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Abstract

Angiotensin converting enzyme (ACE) 2 is an important modulator of the renin angiotensin
system (RAS) through its role to degrade angiotensin (Ang) Il. Depletion of kidney ACE2 oc-
curs following kidney injury due to renal mass reduction and may contribute to progressive
kidney disease. This study assessed the effect of diminazine aceturate (DIZE), which has
been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kid-
ney injury due to subtotal nephrectomy (STNx). Sprague Dawley rats were divided into Con-
trol groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day)
for 2 weeks. STNx led to hypertension (P<0.01), kidney hypertrophy (P<0.001) and im-
paired kidney function (P<0.001) compared to Control rats. STNx was associated with in-
creased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01), with
reduced cortical and medullary ACE2 activity (P<0.05), and increased urinary ACE2 excre-
tion (P<0.05) compared to Control rats. Urinary ACE2 activity correlated positively with uri-
nary protein excretion (P<0.001), and negatively with creatinine clearance (P=0.04). In
STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated
with reduced cortical ACE activity (P<0.01), increased cortical ACE2 mRNA (P<0.05) and
increased cortical and medullary ACE2 activity (P<0.05). The precise in vivo mechanism of
action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an
increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity
in either Control or STNXx kidney cortical membranes. It is not yet known if chronic adminis-
tration of DIZE has long-term benefits to slow the progression of kidney disease.

Introduction

Kidney disease is increasing in prevalence and incidence, and is associated with considerable
morbidity and mortality [1]. Over-activation of the renin angiotensin system (RAS) plays a
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major role in the progression of kidney disease, and blockade of the classic arm of the RAS is
recommended as first line therapy [2]. Within the RAS, angiotensin converting enzyme (ACE)
converts angiotensin (Ang) I into the vasoconstrictor, hypertrophic and fibrotic peptide, Ang
I1, which mediates its effects via the angiotensin type 1 receptor (AT1R). In the “alternate” arm
of the RAS, ACE2 [3,4], counterbalances the effects of the classic RAS through degradation of
Ang II, and generation of the antifibrotic and vasodilatory peptide, Ang 1-7 [5].

ACE2 is present in the normal kidney and is localized to the glomeruli, where it is expressed in
podocytes and mesangial cells [6,7], to proximal tubules, and to the collecting ducts and vasa rec-
tae in the medulla [8]. The importance of the level of ACE2 expression in kidney disease causality
come from studies of ACE2 inhibition, which worsened glomerular injury in a mouse model of
type 1 diabetes [9], presumably due to the removal of a degradative pathway for AngII, and from
ACE2 gene knockout mice (KO) with type 1 diabetes, where accelerated kidney injury was ame-
liorated by AT1R blockade [10]. Kidney disease secondary to subtotal nephrectomy (STNX) is as-
sociated with increased kidney ACE and Ang II [11-13], and, depletion of kidney ACE2 activity
in both acute [8] and chronic [14] STNx. Depletion of kidney ACE2 occurs in other models of ex-
perimental kidney disease including 2-kidney, 1-clip hypertension, [15] ischemia reperfusion [16]
and lipopolysaccharide induced renal injury [17]. Taken together the data suggests that imbalance
in the tissue RAS with upregulation of the deleterious ACE/Ang II pathway and loss of the protec-
tive ACE2/Ang 1-7 pathway may predispose to the development and progression of kidney dis-
ease. This concept has led to strategies to replenish ACE2 or to activate ACE2 [18].

Recombinant human ACE2 has been shown to prevent Ang II induced kidney disease and
tubulointerstitial fibrosis [19] and to slow the progression of diabetic nephropathy in the Akita
mouse model of type 1 diabetes by reducing renal Ang II levels and increasing Ang 1-7 [20].
Three activators of ACE2 have been described including resorcinolnaphthalein, 1-[(2-dimethy-
lamino) ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-
one (XNT), [21] and diminazine acetruate (DIZE; C,4H;5N; - 2C4H,;NQO3), an anti-trypanoso-
mal drug [22] that has been reported to have off-target effects to activate ACE2. [23]

In vivo studies report beneficial effects with XNT and/or DIZE in experimental rat models
of arterial hypertension, pulmonary hypertension, myocardial infarction (MI), diabetic heart
disease and hypertensive pregnancy [21,24-27]. For example, 4 week treatment with subcuta-
neous (s.c.) XNT reduced blood pressure, improved cardiac function and reversed cardiac and
renal fibrosis in spontaneously hypertensive rats (SHR) [21], and 30 days of daily oral XNT
ameliorated diabetes-induced cardiac dysfunction in rats [24]. With regard to DIZE, a 4 week
s.c. infusion prevented the development of experimental pulmonary hypertension in rats [27]
and improved cardiac remodelling in rats with MI. [26]

There are no studies of ACE2 activators in experimental kidney disease. We therefore exam-
ined the effect of 2 weeks treatment with DIZE on blood pressure, kidney function and kidney
ACE and ACE2 activity in Control and STNx rats. In STNx rats, DIZE had no effect on blood
pressure or kidney function but decreased cortical ACE activity, and ameliorated the reduction
in kidney ACE2 activity. In ex vivo studies, DIZE had no effect to increase ACE2 activity in ei-
ther Control or STNx kidney cortical membranes.

Methods
Experimental Protocol

Experimental procedures were performed in accordance with the National Health and Medical
Research Council of Australia guidelines for animal experimentation and were approved by the
Animal Ethics Committee, Austin Health (#A2010/03903). Female Sprague Dawley (SD) rats
(body weight of 190-200g) were housed in a 12:12h light-dark cycle, with ad libitum food
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containing 0.4-0.6% NaCl (Norco) and water. STNx (n = 20) was performed as described previ-
ously [8,28,29], with a right nephrectomy, and ligation of all but one of the extra-renal branches
of the left renal artery. STNX rats were randomly allocated to receive DIZE (2 weeks s.c. 15mg/
kg/day, n = 10) via osmotic minipump (Model # 2002, Alzet, Cupertino, CA, USA), or to Vehicle
(n = 10). The dose and mode of delivery of DIZE is the same as previously published studies
[26,27]. Control rats received DIZE (2 weeks s.c. 15mg/kg/day, n = 8) or Vehicle (n = 10). On
day 13, rats were housed in metabolic cages, and 24h water intake and urine volume measured,
and a urine sample collected for the measurement of creatinine (Cr), sodium and ACE2.

On day 14, rats were anaesthetised with intraperitoneal (i.p.) sodium pentobarbitone (60 mg/
kg/body weight), and systolic blood pressure was determined using a catheter inserted into the left
carotid artery. Rats were then killed by a lethal dose of sodium pentobarbitone, and the remnant
kidney was removed, weighed, snap frozen in isopentane and stored at -80°C for activity assays.

Drugs

Sodium pentobarbitone was obtained from Boehringer Ingelheim, Artarmon, NSW, Australia),
DIZE from Sigma-Aldrich Australia.

Biochemical analysis

Urinary and plasma Cr and sodium were measured using an autoanalyser (Beckman Instru-
ments, Palo Alta, CA, USA).

Kidney ACE activity and kidney, urine and plasma ACEZ2 activity

Kidneys were dissected into cortex and medulla, and membrane preparations performed as de-
scribed previously [8]. Kidney ACE activity was measured using an enzymatic assay as described
previously [29]. Briefly, 100pg of membrane protein was incubated at 37°C with the ACE sub-
strate hippuryl-His-Leu (1mM) in a total volume of 50pl in the presence and absence of EDTA
(10uM) for 30 min. The rate of substrate cleavage was determined by comparison to a standard
curve of the product His-Leu and expressed as nmole of substrate cleaved/mg of protein/hr.

Kidney, urine and plasma ACE2 activity was measured using an enzymatic assay as described
previously [28]. Briefly, 100pug of membrane protein, 50yl of urine or 20pl of plasma was incubated
in duplicate with an ACE2-specific quenched fluorescent substrate (QFS), (7-methoxycoumarin-
4-yl)-acetyl-Ala-Pro-Lys (2, 4-dintirophenyl); Auspep, Parkville, Victoria, Australia), with or with-
out 100uM EDTA [28]. The rate of substrate cleavage was determined by comparison to a standard
curve of the free fluorophore, 4-amino-methoxycoumarin (MCA; Sigma, MO, USA). For kidney
ACE2 activity, data is expressed as nmole of substrate cleaved/mg of protein/hr, for urinary ACE2
activity, the data was corrected for 24hr urine excretion and results are expressed as nmole of sub-
strate/ml in 24hr, and plasma ACE2 is expressed as nmole of substrate/ml of plasma/hr.

Ex vivo effect of DIZE on ACE2 activity in kidney cortex

Kidney cortex membranes from STNx (n = 4) and Control (n = 4) rats were incubated with
varying concentrations of DIZE (0.1mM, 0.1uM and 0.1nM) or control. ACE2 activity was
measured as described above and results expressed as nmole of substrate cleaved/mg of pro-
tein/hr after 90 minutes of incubation.

Kidney cortex ACE2 mRNA

Gene expression of ACE2 in kidney cortex homogenates was determined by real time quantita-
tive RT-PCR (reverse transcription-PCR) [30]. This was performed using the TagMan system
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based on real-time detection of accumulated fluorescence (ABI Prism 7700; PerkinElmer) as de-
scribed previously [30]. Gene expression was normalized to 18S mRNA and reported as ratios
compared with the level of expression in Control rats, which were given an arbitrary value of 1.

Kidney cortex ACE2 protein

Western blotting for ACE2 was performed as previously described [31]. Renal tissue from rat
was minced, resuspended in buffer containing 10mM HEPES, 150mMNaCl, ImM EGTA,
5mM MgCIl2, and 0.02% NaN3, 5% Triton x100 pH 7.4 to which 0.5ug/mL pepstatin (Sigma,
St Louis, Mo., USA), 0.25mg/mL leupeptin (Sigma, St Louis, Mo., USA), 0.1mg/mL benzami-
dine (Sigma, St Louis, Mo., USA) and 0.1mg/mL bacitracin (Sigma, St Louis USA) and homog-
enized at 13,000 rpm with the Ultra-Turrax (Janke and Kunkel IKA, Labortechnik, Germany)
and centrifuged at 1000g at 4°C for 30 min. The resultant supernatant was harvested and stored
in aliquots at -80°C.

Samples (100ug protein) were loaded and run on a 12% sodium dodecyl sulphate (SDS)-
denaturing gel system and were trans-blotted onto nitrocellulose filters (Hybond P, Amer-
sham-Pharmacia biotech, Buckinghamshire, UK) using a transfer tank at 100V for 60 minutes.
At the end of the transfer the filters were blocked with 1% BSA overnight at 4°C with gentle
rocking. The primary ACE2 antibody (rabbit polyclonal against ACE2 residues 489-508 donat-
ed by Millennium Pharmaceuticals, Cambridge, MA, USA) was diluted 1/2000 in 1% BSA/TBS
and incubated for 2 hours at room temperature. Non-specific staining was tested with 1% non-
immunized rabbit serum. Loading was standardised for the renal expression of B-actin
(Abcam, Cambridge, MA, USA) concentration of 1/5000 in 1% BSA/TBS. The membrane
(PVDF—FL, Millipore, Massachusetts, USA) was then washed thoroughly three times in wash
solution (TBS/Tween). Positive bands were developed using the Western Blotting Analysis sys-
tem (Amersham-Pharmacia Biotech, Buckinghamshire, UK), in which HRP-labelled secondary
sheep anti-rabbit antibody (Chemicon, Temecula, Ca, USA) was diluted at 1/2000 and incubat-
ed for 1 hour at room temperature. Exposed Biomax film of bands representing ACE2 protein
and B-actin were quantified on an Automated Imaging System (Imaging Research Inc., St
Catherines, Ontario, Canada).

Statistical Analysis

Data are presented as mean + standard error of mean (SEM). P values were calculated using a
two-way analysis of variance (ANOVA), followed by post hoc Bonferroni tests (GraphPad
Prism 6). The Pearson correlation coefficient was determined for the associations between vari-
ables using the data from untreated Control and STNx rats. Two-tailed P-values <0.05 were
considered significant.

Results
STNx and renal function

Table 1 shows the changes in physiological and biochemical parameters after STNx and the ef-
fect of DIZE treatment. Following STNX, rats had poor weight gain (P<0.001), elevated mean
arterial pressure (P<0.01) and hypertrophy of the remnant kidney (P<0.001). Renal im-
pairment was present with increased urinary protein (P<0.001) and reduced creatinine clear-
ance (CrCl; P<0.001) compared with Control rats. STNx rats had increased water intake
(P<0.01) and urine volume (P<0.001), and increased sodium excretion (P<0.001). In rats
with STNx, DIZE had no effect on blood pressure, urine output or renal function. The only ef-
fect of DIZE in Control rats was to reduce urine output.
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Table 1. End-organ weights, physiological and RAS parameters, and urine biochemistry.

Body weight (g)

Mean arterial pressure (mmHg)
Renal Parameters

Left kidney weight (g)

Left kidney/body weight (g/100g)
Water intake (ml/100g/24hr)
Urine output (ml/100g/24hr)
Urinary protein (mg/100g/24hr)
Plasma creatinine (umol/L)
Creatinine clearance (ml/min)
Sodium excretion (mmol/24hr)
RAS Parameters

Plasma ACE2 activity (nmol/ml/hr)
Cortical ACE2 mRNA (AU)
Cortical ACE2 protein (AU)

Control Subtotal nephrectomy

Vehicle DIZE Vehicle DIZE
(15 mg/kg/day) (15 mg/kg/day)

(n=10) (n=8) (n=10) (n=10)
239+ 3 230+ 3 207 £ 8*** 205+ 9
111+£5 106 £ 3 156 + 11** 155+ 4
0.86 + 0.01 0.84 £ 0.01 1.01 +£ 0.03*** 1.00 + 0.03
0.36 + 0.01 0.37 £ 0.01 0.49 £ 0.02%** 0.49 £ 0.02
11.5+1.2 9.7+0.9 24.2 £ 4.0%* 20.1 £ 2.1
43+0.4 27+04 # 14.3 £2.1%** 13.1+2.3
418+29 39.6+6.1 61.2 +6.6%** 59.6 + 4.1
18+ 1 17 £ 1 54 + 7%*%* 44+ 4
2.20+£0.25 2.03+0.19 0.98 £ 0.14*** 1.10+0.11
0.30 £ 0.03 0.25+0.04 0.87 £ 0.14*** 0.80 + 0.08
5.7+0.5 52+0.3 6.9 £ 0.3* 6.7+0.4
1.0£0.2 1.5+£05 0.4 £0.1** 1.0+0.3#
1.0+£0.2 0.9 0.1 0.5%0.1 0.8+ 0.1

Data expressed as mean+SEM. AU, arbitrary units;

*P<0.05
**P<0.01

***P.<0.001 disease effect (Control vehicle vs. STNx Vehicle).

#P<0.05 treatment effect (Vehicle vs. DIZE)

doi:10.1371/journal.pone.0118758.t001

Kidney cortex and medulla ACE and ACE2 activity

ACE activity was 5-fold higher in the cortex of STNx compared to the Control cortex (Fig. 1A;
P<0.01), but was unchanged in the medulla (Fig. 1B). DIZE treatment was associated with a
significant reduction in ACE activity in the cortex (Fig. 1A; P<0.001) with no effect in the me-
dulla (Fig. 1B). DIZE had no effect on kidney ACE activity in Control rats.

ACE2 activity was reduced in the cortex and medulla following STNx (Fig. 1C, D, P<0.05)
and was increased in both regions following treatment with DIZE. DIZE had no effect on kid-
ney ACE2 activity in Control animals.

We analysed the balance between ACE and ACE2 activity in the kidney. STNx was associat-
ed with an increase in the ACE/ACE2 activity ratio (0.55+0.14 vs. 3.85+0.77; P<0.01) that was
reduced with DIZE (3.85+0.77 vs. 0.79+0.19; P<0.01), indicating a shift to a more favourable
balance of the enzymes.

Kidney cortex ACE2 mRNA and ACE2 protein

Cortical ACE2 mRNA was significantly reduced in STNx rats compared to Control rats

(Table 1; P<0.01). DIZE treatment was associated with increased cortical ACE2 gene expres-
sion in STNx (P<0.05) but not in Control rats. Cortical ACE2 protein levels were not different
between STNx and Control rats, and DIZE had no effect on ACE2 protein (Table 1).
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Fig 1. DIZE increases kidney ACE2 activity in subtotal nephrectomy rats. ACE and ACE2 activity in kidney cortex (A and C) and medulla (B and D) of
Control (vehicle, n = 10; DIZE, n = 8) and STNx (vehicle, n = 10; DIZE n = 10) rats. Data expressed as meantSEM. *P<0.05, **P<0.01, ***P<0.001
disease effect (Control vehicle vs. STNx Vehicle) and # P<0.05, ## P<0.01 treatment effect (Vehicle vs. DIZE)

doi:10.1371/journal.pone.0118758.9001

Plasma and urinary ACE2 activity

Plasma ACE2 activity was significantly increased in STNx compared to Control rats (Table 1;
P<0.05) and did not change with DIZE treatment.

Urinary ACE2 activity excretion was increased in STNx compared to Control rats (Fig. 2A;
P<0.05) and unchanged with DIZE treatment. Increased urinary ACE2 with STNx was signifi-
cantly correlated with increased urinary protein (Fig. 1B; P<0.001) and reduced CrCI (Fig. 2C;
P =0.04). Cortical ACE2 was also associated with impaired renal function with reduced cortical
ACE2 correlating with reduced CrCl (Fig. 2D; P = 0.04). Furthermore, the reduction in cortical
ACE2 activity (Fig. 2E; P = 0.04), but not medullary ACE2 (Fig. 2F), was associated with in-
creased urinary ACE2, suggesting shedding of cortical ACE2 into the urine.

Ex vivo effect of DIZE on ACE2 activity in kidney cortex

ACE2 activity was measured in the kidney cortex from Control and STNx rats in the absence
and presence of DIZE at varying concentrations (0.1mM, 0.1uM and 0.1nM). As shown in
Fig. 3, there was no effect of DIZE to increase ACE2 activity in either Control or STNx renal
cortical membranes.
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Discussion

ACE2 is an important regulator of kidney function, but its role in kidney disease, and in particu-
lar that of non-diabetic origin has not been fully investigated. The results of this study confirm
and extend our previous work that acute kidney injury with STNx leads to impaired renal func-
tion, increased cortical ACE activity and reduced ACE2 activity in the medulla and cortex [8,14].
In this 2 week study, s.c. infusion of DIZE, had no effect on blood pressure or kidney function in
STNx rats, but was associated with a significant reduction in cortical ACE activity, and increased
cortical ACE2 mRNA abundance and ACE2 activity. The ex vivo studies revealed that DIZE had
no effect to increase ACE2 activity in either Control or STNx kidney cortical membranes.

The relative tissue balance of the deleterious ACE/Ang II pathway and the protective ACE2/
Ang 1-7 pathway may be an important determinant of the in vivo effect of DIZE on ACE2 ex-
pression/activity. For example, DIZE had significant effects on ACE2 expression and activity in
STNx rats with kidney RAS imbalance, but no effect on kidney ACE2 expression or activity in
Control rats with a balanced RAS. MI is also associated with activation of the RAS with in-
creased cardiac ACE activity and reduced ACE2 activity [26]. In rats with MI, 4 weeks of s.c
DIZE improved cardiac remodelling in association with a significant increase in cardiac ACE2
mRNA expression and activity and a reduction in ACE mRNA expression and activity; these
effects were negated by concurrent use of an ACE2 inhibitor, C-16 [26]. In rats with secondary
pulmonary hypertension, characterized by a reduction in lung ACE2 activity, s.c. DIZE pre-
vented the development of pulmonary hypertension in association with a significant increase
in lung ACE2 activity [27]. Most recently, the effect of DIZE on the formation of Ang II-
induced abdominal aortic aneurysms (AAA) was examined in male hypercholesterolemic
(Ldlr") mice on either a wild-type or ACE2 deficient (Ace2”™) background [32]. Twenty-eight
days of intramuscular DIZE (30mg/kg) led to significant increases in kidney ACE2 mRNA and
ACE2 activity (measured by conversion of Ang II to Ang 1-7) in wild-type mice, and reduced
the incidence and severity of Ang II-induced AAA. As DIZE did not produce any of these ef-
fects in ACE2-deficient mice, the results do support an ACE2-dependent mechanism of action
for DIZE [32]. It remains unclear from the in vivo studies whether DIZE has direct effects to
stimulate ACE2 activity, or whether the increase in ACE2 activity is secondary to its effects in-
crease ACE2 mRNA abundance.

In vitro studies of DIZE on ACE2 activity have produced conflicting results [23,27,33,34].
The off target effects of DIZE to activate ACE2 were first reported by Kulemina et al. [8] who de-
scribed that titration of ACE2 with DIZE (0.01-1000 uM) resulted in a biphasic dose-response
curve; at low concentrations, the ACE2 was activated, whereas at high concentrations, it was par-
tially inhibited. Shenoy et al [27] reported that incubation of human rACE2 with DIZE (100pM)
led to increased enzymatic activity, whilst Haber et al [33] reported that neither XNT nor DIZE
increased the enzymatic activity of mouse or human rACE2. Using mouse and rat kidney cortex
lysates, Haber et al [33] also showed that neither XNT nor DIZE had a stimulatory effect on
ACE2 activity, and that high concentrations of XNT and DIZE had an inhibitory effect on ACE2
activity. In the ex vivo experiments in the current study, we found no effect of DIZE to either in-
crease or decrease ACE2 activity in kidney cortical membranes from Control or STNX rats.

In this study, as in studies in pulmonary hypertension, [27] DIZE treatment was associated
with reduced tissue ACE activity, which is likely to be an indirect effect due to an improvement
in tissue injury and therefore less ACE activation. This hypothesis is consistent with the finding
that the degree of ACE “inhibition” with DIZE was much less than that observed with an ACE
inhibitor such as ramipril, which causes almost 100% ACE inhibition [8] and the lack of effect
of DIZE on blood pressure. [8,14]. In addition, in vitro studies have reported that DIZE had no
effect on the catalytic activity of ACE [23].
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Fig 3. Ex vivo DIZE treatment had no effect on kidney ACE2 activity. Effect of DIZE (0.1mM, 0.1uM and 0.1nM) on endogenous ACE2 activity in kidney
cortical membranes (100ug per well) from Control (n = 4) and STNx rats (n = 4). Data expressed as meant+SEM.

doi:10.1371/journal.pone.0118758.g003

We report for the first time that reduced cortical ACE2 activity was associated with in-
creased urinary ACE2 activity levels, and that urinary ACE2 excretion correlated strongly with
the degree of kidney disease as assessed by proteinuria and creatinine clearance. The source of
ACE2 in the urine is thought to be the proximal tubules [35,36] and our finding that urinary
ACE2 activity was negatively correlated with cortical ACE2 but not medullary ACE2 activity
supports the tubular origin of urinary ACE2. Urinary ACE2 reflects cleavage of membrane-
bound ACE2 by the proteinase ADAM17 (a disintegrin and metalloprotease) [37]. Previous
studies have shown that inhibition of ADAM17 reduces renal fibrosis in angiotensin
II-induced kidney disease in mice [38], suggesting that ADAM17 and its action to cleave ACE2
may play an important role in kidney disease. The intrarenal balance of the RAS components is
critical in terms of disease progression, and loss of ACE2 from the tubules into urine may con-
tribute to ongoing tissue injury and disease, through loss of a degradative pathway for Ang II
and possibly decreases in Ang 1-7.

It is unknown if urinary ACE2 has potential as a biomarker of kidney damage in humans.
Current reports focus on either ACE2 expression/activity in kidney biopsies or on ACE2 ex-
pression/activity in urine samples, with no studies to investigate both aspects. Tubulointersti-
tial ACE2 mRNA was decreased in patients with hypertensive nephrosclerosis and correlated
with the degree of renal failure [39], and kidney ACE2 mRNA was reduced patients with type 2
diabetes and overt nephropathy [40]; neither study measured urinary ACE2 activity. It has
been reported that urinary ACE2 was increased in patients with type 1 diabetes [41], type 2 dia-
betes [42], renal transplants [43], and chronic kidney disease [37], but these studies did not as-
sess kidney ACE2 expression/activity.

Conclusion

In summary, STNXx rats have increased cortical ACE activity, and reduced cortical and medul-
lary ACE2 activity with increased urinary ACE2 activity. Two weeks treatment with DIZE
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decreased cortical ACE activity and ameliorated the reduction in kidney ACE2 expression/ac-
tivity, but had no effect to improve kidney function. The precise in vivo mechanism of action of
DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in
ACE2 mRNA abundance. Long-term studies with DIZE in kidney disease are warranted, ideal-
ly in combination with RAS blockade to assess if there is an incremental benefit of such a strat-
egy to prevent progression to chronic kidney disease. Although DIZE is used for the treatment
of trypanosomiasis or sleeping sickness, specific compounds that selectively amplify ACE2 ac-
tivity will be needed, if such an approach is to be useful in the clinical context.
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