RFP* daughters
(white spots). Referring to immunostaining, both daughter cells are fated as NEUROG3"
(Fig. 6D). Left panel, RFP channel and right panel, GFP/RFP channels. Time indicates a time-
lapse elapsed time in h:min:s. Frame rate: 10 fps.

(MP4)

$1 Table. Fraction of NEUROGS3 over Pdx1'"*/*;tetO-H2B-GFP cells from immunostain-
ing images after time-lapse imaging.
(DOCX)
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S2 Table. Data from NEUROG3+ cell tracking in time-lapse movies (deltTA/ *s
tetO-H2B-GFP).
(DOCX)

$3 Table. Data from in vivo clonal analysis (HnflbCreER;mT/mG).
(DOCX)

$4 Table. Data from in vitro clonal analysis (HnflbCreER;mT/mG).
(DOCX)

S5 Table. Data from Neurog3-EYFP;Neurog3-RFP explant time-lapse.
(DOCX)

S6 Table. Data from RFP" cell tracking in time-lapse movies (Pdx1 ITA/* totO-H2B-GFP;
Neurog3-RFP).
(DOCX)

S7 Table. Primary antibodies used for immunostainings.
(DOCX)

§1 Text. Supplemental methods.
(DOCX)
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