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Abstract Microcell-mediated chromosome transfer
(MMCT) is a technique to transfer a chromosome from
defined donor cells into recipient cells and to manipulate
chromosomes as gene delivery vectors and open a new
avenue in somatic cell genetics. However, it is difficult
to uncover the function of a single specific gene via the
transfer of an entire chromosome or fragment, because
each chromosome or fragment contains a set of numer-
ous genes. Thus, alternative tools are human artificial
chromosome (HAC) and mouse artificial chromosome
(MAC) vectors, which can carry a gene or genes of
interest. HACs/MACs have been generated mainly by
either a “top-down approach” (engineered creation) or a
“bottom-up approach” (de novo creation). HACs/MACs
with one or more acceptor sites exhibit several character-
istics required by an ideal gene delivery vector, including
stable episomal maintenance and the capacity to carry
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large genomic loci plus their regulatory elements, thus
allowing the physiological regulation of the introduced
gene in a manner similar to that of native chro-
mosomes. The MMCT technique is also applied
for manipulating HACs and MACs in donor cells
and delivering them to recipient cells. This review
describes the lessons learned and prospects identi-
fied from studies on the construction of HACs and
MAC s, and their ability to drive exogenous gene
expression in cultured cells and transgenic animals via
MMCT. New avenues for a variety of applications to
bio-medical challenges are also proposed.
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Abbreviations

6-TG 6-thioguanine

BAC Bacterial artificial chromosome

BRCA-1 Breast cancer susceptibility gene I

BRMSI1 Breast cancer metastasis-
suppressor 1

CENP-A Centromere protein A

CHO Chinese hamster ovary

CRISPR Clustered regulatory interspaced
short palindromic repeat

CSN2 Beta-casein

CYP3A Cytochrome P450, family 3,
subfamily A

CYP3A-HAC CYP3A cluster-containing HAC
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DMD
DS
DYS-HAC

EGFP

ES
FVIII
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GATAIs
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HAC
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hCFs
hiMSC

HLA
HPRT

iHAC
iPS
LITI(KCNQ1OT1)

MAC
MEFs
mGS cells
MI-HAC
MMCT

MUC4
MV
NBS1
OPN
PAC
PDLs
PEG
PITX1
SATAC

scFv
SIM

ssODN
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Duchenne musclular dystrophy
Down syndrome

Genomic dystrophin locus-
containing HAC

Enhanced green fluorescent
protein

Embryonic stem

Human factor VIII
Galactosylceramidase
GATA-binding protein 1 shorter
isoform

GTP cyclohydrolase 1
Hemagglutinin/fusion protein
Human artificial chromosome
Hypoxanthine-aminopterin-
thymidine

Human chromosome fragments
Human immortalized
mesenchymal stem cell

Human Leukocyte Antigen
Hypoxanthine phosphoribosyl
transferase

iPS cell-inducible HAC
Induced pluripotent stem
Imprinted antisense RNA in the
human KvLQT1

Mouse artificial chromosome
Mouse embryonic fibroblasts
Multipotent germline stem cells
Multi-integrase HAC
Microcell-mediated chromosome
transfer

Mucin 4

Measles virus

Nijmegen breakage syndrome 1
Osteopontin

P1-derived artificial chromosome
Population doubling levels
Polyethylene glycol

Paired-like homeodomain 1
Satellite-DNA-based artificial
chromosome

Single-chain variable fragment
Simultaneous or sequential
integration of multiple gene-
loading vectors

Single-strand donor
oligonucleotides

Transactivator like effector

TALENSs Transactivator like effector
nucleases

TAM Transient abnormal myelopoiesis

TAR Transformation-associated
recombination

Tc mouse Trans-chromosomic mouse

tet-O Tetracycline operator

T{R Transferrin receptor

Ts21 Trisomy 21

VHL Von Hippel-Lindau tumor
suppressor

YAC Yeast artificial chromosome

ZFP Zinc finger protein

ZFNs Zinc finger nucleases

Microcell-mediated chromosome transfer
Dawn of MMCT

Fournier and Ruddle performed for the first time
microcell-mediated chromosome transfer (MMCT)
(Fournier and Ruddle 1977). Several research groups
have published seminal studies on the construction of
mouse A9- or Chinese hamster ovary (CHO)-microcell
hybrid libraries containing a single human chromo-
some tagged with a selectable genetic marker for
MMCT (Fig. 1). A human chromosome tagged with
a dominant selectable gene in the microcell-hybrids
can be transferred to other cells. Therefore, the
microcell hybrids provide valuable resources not on-
ly for mapping and cloning human genes but also for
functional studies of specific genes and the production
of animal models (Tomizuka et al. 1997; Shinohara et al.
2001; Meaburn et al. 2005; Devoy et al. 2011).

Briefly, donor cells (normally mouse A9 fibroblast
cells and CHO) cells are induced to multinucleate their
chromosomes (referred to as micronucleus formation).
Micronuclei are then forced through the cell membrane
to create microcells by centrifugation in the presence of
cytochalasin B which disrupts the cytoskeleton (Ege and
Ringertz 1974). These microcells can be fused to a
recipient cell line in the presence of polyethylene glycol
(PEG) which acts as a dehydrating agent and fuses
plasma membranes. Thus, MMCT consists of two tech-
nologies, cell fusion and multinucleation. Since the
basic procedure was established in 1970s, the essential
part of the procedure has not changed.
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Fig. 1 Microcell-mediated chromosome transfer (MMCT) for
generation of monochromosomal hybrid cells and trans-
chromosomic mice. Construction of mouse A9 hybrid cells
carrying a single human chromosome by MMCT: the first
step involves marking the human chromosome in the fibro-
blasts with a selection marker and fusing the fibroblasts with
mouse A9 cells. The second step is the introduction of the
marked human chromosome from the donor hybrid to the

The formation of multi-micronuclei is thought to be
related to the condensed, scattered chromosomes that
result from mitotic arrest caused by microtubule inhib-
itors. These scattered chromosomes reportedly serve as
sites for the reassembly of nuclear membranes, forming
micronuclei in which chromosomes decondense before
returning to a pseudo-G1 phase (Crenshaw et al. 1981).

Cancerous or spontaneous micronuclei, which serve
as an indicator of chromosomal instability, are small
extra nuclei apart from primary nuclei in the same cell
and are thought to be formed in an essentially similar
manner to multi-micronuclei formed in A9 and CHO
cells. However, multi-micronuclei and cancerous
micronuclei differ in their number in a cell. The mech-
anism to create two different types of micronuclei in a
cell-type-dependent manner remains unclear. Our obser-
vation suggests that A9 and CHO cells undergo repeti-
tive hyperploidization in the presence of colcemid, and
recurrent micronucleation occurs during transition from
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recipient A9 cells. The procedure can be divided into several
parts, as follows: micronucleation of the donor hybrids by
colcemid treatment, enucleation in the presence of cytochalasin
B, purification of the microcells, fusion with the recipient A9
cells, drug selection of the microcell hybrids, identification of
the transferred human chromosome by fluorescence in situ
hybridization, and DNA analyses. This figure was produced
using Servier Medical Art (http://www.servier.com)

metaphase to pseudo-G1 to form smaller and more numer-
ous micronuclei (Nakayama et al. 2015), whereas cancer-
ous micronuclei formation is often associated with cell
death. Thus, it appears that A9 and CHO cells have a
system to escape from cell death provoked by mitotic error.

A variety of applications of MMCT technique

MMCT technique has been applied to various types of
studies since the 1970s. First, MMCT has contributed to
mapping of genes whose defects resulted in clear cellular
phenotype as shown by functional complementation
studies (Meaburn et al. 2005; Doherty and Fisher 2003).
This type of application includes gene mapping/isolation
for tumor suppression (Oshimura and Barrett 1997),
DNA repair (Matsuura et al. 1997, 1998;
Horibata et al. 2004), metastasis, telomerase
regulation, and genomic instability (Matsuura et al.
2006), mitochondrial disorders (Seyda et al. 2001), and
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lysosomal storage diseases (Kurimasa et al. 1993).
Second, it has been applied to recapture and analysis of
specific chromosome status in situations such as aneu-
ploidy and Down syndrome (DS) and in epigenetics
(Devoy et al. 2011; O’Doherty et al. 2005; Kazuki et al.
2014). Third, it has been applied to chromosome function
study such as kinetochore assembly, telomere function,
and high-order chromosome architecture (Wakai et al.
2014; Kouprina et al. 2014). Fourth—a new type of
application of MMCT of mammalian artificial chromo-
some vectors—has recently been reported such as hu-
manized animal transgenesis and cell and gene therapy,
multi-reporter assay system, and high-yield protein pro-
duction (Kazuki and Oshimura 2011; Oshimura et al.
2013). This fourth application will be further discussed
later, while here we will now present representative ap-
plications of MMCT of the other three types.

Identification of tumor, metastasis, and telomerase
Suppressor genes

The studies using MMCT technique applied to human
cancer cell lines have shown that tumor suppressor
genes locate on Chr. 1, 3-13, 17-19, 22, and X
(Oshimura and Barrett 1997; Doherty and Fisher
2003). The transfer of these chromosomes leads to
growth suppression in vitro or decreased tumorigenicity
in vivo. Since it is difficult to obtain and analyze the
cells with growth suppression, revertants with sponta-
neous deletion on the transferred chromosome have
often been used to identify the responsible region(s).
Although the responsible genes on each chromosome
have not yet been identified in many cases, recent
advances in DNA sequencing technology would help the
identification. Also, a combination of RNAi/genome-
editing techniques (Joung and Sander 2013; Sander and
Joung 2014) for knockdown/knockout of candidate
gene(s) on the defined chromosome with MMCT tech-
nique would be useful. For example, the genes or regions
on the transferred chromosome, whose knockdown or
knockout in chromosome-transferred cells reverse the
phenotypes of growth and tumorigenicity can be candi-
dates for tumor suppressor genes/regions.

As well, metastasis-suppressor genes have been
reported, which locate on Chr.1, 2, 6-8, 10-13, 16,17,
and 20 (Doherty and Fisher 2003; Cheung et al. 2009;
Ichikawa et al. 1994). Breast cancer metastasis-suppressor
1 (BRMSI1), encoded at chromosome 11q13, has been
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identified as a breast carcinoma metastasis-suppressor
gene (Seraj et al. 2000).

Telomerase, a ribonucleoprotein enzyme that main-
tains telomere length, is crucial for cellular immortali-
zation and cancer progression. The loss of the activity
sometimes leads to growth suppression in cancer cell
lines. By essentially the same approach as identification
of tumor suppressor regions, the identification of telo-
merase suppressor genes has been performed (Oshimura
and Barrett 1997; Tanaka et al. 1998; Nishimoto et al.
2001; Kugoh et al. 2003; Abe et al. 2010). To date,
telomerase suppressor genes have been found on almost
all human chromosomes. Notably among the studies,
Kugoh et al. has successfully identified PITX1—a
member of the bicoid-related homeobox transcription
factors—as a telomerase suppressor gene located on
human chromosome 5 (Qi et al. 2011). The authors
performed complementary DNA (cDNA) microarray
analysis using parental telomerase-positive melanoma
cells, telomerase-negative cell hybrids with a transferred
human chromosome 5, and its revertant clones with
reactivated telomerase. Thus, this study supports the
notion that a combination of the latest biotechnology
with the MMCT technique can lead to functional iden-
tification of genes as mentioned above.

Aneuploidy

A change in chromosome number, referred to as aneu-
ploidy, is commonly observed in tumors. The observa-
tion that chromosomal aneuploidies arise in a tumor
stage-specific manner suggests that they play a funda-
mental role in tumorigenesis. However, the relationship
between aneuploidy and cancer remains unclear. For
example, it is not known whether chromosomal aneu-
ploidy affects chromosome-specific gene expression
and whether it also affects gene expression on other
chromosomes. MMCT methodology allows one to
model specific chromosomal aneuploidies in cancer
cells.

Three different chromosomes have been introduced
into karyotypically diploid, colorectal cancer cells, and
into immortalized normal breast epithelial cells
(Upender et al. 2004). Their study showed that regard-
less of chromosome or cell type, chromosomal trisomies
lead to a significant increase in the average transcrip-
tional activity of the trisomic chromosome. In
addition, this increase affects the expression of numer-
ous genes on other chromosomes as well, suggesting
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that a complex pattern of transcriptional dysregulation
exists in aneuploidy. Also, our group had established
aneuploidy in mouse embryonic stem (ES) cells by
transferring various human chromosomes or spontenous
mouse chromosmal abnormalities and revealed a com-
mon cluster of down-regulated genes independent of the
transferred human chromosome, of which eight known
genes are related to cell proliferation, neurite outgrowth,
and differentiation (Kai et al. 2009). This suggests that
autosomal imbalance may commonly lead to dysregu-
lation of apoptosis.

Recently, in vitro chromosome abnormality syn-
drome models with a genetic alteration were generated
by combining chromosome transfer and genome-editing
technologies (Kazuki et al. 2014). To gain insights into
the underlying mechanisms of the progression to tran-
sient abnormal myelopoiesis (TAM) in DS patients,
human pluripotent stem cells harboring Trisomy 21
(Ts21) and/or GATA-binding protein 1 shorter isoform
(GATA1s) were generated via MMCT and zinc-finger
nucleases (ZFN). The DS model cells generated by
these two technologies are useful in assessing how
GATA 1s mutation is involved in the onset of TAM in
patients with DS. Transfer of the modified chromosome
or human artificial chromosome (HAC)/mouse artificial
chromosome (MAC) with desired gene(s) via MMCT
and disruption of a target gene(s) via genome editing
will enable the identification of genes responsible for
disease phenotypes.

Epigenetics

Epigenetics refers to heritable changes in gene expres-
sion that do not involve changes in DNA sequence.
DNA methylation, histone modification, chromatin
remodeling, transcription factors, and non-coding
RNAs are currently considered to regulate epigenetic
change (Bird 2007).

Genomic imprinting is the phenomenon of parent-of-
origin gene expression. Appropriate expression of
imprinted genes is important for normal development;
their dysregulation is associated with numerous diseases
such as Beckwith-Wiedemann syndrome, Angelman
syndrome, and cancer. Our group has established a
series of human monochromosomal hybrids housed in
mouse A9 cells by using MMCT (Kugoh et al. 1999).
Since the parental origin of the transferred chromosome
is known, this library contributed in identifying a num-
ber of imprinted genes including LIT1, a long non-

coding RNA gene involved in Beckwith—Wiedemann
syndrome (Mitsuya et al. 1999; Meguro et al. 2001).

Chromosome 11 carrying LIT1 locus was trans-
ferred to homologous recombination-proficient chick-
en DT40 cells for targeted modification of the LITI
genome, and then further transferred to CHO cells for
the expression analysis of imprinted gene on the
11p15.5 region. This study successfully identified a
putative imprinting control element playing an essential
role in Beckwith—Wiedemann syndrome (Horike et al.
2000). The latest genome-editing technology described
in the following section would allow direct genome
modification in monochromosomal hybrids including
A9 and CHO cells in much less time and with narrowing
down of the region of interest without using DT40 cells.
Also, monochromosomal hybrids still provide a good
model to study chromatin organization on a centromeric
region (Fukagawa et al. 2004).

Towards a high efficiency of MMCT

Since the dawn of MMCT trials, established cell lines
such as mouse ES cells have been preferably used as
recipient cells. Efficiency of MMCT has been described
by the ratio of drug-resistant colony number to recipient
cells. Depending on the type of recipient cells, the
efficiency is generally 10°~10"® when using PEG for
fusion of microcells and recipient cells. With the advent
of stem cell studies, the target of MMCT has been
extended to primary cells with finite life-span, somatic
stem cells, and induced pluripotent stem (iPS) cells.
Improvement of the efficiency has emerged as an issue
to be resolved.

As mentioned in the previous section, MMCT
comprises multiple steps, viz., (1) induction of
micronuclei in donor cells, (2) isolation of microcells
from micronucleated donor cells, (3) fusion of
microcells with recipient cells, (4) integration of the
transferred chromosome into host cell nucleus, and
(5) selection of microcell hybrid cells by drug selec-
tion. Eventual efficiency is determined by the sum-
mation of contribution from each step. Of these
steps, we will discuss microcell fusion and provide
a perspective for effective isolation of microcells.

PEG fusion

PEG is most commonly used as a fusogen in microcell
fusion and whole cell fusion by which monoclonal
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antibody-producing hybridomas have been routinely
made (Yang and Shen 2006). Depending on the type
of recipient cells, the microcell fusion efficiency where
PEG is used is usually 10 °~10"°. The mixture of
microcells and recipient cells is transiently exposed to
PEG, followed by dilution and removal by washing.
Theoretically, one-to-one fusion between a pair of
microcell and recipient cell produces a seed of microcell
hybrid. But the PEG treatment is injurious to cell mem-
brane, and overexposure to PEG reduces the viability of
hybrid cells (Golestani et al. 2007). Furthermore, expo-
sure of cells to PEG is difficult to precisely control in
practice. As a common feature of established cell lines is
infinite proliferation capacity, drug-resistant hybrids
could easily arise, regardless of damage caused by
PEG exposure. MMCT by PEG has been attempted with
primary human fibroblasts or bone marrow-derived mes-
enchymal stem cells, but hybrids had been scarcely ob-
tained (unpublished data). Substitution of fusogen from
highly toxic PEG to less-toxic reagents might aid in
generating microcell hybrids from primary cells.

Virus fusion

The first microcell cell fusion experiment was carried out
by using Sendai virus as fusogen (Fournier and Ruddle
1977). But from difficulties in preparation of virus parti-
cle, virus fusion had been replaced with more convenient
PEG fusion. Envelope-typed virus, which is coated by
lipid bilayer membrane inherited from the infected host
cells, makes use of an envelope protein(s) for the infec-
tion into next host cells. Sendai virus represents two
distinct glycoproteins on the envelope for infection
(Okada 1993). Hemagglutinin neuraminidase protein
binds to sialic acid receptors on the host cell surface and
degrades the receptor by sialidase activity. Fusion protein
then associates with lipid molecules, such as cholesterol,
embedded in the lipid bilayer membrane, and induces cell
fusion. Utilization of inactivated virus particle for whole
cell fusion had been reported since 2004 (Hiraoka et al.
2004), due to appearance of commercially available re-
agent. Application of the inactivated virus particle has
also been reported for microcell fusion (Yamaguchi et al.
2006; Nawata et al. 2011; Lee et al. 2013). However,
efficiency of MMCT was comparable but not superior to
when PEG was used, even though immortalized cells
were used as recipients. Unwanted secondary fusion
between microcell hybrids and adjacent cells might ham-
per the survival of microcell hybrids.
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Fusion by viral fusogenic proteins presented
on the microcell surface

During the course of virus particle formation in the
infected cells, viral fusogenic proteins are synthesized
de novo, transported to the cell periphery, and presented
on the cell surface, followed by extrusioin of cell mem-
brane as virus envelope (Navaratnarajah et al. 2009).
This well-controlled budding mechanism of envelope
virus prompted us to make “a fusogenic microcell”
which carries a chromosome to be transmitted and is
coated with fusogenic envelope proteins. We chose
fusogenic envelope proteins from measles virus (MV)
with which accumulating data has been reported. MV
has two envelope glycoproteins, hemagglutinin (H) and
fusion (F) proteins, for infection into host cells. Virus
particle specifically attaches to the surface of host cells
by the interaction between H protein and its receptors on
the host cell surface. Binding of the H protein to a
receptor triggers the fusion of virus envelope with the
host cell membrane by the mediation of F protein. To
make “fusogenic microcells,” expression plasmids
encoding H and F protein were transfected into CHO
cells carrying a HAC vector. Microcells isolated from
the CHO donor cells showed fusion ability to recipient
human cells that express a receptor protein CD46, lead-
ing to successful transfer of the HAC (Katoh et al.
2010). It was noted that the MMCT efficiency depended
on the expression level of CD46 in recipient cells. CD46
belongs to the family of complement activation regula-
tors that prevent self-cell destruction (Dhiman et al.
2004). Overexpression of CD46 is frequently observed
in cancer cells to overcome lysis by complement
(Anderson et al. 2004). Indeed, in case of fibrosarcoma
cell line HT1080 which has high surface density of
CD46, the MMCT efficiency was 2 orders in magnitude
higher than that of PEG fusion. However, in case of
primary fibroblasts that have low surface density of
CD46, the efficiency was comparable with that of
PEG fusion. An issue with this method is the narrow
range of recipient cells that can be used to obtain high
efficiency fusion. The preceding studies that describe
the usage of MV for oncolysis by infection, have pro-
posed retargeting of MV by engineering the H protein,
i.e., addition of single-chain antibody fragment against
surface receptors other than CD46 (Nakamura et al.
2004; Nakamura et al. 2005). Addition of single-chain
variable fragment (scFv) against transferrin receptor
(TfR) improved fusion efficiency to primary fibroblasts
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(unpublished data). Although high affinity scFv to
desired surface receptor is not always available with
ease, retargeting of MV may be an alternative for
PEG-sensitive cells.

Isolation and storage of microcells

Microcell population prepared from donor cells is com-
posed of a variety of subpopulations carrying (1) a
chromosome (HAC or MAC) to be transferred, (2)
chromosomes derived from host cells, or (3) no
choromosomal DNA. Only the first subpopulation con-
tributes to intended MMCT, but it is minor among all the
components. In the current protocol, total mixed popu-
lation is used for fusion with recipient cells, and
intended microcell hybrids are chosen by selection cul-
ture with antibiotics by utilizing the drug-resistant gene
tagged onto the HAC/MAC. Preferential fractionation
of required microcell subpopulation from the total mix-
ture, if possible, might aid in achieving more intentional
fusion reaction and in needing a smaller number of
recipient cells.

The conventional MMCT method is usually per-
formed immediately after the purification of microcells.
The timing of the isolation of microcells and the prep-
aration of recipient cells is very important. A cryopres-
ervation method to store microcells at =80 °C was
performed and compared the efficiency of MMCT with
conventionally (immediately) method. There was
no significant difference between the two methods
regarding chromosome transfer efficiency. Thus,
cryopreservation of ready-to-use microcells is useful
for the MMCT (Uno et al. 2013).

In order to isolate a single microcell-containing
HAC/MAC, potential clues might be emerged from
recent advancement in genome engineering technology,
including zinc finger protein (ZFP), transactivator-like
effector (TALE), and clustered regulatory interspaced
short palindromic repeat (CRISPR)/Cas9 system
(Urnov et al. 2010; Joung and Sander 2013; Sander
and Joung 2014). Dynamics of a specific chromosome
locus in living cells becomes detectable by tagging
with DNA/RNA-binding protein fused with fluorescent
proteins. Both long repetitive sequences such as
telomeres or satellite centromeric DNA and short
repetitive sequences such as within the intron of
endogenous MUC4 gene were visualized by the fusion
of a fluorescent protein with TALE or CRISPR/Cas9
(Miyanari et al. 2013; Ma et al. 2013; Chen et al. 2013).

In donor cells, centromere satellite of HAC/MAC is
distinct from that of host chromosome; HAC/MAC-
specific tagging at centromere may therefore be an
attractive option. Microcells carrying HAC/MAC
might be fractionated by FACS technology and
efficiently transferred to desired cells or to a small
number of cells, if they were specifically tagged
with fluorescent fusion proteins utilizing genome
engineering technology.

Various types of HACs and MACs as episomal vectors

Transition of the cargo in MMCT from whole
chromosome to HAC/MAC

In transferring a single chromosome or fragment, it is
difficult to uncover the function of a specific gene
because each chromosome or fragment contains a set
of numerous genes. Thus, alternative tools are HAC and
MAC vectors, which can carry a gene or genes of
interest.

Most, but not all, conventional vectors present prob-
lems associated with their limited cloning capacity,
lack of copy number control, and insertional muta-
genesis caused by integration into host chromosomes
(Kouprina et al. 2014; Kazuki and Oshimura 2011).
HACs and MACs are exogenous mini-chromosomes
artificially created by either a top-down approach
(engineered creation) or a bottom-up approach (de
novo creation). In chromosomes engineered by a
top-down approach, mini-chromosomes are derived
from endogenous chromosomes following their natu-
ral fragmentation or telomere-directed chromosome
breakage (Heller et al. 1996; Kazuki et al. 2011;
Takiguchi et al. 2012). The HAC/MAC can then
be transferred into other cell lines by MMCT. In
de novo artificial chromosomes engineered by a
bottom-up approach, exogenous chromosomes can
be circular or linear, created de novo from cloned
chromosomal components that possess a functional
centromere, and can autonomously replicate and seg-
regate. A summary of various chromosomal vectors
and their acceptor site(s) and characteristics is pro-
vided in Table 1. The recent demonstration that
chromosomal vectors can incorporate a gene or
genes has increased their utility and potential application
(Kouprina et al. 2014; Kazuki and Oshimura 2011;
Oshimura et al. 2013) (Fig. 2).
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Table 1 A list of HACs/MACs with various acceptor site(s) for gene delivery (modified from Kazuki et al. 2011)

Name of HACs Construction method Origin of centromere Insertion sites (copy number Reference
of the insertion site)

Tet-O HAC De novo Human chromosome 17 1oxP (single/multiple), SIM Tida et al. (2010)
alphoid system (loxP/attB/attP)

25-4 vector De novo Human chromosome 21 Mutant lox 71 (multiple) Ikeno et al. (2009)
alphoid

21ApqHAC, 21 AgHAC Engineered Human chromosome 21 1oxP (single) Katoh et al. (2004)

21HACI, 21HAC2, 21HAC3, Engineered Human chromosome 21 1oxP (single) Kazuki et al. (2010)

21HAC4
MI-HAC (21HAC1-modified HAC) Engineered Human chromosome 21 FRT, @C31attP, R4attP, Yamaguchi et al. (2011)
TP901attP, BxblattP (single)
Human mini-chromosome Engineered Human chromosome Y  attB (single) Dathnis-Calas et al. (2005)

CV (HCV/SAC) Patient-derived accessory Human chromosome 20 1loxP (unknown copy number)  Voet et al. (2003)
chromosome

MC Patient-derived accessory Human chromosome 9  loxP (5 copies) Moralli et al. (2001)
chromosome

SC20-HAC Chromosome fragment ~ Human chromosome 14 loxP (single) Kuroiwa et al. (2000)

14AAqHAC, 14NAGHAC, Engineered Human chromosome 14 loxP (single) Kakeda et al. (2011)

14gNAqHAC

SATAC De novo (murine Murine chromosome 7 loxP (multiple) Stewart et al. (2002)
satellite DNA based)

Platform ACE (SATAC) De novo (murine Murine chromosome attP (multiple) Lindenbaum et al. (2004)
satellite DNA based)

MACI1, MAC2 Engineered Murine chromosome 11 1oxP (single) Takiguchi et al. (2012)

MI-MAC (MAC2-modified MAC)  Engineered Murine chromosome 11 FRT, @C31attP, R4attP, Takiguchi et al. (2012)

TP901attP, BxblattP (single)

HACs

HAC:s display a number of advantages over conventional
vectors, e.g., they do not integrate into the host genome
and the size of gene(s), which they can carry is not
limited (Fig. 2). The de novo assembly of HACs using
the bottom-up approach has been developed in human
fibrosarcoma HT1080 cells (Harrington et al. 1997;
Ikeno et al. 1998; Kouprina et al. 2003; Basu et al.
2005b). In most cases, de novo generated HACs range
from 1 to 10 Mb in size. An issue of de novo HAC was
the restriction of HAC formation to a single cell type
HT1080. Recently, Masumoto and colleagues discovered
that in HT1080 cells, the level of H3K9me3 on alphoid
DNA is substantially lower than in other human cell lines
(Ohzeki et al. 2012). In other types of human cells,
heterochromatin enriched with H3K9me3 is assembled
quickly on the transfected alphoid DNA array, thus
preventing CENP-A retention and HAC formation. It
has been shown that tethering of histone acetyltransfer-
ases to the input alphoid DNA arrays breaks this cell-
type-specific barrier for de novo CENP-A assembly and
allows assembly of other kinetochore proteins, thereby

@ Springer

leading to HAC formation in a wide range of cell types.
Other systems for the construction of HACs have been
developed to rapidly create bacterial artificial chromo-
some (BAC)-based HACs using the red-recombination
system from bacteriophage A (Kotzamanis et al. 2005) or
using a modified bacterial TnS transposon (Basu et al.
2005b). Utilization of invasive Escherichia coli systems
may facilitate de novo HAC formation (Narayanan and
Warburton 2003). A technique based on the HSV1
amplicon greatly improved de novo HAC formation
protocols (i.e., much higher efficiency and applicability
to many different cell lines other than HT1080) (Moralli
et al. 2006). HACs have been generated in immortalized
cell lines such as HT1080 but never in stem cells.
Recently, de novo HACs were also generated in
human ES cell lines (Mandegar et al. 2011). Thus,
this technology is potentially suitable for a wide
variety of applications.

Another HAC with a conditional centromere that
includes the tetracycline operator (tet-O) sequence
embedded in the alphoid DNA array has been generated
(Nakano et al. 2008). This conditional centromere can
be inactivated by expression of tet-repressor fusion
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Construction of 21HAC
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Fig. 2 Two types of gene loading to HAC. (a) Construction of a
human artificial chromosome (HAC) vector from human chromo-
some 21 using the top-down approach. The 21HAC is equipped
with a /oxP site for loading the gene of interest. A site-specific
recombination event mediated by Cre recombinase is selected by
reconstruction of the functional HPRT gene, which confers

proteins, resulting in loss of the tet-O HAC. Since the
desired gene cannot be inserted into the tet-O HAC
without an acceptor site such as loxP or FRT, the tet-O
HAC vector was adapted for gene delivery and gene
expression in human cells (lida et al. 2010). Thus, a loxP
cassette was inserted into the tet-O HAC by homolo-
gous recombination in chicken DT40 cells. The tet-O
HAC with the loxP cassette was then transferred into
CHO cells. It has been shown that the enhanced green

CHO cell
(HPRT-)

DYS-HAC =z By-product chromosome

Loading of linear DNA by reciprocal
chromosomal translocation

hypoxanthine-aminopterin-thymidine (HAT) resistance. (b) The
gene of interest, isolated in a circular vector, is introduced into
the HAC by site-specific insertion. (c) A megabase-size gene
locus, which is above the capacity of circular cloning vectors, is
introduced into the HAC by site-specific reciprocal chromosome
translocation

fluorescent protein (EGFP) transgene was efficiently
and accurately incorporated into the tet-O HAC vector.
The EGFP transgene was stably expressed in human
cells after transfer via MMCT, and the transgenes
inserted into the tet-O HAC were subsequently elimi-
nated from cells by loss of the HAC due to centromere
inactivation. The tet-O HAC vector has significant advan-
tages over other expression/cloning systems because it
provides a mechanism to compare the phenotype of a
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mammalian cell with or without a functional copy of any
cloned gene of interest.

Conversely, HACs engineered via the top-down
approach can also be constructed by telomere-
associated chromosome fragmentation techniques in
the homologous recombination-proficient chicken cell
line, DT40 (Buerstedde and Takeda 1991). Such an
approach can generate mitotically stable, linear mini-
chromosomes. Initially, mini-chromosomes ranging in
size from 0.5 to 10 Mb have been produced from
both the human X (Farr et al. 1992) and Y chromo-
somes (Brown et al. 1994). These mini-chromosomes
retain a normal centromere and are mitotically stable
in human cells with only minor rearrangements. A
novel 21HAC vector in which known endogenous
genes were absent was developed using the top-down
approach from human chromosome 21 (Kazuki et al.
2011). This 21HAC was physically characterized using a
transformation-associated recombination (TAR) cloning
strategy followed by sequencing of TAR-BAC clones,
confirming that no known endogenous genes remained
in the 21HAC. Thus, the 21HAC vector contains four
useful features: (1) it has a well-defined genetic architec-
ture; (2) it is present episomally, independent of the host
chromosomes; (3) it is mitotically stable in human cells
in vitro; and (4) any desired gene can be cloned into the
21HAC using the Cre/loxP system in CHO cells or by a
homologous recombination system in DT40 cells
(Kazuki et al. 2011; Kouprina et al. 2014; Oshimura
et al. 2013). Using the Cre/loxP system, gene cloning
can be performed by insertion- or translocation-type
cloning (Fig. 2). Circular vectors such as plasmids, P1-
derived artificial chromsome (PAC) s and BACs con-
taining desired genes can be inserted into the HAC
vector by insertion-type cloning. Megabase-sized genes,
which cannot be cloned into the circular vectors, can be
cloned into the HAC vector using translocation-type
cloning (Hoshiya et al. 2009). Furthermore, using the
homologous recombination system, two different vec-
tors, each containing a desired gene, were inserted
sequentially into 21HAC1 by homologous recombina-
tion in DT40 cells. Two or more vectors containing
desired genes can be inserted sequentially into the
HAC. The genome-editing technology will also enable
us to perform this recombination process easily with-
out using DT40 cells. Therefore, any combination of
genes, including full-length genomic DNA, can in
theory be cloned into the HAC by a combination of
these cloning systems and transferred into a desired
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recipient cell type using the HAC. Thus, these novel
21HAC vectors may be useful for gene and cell
therapies as well as for animal transgenesis. The novel
HAC vector may be generated using genome-editing
technologies in human primary or iPS cells via top
town approach for safe gene and cell therapy, without
using intermediate host cells such as DT40 cells al-
though the technologies for transfer of the HAC from
normal human cells to desired patient cells without
using A9 or CHO cells need to be developed.

MACs

Recently, a MAC vector was constructed from a natural
mouse chromosome by means of the top-down
approach (Takiguchi et al. 2012). In order to use the
MAC as a functional gene vector, the faithful segrega-
tion of the MAC vector was investigated after its transfer
to mouse embryonic stem (ES) cells and in trans-
chromosomic (Tc) mice. Although human chromosome
fragments (hCFs) and HACs with a large genomic
region of interest could be autonomously maintained
in Tc mice, their retention rate was variable in
mouse ES cell lines and the tissues of Tc mice,
possibly owing to their gradual loss during cell
growth. On the other hand, MAC vectors are stably
maintained in mouse ES cells and various tissues in
Tc mice as well as in human cell lines (Takiguchi
et al. 2012; Kazuki et al. 2013a). The MACs have
acceptor sites into which a desired gene or genes can
be inserted, similar to the HACs described above. Tc
mice containing the MAC vector may be valuable
tools for functional genome analyses in in vitro and
in vivo models.

Furthermore, a satellite-DNA-based artificial chromo-
some (SATAC) was created via amplicon-dependent de
novo chromosome formation induced by the integration
of exogenous DNA sequences into centromeric DNA
regions near the pericentric heterochromatic or acrocen-
tric chromosome (Lindenbaum et al. 2004).

A mini-chromosome, ST1, was developed from the
human Y chromosome, which is linear, has a molecular
weight of approximately 4.5 Mb, and contains inciden-
tally acquired mouse major and minor satellites as well as
human DNA, including tandemly repeated alphoid DNA
sequences (Shen et al. 1997). At the present time, the
most suitable chromosome vectors reported in the litera-
ture remains uncertain, because comparative studies in the



HAC/MAC in bio-medical research

121

same condition (cell lines, mouse lines, culture method,
etc.) has not been reported.

Technologies for multiple acceptor sites on chromosome
vectors

One of the major problems with gene transfer into
mammalian cells by standard methods of plasmid trans-
fection or virus vector infection is poorly reproducible
expression level of the transferred gene between dif-
ferent transformants because of chromosome position
effect and copy-number variation. Targeted integration
of DNA into the acceptor site on the chromosomal
vectors promises a simple solution to the problems
from random integration of the transferred gene.

Chromosomal vector is maintained in mammalian
host cells. Prototype chromosomal vector utilizes the
Cre/loxP system for site-specific insertion of circular
donor vector into the cloning site on the chromosomal
vector (Fig. 2). Donor vector carries a gene of interest,
loxP cassette, and a part of a drug-resistant marker gene.
Chromosomal vector carries acceptor loxP cassette and
the other part of the drug-resistant marker gene. After
co-transfection of the donor vector and the Cre expres-
sion plasmid into the host cells, site-specific insertion is
correctly selected by reconstruction of the drug-resistant
marker gene. In addition to dominant selectable markers
like neo (Fukushige and Sauer 1992), hypoxanthine
phosphoribosyl transferase (HPRT) mini-gene cassette
(Ramirez-Solis et al. 1995) is useful in HPRT-deficient
host cells, which are easily isolated as 6-thioguanine
(6-TG) resistant mutants. One application of chromo-
somal vector is simultaneous transfer of multiple genes
into target cells. Since the prototype chromosomal vector
possesses a single-acceptor loxP site, multiple genes
should be unified in a donor vector such as BAC or
PAC by conventional in vitro recombinant DNA tech-
nique. Processing of BAC or PAC for unifying multiple
genes is, however, laborious because of their low copy
number in host £. coli and of their large size beyond the
fractionation range in gel electrophoresis.

An alternative to unifying multiple genes in a single
donor vector is increase of acceptor site on chromo-
somal vector by utilizing other integrase systems
capable of site-specific insertion of donor vector.
Application of several integrase systems derived
from different microorganisms had been reported in
mammalian cells (Fogg et al. 2014). Yamaguchi et al.
made a HAC vector carrying five acceptor sites for

utilizing FLP, C31, R4, TP901-1, and Bxb! integrases
(Yamaguchi et al. 2011), which was designated as MI-
HAC. In the MI-HAC, a pair of promoters for a selection
marker gene and acceptor site for an integrase was
tandemly placed, while in a donor vector, a gene of
interest was placed along with promoter-less drug-resis-
tant gene. Theoretically, up to five different genes of
interest could be loaded onto the MI-HAC by reconstruc-
tion of the selection marker gene by site-specific integra-
tion of the donor vector.

In the case of a bottom-up HAC (25-4 vector), since
multiple lox71 sites were integrated into the HAC, a
lox66 sequence in the donor vector containing desired
gene is useful for the sequential insertion of multiple
desired genes into the HAC (Hasegawa et al. 2014). A
drawback of this system is that the stability and germline
transmission efficiency of the HAC was decreased after
second gene insertion potentially due to the structural
changes of the HAC.

In case of top-down HAC (49B(A)A9 mini-
chromosome), iterative site-specific integration (ISSI)
system on the 49B(A)A9 mini-chromosome derived
from human Y chromosome were developed (Dathnis-
Calas et al. 2005). ISSI combined the activities of @C31
integrase and Cre recombinase to enable the iterative
and serial integration of transgenic DNA sequences.

However, during the chromosome engineering pro-
cesses for the construction of the chromosomal vector
itself, several selection marker genes had been already
used, and a limited number of selection markers are
available for further integration of the donor vector into
the chromosomal vector. To overcome the problem of
this scarcity in selection markers, of relevance to loading
of multiple genes to mammalian artificial chromosome,
another example has been reported (T6th et al. 2014).
This approach is based on a protocol by which an
artificial chromosome was made utilizing incidental
chromosome rearrangement associated with the transfec-
tion of satellite DNA into murine cells (deJong et al.
1999). The artificial chromosome vector utilizes modi-
fied R4 integrase derived from lambda phage for target
integration of donor vectors into the acceptor site on the
artificial chromosome. By placing between two loxP sites
in the donor vector, the selection marker gene can be
excised by Cre enzyme expression after loading of a gene
of interest, which allows sequential loading of different
genes in other acceptor sites on the artificial chromosome
vector. A drawback of this system is that the number of
acceptor sites and loaded gene is not predictable.
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To overcome the problem of this complicated gene-
loading protocol on the chromosomal vectors, a simple
method for the simultaneous or sequential integration
of multiple gene-loading vectors into a HAC vector,
designated as the simultaneous or sequential integra-
tion of multiple gene-loading vectors (SIM) system,
was reported (Suzuki et al. 2014). In the SIM system,
simultaneous integration is attained by stepwise nested
insertion of gene-loading vector by different integrases.
Sequential integration is attained by the shedding of
formerly reconstructed marker gene, caused by targeted
insertion of an ensuing donor vector. These are achieved
by elaborate placement of target sequence for integra-
tion and smart utilization of splicing acceptor and donor
cassettes to splice out the acceptor site for the next
reaction embedded between the front and rear half of
the selection marker genes. A prominent feature of this
system is that multiple gene-loading vectors can be
integrated by the cycling use of only two selection
marker genes at most. Thus, the SIM system on HAC/
MAC vectors is very useful and expected to expand the
applicability of HAC/MAC vectors for multiple gene
expression study, because SIM system can be applied to
any HAC/MAC with a 5’"HPRT-type cassette.

Expression of genes in HAC/MAC
Functional analyses

The functions of novel genes have been deduced mainly
in experiments using viral transfection or integrative
transfection of BAC or yeast artificial chromosome
(YAC) vectors, where often the gene cannot be
expressed at a physiological level because the gene copy
number is not regulated and a BAC/YAC transgene
randomly integrates into the host genome. The HACs
and MACs described above provide a way to overcome
these problems (Oshimura et al. 2013). Genes that have
been loaded in various types of HACs/MACs are listed
in Table 2. The alphoid'““-HAC, which possesses a
conditional centromere, provides a particularly effective
way to control the phenotypic changes attributed to the
expression of HAC-encoded genes. A battery of func-
tional tests was performed to demonstrate the expression
of the NBSI and VHL genes from the HAC at physio-
logical levels, which showed that phenotypes arising
from stable gene expression can be reversed when cells
are “cured” of the HAC by inactivating its kinetochore
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in proliferating cell populations (Kouprina et al. 2014).
Thus, this type of HAC should be suitable for studies of
gene function. Exploiting the potential of HACs for
further gene transfer and expression studies is the
first step for subsequent proof-of-concept studies
(Kim et al. 2011). Most recently, the HAC could
be used for functional study of BRCA-1 tumor suppressor
gene (Kononenko et al. 2014). Furthermore, two different
HAC, a stable 21HAC and a removable tet-O HAC
provides a unique bi-HAC vector system for transient
gene expression (lida et al. 2014).

Relationship between gene copy number and gene
expression in HACs

A HAC vector, FVIII-HAC, carrying the human factor
VIII (FVII) cDNA, was constructed and inserted into
CHO cells (Kurosaki et al. 2011). One or more copies of
the FVIII gene on the HAC were expressed in a copy
number-dependent manner in the CHO cells. The HAC
with 16 copies of FVIII, FVIII (16)-HAC, was trans-
ferred from CHO hybrids into a human immortalized
mesenchymal stem cell (hiMSC) line by MMCT. The
expression levels of HAC-derived FVIII transgene
products were compared with transfected FVIII plas-
mids. The results showed that the expression levels of
the former were consistent with those of the original
clones, even after 50 population doublings (PDLs),
whereas the latter showed a remarkable decrease in
expression despite a consistent DNA content. These
findings showed that the gene on the HAC was resistant
to gene silencing. As an example of the application for
protein expression, SATAC was effectively used to rap-
idly generate stable CHO cell lines expressing high
levels of monoclonal antibody (Kennard et al. 2009a;
Kennard et al. 2009b). Thus, the HAC/MAC/SATAC-
mediated therapeutic gene expression system may be a
powerful tool for stable expression of transgenes and
possibly for industrial production of gene products.

Tissue-specific expression

The feasibility of lineage-specific transgene expression
by the HAC vector was assessed in an in vitro differen-
tiation system with an MSC cell line, hiMSC, which has
the potential for osteogenic, chondrogenic, and
adipogenic differentiation (Ren et al. 2005; Suda et al.
2006). An EGFP gene driven by a promoter for the
osteogenic lineage-specific osteopontin (OPN) gene
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Table 2 (continued)

References

Aims

Loaded genes

Utilized HAC/MAC

Telenius et al.(1999) and de Jong G et al. (2001)

Vanderbyl et al. (2001)

Expression of monitor gene/ transfer of SATAC Stewart et al. (2002) and Vanderbyl et al. (2004)

Stability test of SATAC in different cell lines

Flow-sorted chromosome transfer

Derived from H1D3 and mM2C1 SV40-LacZ

Derived from A9 CMV-GFP

D11-C4 ACE CMV-RFP

to hMSC
Stability test of MAC in mice and human cells

Kazuki et al. (2013a)

CAG-EGFP

MACI1

MAC

Takiguchi et al. (2012)

Gene insertion on loxP site

MAC2 CAG-EGFP
MI-MAC CAG-EGFP

Takiguchi et al. (2012)

Gene insertion on multiple integration site(s)

was inserted into the 21HAC and then transferred into
hiMSC. The EGFP was specifically expressed in the
hiMSCs that differentiated into osteocytes in coordina-
tion with the transcription of the endogenous OPN gene
but was not expressed after adipogenic differentiation
induction or in non-inducing culture conditions, indi-
cating that the use of HAC vectors is suitable for
regulated expression of transgenes not only in stem-
cell-mediated gene therapy, but also in promoter anal-
yses. Another application of tissue specific promoter
is that erythropoietin (EPO) gene expression driven
by the 5’ untranslated region of the human ubiquitin
C gene on the newly developed chromosome 14-
derived HAC greatly increased (over 1000-fold) the
EPO production in hPFs (Kakeda et al. 2011). These
tissue-specific expression patterns using HACs with
their own promoters were also confirmed in Tc mice,
including mice producing a fully humanized antibody
(Tomizuka et al. 1997) and mice with the human
cytochrome P450 enzyme (Kazuki et al. 2013b).

Tc mice and humanized model mice

An increasing number of laboratories around the
world employ the mouse as a model of human
diseases (Devoy et al. 2011). Therefore, production
of mice carrying human genes to model specific
diseases or humanized functions is a potential future
application of HACs/MACs (Fig. 3). One pre-requisite
for these studies was the demonstration that HACs/MACs
are mitotically stable not only in human cells but also in
rodent cells.

Tomizuka and colleagues were the first to demon-
strate the introduction of a hCF into mouse ES cells as
well as in mice (Tomizuka et al. 1997). Specifically, they
developed a chromosome fragment containing some 10-
Mb-sized regions of chromosomes 2 and 14 carrying the
Igk and IgH genes (Tomizuka et al. 2000). This hCF was
stably maintained in mouse ES cells and subsequently in
mice. Functional expression was obtained from the
genes of the hCFs as well as the human antibody genes
in mice. A similar technology was applied to cows to
produce human immunoglobulin and antigen-specific
human polyclonal antibodies from hyperimmunized
cattle (Kuroiwa et al. 2009).

The other application of chromosome transfer tech-
nology is to generate Down syndrome model mice. Two
groups have successfully generated Tc Down syndrome
model mice (Shinohara et al. 2001; O'Doherty et al.
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Fig. 3 Fruits from applications of chromosome vectors in the bio-medical field

2005). These mice contain an extra human Chr. 21 and
show cardiac abnormalities and behavioral impairment
similar to patients with Down syndrome.

Another example is a humanized mouse with a
human CYP3A cluster (Kazuki et al. 2013b). Human
CYP3A is the most abundant P450 isozyme present
in the human liver and small intestine, which metabo-
lizes around 50 % of the medical drugs on the market.
The human CYP3A subfamily comprises four members
(CYP3A4, CYP3AS, CYP3A7, CYP3A43) encoded by
aregion on human chromosome 7. The introduction of a
HAC containing the entire human genomic CYP3A
locus recapitulates tissue- and stage-specific expression
of human CYP3A genes and xenobiotic metabolism in
mice. Thus, this system can be also used for generating
Tc mice carrying a wide variety of other human meta-
bolic genes. Since allelic expression imbalance of the
human CYP3A4 gene was reported (Hirota et al. 2004),
the desired two alleles converted from a CYP3 A4 by the
genome-editing technologies such as the CRISPR/Cas9
system can be transferred to a mouse to confirm the
phenomenon observed in humans. Thus, the combina-
tion of HAC/MAC containing desired large genomic
cluster and the genome editing will facilitate the gener-
ation of humanized animals.

@ Springer

The creation of transgenic mice using de novo con-
structed HACs carrying human beta-globin (Suzuki
et al. 2006), GCHI (Suzuki et al. 2006), CSN2 (Voet
etal. 2003), and HLA (Hasegawa et al. 2014) genes also
succeeded. These studies demonstrated that the HACs
have been transmitted through the mouse germline,
thereby providing evidence of the meiotic stability of
the HACs in vivo. Thus, the proven availability of HAC
vectors to carry certain genes in animals provides an
opportunity to develop specific human disease models,
and also to commercially produce therapeutic products.
HAC/MAC-based transgenesis can be used to identify
genes responsible for recessive phenotypes by comple-
mentation or expression of dominant phenotypes. This
approach is also applicable to the study of the complex
genomic network in a near endogenous context.

Genes in HACs/MACs and medical applications

Gene therapy has been envisioned to provide a direct
and permanent correction of genetic defects. To achieve
the desired effects, therapeutic genes need to be carried
by safe and effective vectors that can deliver foreign
genes to specific cells and thereafter sustain their
expression in a physiologically regulated fashion.
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Gene delivery vectors with the following properties
may further add to the applications for gene and cell
therapies: (1) high transfection efficiency; (2) long-
term stable maintenance in host cells without integra-
tion into the host genome; (3) appropriate levels of
spatial and temporal expression of therapeutic genes
in specifically desired cells; (4) no risk of cellular
transformation or stimulation of the host’s immune
system; and (5) a system to safeguard against tumor
formation. Although a number of different approaches
have been attempted to achieve efficient gene transfer
and long-term gene expression, this challenging task
remains unfulfilled because all current methods have
certain limitations, including transient expression,
consequent toxicity, undesired immunological re-
sponse, integration of target genes into the host cell
genome, and transcriptional silencing. An alternative
solution to these problems could be the use of HAC
vectors. For example, the advantages of HAC vectors have
been demonstrated for reprogramming mouse embryonic
fibroblasts (MEFs) into iPS cells (Hiratsuka et al. 2011).
A HAC carrying four reprogramming factors with a p53-
knockdown cassette (IHAC) efficiently reprogrammed
MEFs. Global gene expression patterns showed that the
iHAC generated relatively uniform iPS cells. Under non-
selecting conditions, iHAC-free iPS cells were isolated
as cells that spontaneously lost iHAC2. Analyses of
pluripotent markers, teratomas, and chimeras confirmed
that these iHAC-free iPS cells were pluripotent.
Moreover, iHAC-free iPS cells with a re-introduced
HAC encoding Herpes Simplex virus thymidine kinase
were eliminated by ganciclovir exposure, indicating
that the HAC safeguard system functioned in iPS
cells. Thus, the HAC vector could generate uniform,
integration-free iPS cells with a built-in safeguard system
(Uno et al. 2014).

Another example is HAC utility for gene therapy for
Duchenne muscular dystrophy (DMD). DMD gene was
newly loaded on 21HAC2 (Kazuki et al. 2010). DMD is
caused by dysfunction of the dystrophin gene (Koenig
et al. 1988). Since some DMD patients show a large
deletion in the dystrophin gene, these defects cannot be
corrected by exon-skipping approaches (Odom et al. 2007;
Tedesco and Cossu 2012). Although several vectors have
been developed for DMD gene therapy, no episomal vec-
tors containing the entire dystrophin genomic region have
been reported owing to the extremely large size of this
region (2.4 Mb) (Koenig et al. 1987). Thus, a 21HAC
vector containing the entire dystrophin genomic region

(DYS-HAC) has been developed for potential application
in DMD gene therapy (Hoshiya et al. 2009). The complete
correction of a genetic deficiency was shown in iPS cells
derived from DMD model (mdx) mice and a human
DMD patient using the DYS-HAC. In addition, the
DYS-HAC isoforms were verified in cardiomyocytes
differentiated from iPS cells, which are derived from
DMD patients (Zatti et al. 2014). More details are de-
scribed by Tedesco in this special issue (Kazuki et al.
2010; Uno et al. 2014; Tedesco and Cossu 2012; Tedesco
et al. 2011; Tedesco et al. 2012).

The other example is Globoid cell leukodystrophy
(also known as Krabbe’s disease), which is an autosomal
recessively inherited disease caused by a deficiency of
galactocerebrosidase (GALC), a lysosomal enzyme that
degrades galactosylceramide, a major glycolipid compo-
nent of myelin and myelin-forming cells (Katona et al.
2008). In an experimental model for the treatment of
Krabbe’s disease, Katona and colleagues showed that
the life span was increased in chimeric model mice when
wild-type ES cells with a SATAC containing the human
GALC gene was microinjected into the model mouse-
derived blastocysts. However, the life-span extension is
possibly attributable to the genomic copy of the GALC
gene present in the wild-type ES cells.

Finally, advances in the efficiency of methods used
for the differentiation and purification of stem cells,
including ES and iPS cells, are anticipated, and the
application of these methods to ES/iPS cells combined
with HAC vector systems may enable the development
of more sophisticated gene therapies. Thus, stem cells,
potentially derived from multiple sources, combined
with HAC-mediated gene delivery, should permit safe
treatment of various genetic defects. The next step in the
future of gene therapy is to demonstrate functional res-
toration and safety in vivo using large animal models
such as dogs and monkeys.

Conclusions

The chromosomal vector systems offer complementary
and desirable characteristics for use as gene delivery vec-
tors to overcome various problems in existing viral and
non-viral vector systems. The most important property of
HAC and MAC vectors is that they can express entire
complex signaling pathways under their normal physio-
logical regulation, which is of great potential benefit. Stem
cells possess two characteristic features: the ability for self-
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renewal and the ability for multi-lineage differentiation. A
number of other applications of HACs/MACs in addition
to gene therapy and animal models are possible (Fig. 3).
For example, HACs can be used for basic research on
human cells and gene therapy, and MACs for basic re-
search on mouse cells and Tc mice. There is also increas-
ing interest in HACs/MACs as a potential platform for
developing more sophisticated control of mammalian
cells in the new area of “Synthetic Biology,” e.g., study-
ing the RNA world. Thus, HACs/MACs may be desig-
nated as “multipotent vectors.”

A combination of chromosome engineering technol-
ogies and genome-editing technologies should facilitate
the applications to bio-medical challenges (Fig. 3).
Genome editing using ZFNs, transcription activator-
like effector nucleases (TALENSs), or CRISPR/Cas9 are
efficient strategies for the modification of desired endog-
enous genes in cells and organisms (Hsu et al. 2014;
Sander and Joung 2014). In principle, a combination of
HAC/MAC/chromosome transfer and genome-editing
technologies has several advantages for the generation
of humanized animal models and disease models as well
as for basic MMCT and chromosome engineering tech-
nologies. Possible application of the combined technol-
ogies was discussed in the text. Genome-editing tech-
nologies have been applied to many organisms due to the
simple mRNA and plasmid transfection techniques. To
our knowledge, HAC/MAC have never been transferred
to plants and insects. [f HAC/MAC can be transferred to
several organisms in addition to mammalian cells, HAC/
MAC may be widely utilized in many research areas
such as genome editing. Recently, we developed fusion
chromosomes of human-plants via whole cell fusion
technique (unpublished data). These chromosomes may
be used as shuttle vectors or multipurpose vectors, if they
segregate in plant and mammalian cells. Shuttle chromo-
some vectors that can be transferred to any organisms
and segregate in them need to be developed.

Open Access This article is distributed under the terms of the
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distribution, and reproduction in any medium, provided the orig-
inal author(s) and the source are credited.
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