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The clinical significance of endotoxin detection in blood has been evaluated for a broad range of patient groups in over 40
studies published over 4 decades. The influences of Gram-negative (GN) bacteremia species type and patient inclusion cri-
teria on endotoxemia detection rates in published studies remain unclear. Studies were identified after a literature search
and manual reviews of article bibliographies, together with a direct approach to authors of potentially eligible studies for
data clarifications. The concordance between GN bacteremia and endotoxemia expressed as the summary diagnostic odds
ratios (DORs) was derived for three GN bacteremia categories across eligible studies by using a hierarchical summary re-
ceiver operating characteristic (HSROC) method. Forty-two studies met broad inclusion criteria, with between 2 and 173
GN bacteremias in each study. Among all 42 studies, the DORs (95% confidence interval) were 3.2 (1.7 to 6.0) and 5.8 (2.4
to 13.7) in association with GN bacteremias with Escherichia coli and those with Pseudomonas aeruginosa, respectively.
Among 12 studies of patients with sepsis, the proportion of endotoxemia positivity (95% confidence interval) among patients
with P. aeruginosa bacteremia (69% [57 to 79%]; P � 0.004) or with Proteus bacteremia (76% [51 to 91%]; P � 0.04) was signifi-
cantly higher than that among patients without GN bacteremia (49% [33 to 64%]), but this was not so for patients bacteremic
with E. coli (57% [40 to 73%]; P � 0.55). Among studies of the sepsis patient group, the concordance of endotoxemia with GN
bacteremia was surprisingly weak, especially for E. coli GN bacteremia.

The Limulus amebocyte lysis (LAL) assay, which utilizes extracts
of blood cells (amebocytes) of the Limulus polyphemus horse-

shoe crab, is a highly sensitive and specific test available for the
detection of endotoxin (lipopolysaccharide [LPS]) (1). This assay
is a reliable method for the detection of infection with Gram-
negative (GN) bacteria in body fluids other than blood (1). How-
ever, the clinical significance of endotoxin detection in blood as
both a diagnostic and a prognostic test is unclear, despite over 100
studies published over 4 decades for a broad range of patient
groups (2–45). The interpretation of the literature is confounded
by a 100-fold increase in assay sensitivity (3) and substantial dif-
ferences in patient inclusion criteria among the studies in the lit-
erature over this period.

Moreover, in the evaluations of endotoxemia therapies over
this time period, there has been a substantial and unexplained
disconnect between the results of animal models of sepsis and the
results of subsequent clinical trials of the same therapies (46).

Five factors have prompted a reappraisal of this question of
the clinical significance of endotoxin detection. First, new
studies and new data from older studies relating to endotox-
emia detection have appeared and need to be incorporated
(5–7, 15, 24, 32, 37, 43, 44). Second, the relevance of recently
defined structural differences in lipid A, the biologically active
component of LPS of different pathogens causing GN bactere-
mia, for endotoxemia detection needs to be clarified (47).
Third, paradoxical observations among animal models of sep-
sis indicate that the concordance of endotoxemia with GN bac-

teremia and also with outcome is expected to differ for differ-
ent GN bacteremia types (48). The detection of endotoxemia is
of interest in relation to ongoing efforts to develop rapid de-
tection methods for GN bacteremia and the possible applica-
tion of emerging endotoxemia therapies (46). Finally, newer
statistical methods have enabled a reappraisal over a broad
range of assay breakpoints (49).

The purpose here was to reappraise the literature, with partic-
ular interest in patients with documented GN bacteremia within
those studies that used sepsis criteria for patient inclusion.

MATERIALS AND METHODS
Data sources. The previously undertaken search of the literature was up-
dated to February 2014. The search strategy was detailed previously (2, 3).
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In addition, a call for data was issued (50), and additional data were sought
by personal communications with authors of potentially relevant publi-
cations.

Study selection and data extraction. The following inclusion criteria
were used: (i) the study provided the results of Limulus assays and blood
cultures for patients with suspected GN bacteremia; (ii) the study had a
minimum sample size of 10 patients. The following exclusion criteria were
used: animal models, studies of endotoxemia in settings other than sus-
pected GN bacteremia (e.g., colonoscopy and intraoperative settings),
studies using assays other than the Limulus assay, studies that were re-
stricted to specific types of GN bacteremia (e.g., those caused by Neisseria
meningitidis), studies which lack specific data for bacteremia or other
data, and duplicate studies. Note that some studies may have been ex-
cluded for more than one reason. A complete catalog of studies excluded
from the analysis was reported previously (2).

The endotoxemia detection data were extracted from each study on
a per-patient basis as follows. Patients in each of the following three
categories of bacteremia were counted: (i) Escherichia coli, (ii) Pseu-
domonas aeruginosa, (iii) non-E. coli Enterobacteriaceae. The last cate-
gory included Klebsiella species, Enterobacter species, Proteus species,
and Serratia species. Any patients with Gram-positive bacteremia or
fungemia were counted in the “GN bacteremia absent” category. Poly-
microbial bacteremias were not included in the analysis. For each
study, a breakpoint between endotoxemia positive and negative was
determined which, unless otherwise indicated, was usually the sensi-
tivity limit for the internal endotoxin standard of the Limulus assay
used in each study. This breakpoint was converted to the units nano-
grams per milliliters by using the conversion factor of 1 endotoxin unit
(EU) � 0.1 ng of endotoxin, where necessary. Those patients with GN
bacteremia with endotoxemia detected above versus below the break-
point were counted as a true positive (TP), versus false negative (FN),
respectively. Those patients in the category of GN bacteremia absent
above versus below the breakpoint were counted as false positives
(FP), versus true negatives (TN), respectively. Two studies (24, 32)

provided endotoxemia data that were stratified for two breakpoints;
each of these studies was analyzed by entering all study data separately
for each breakpoint at half the study weight. For each study, the diag-
nostic odds ratio (DOR) was calculated as follows: DOR � (TP/FN)/
(FP/TN).

Data analysis. The derivations of the summary statistics for the
DOR, sensitivity, and specificity were performed using the metandi
command in STATA (release 10.0; STATA Corp., College Station, TX,
USA) as previously described (2, 3). This command fits a two-level
mixed logistic regression model, with independent binomial distribu-
tions for the true positives and true negatives conditional on the sen-
sitivity and specificity in each study and a bivariate normal model for
the logit transforms of sensitivity and specificity between studies. The
metandi command also generates a plot containing the following: a
hierarchical summary receiver operating characteristic (HSROC)
curve derived from the individual study results, which were repre-
sented as data points proportional to study size, and the sensitivity and
specificity, conjointly summarized as a single summary point sur-
rounded by 95% confidence and 95% prediction ellipses.

RESULTS

This analysis included 42 studies published between the years 1970
and 2013 (4–45) (Fig. 1; Table 1). There were 8 studies with data
clarifications obtained through personal communication, 10
studies not included in a previous meta-analysis (5–7, 15, 22, 24,
32, 37, 43, 44), and 3 studies not published in English (8, 15, 43).
The reported assay sensitivities to the internal endotoxin standard
in the studies varied by �100-fold and typically ranged between
0.1 and 10 ng/ml for the 18 studies that used the gelation version of
the LAL assay, compared to a range between 0.001 and 0.1 ng/ml
for the 24 studies that used the chromogenic version of the LAL
assay. There were 21 studies published up to or including 1990 and
21 that were published after 1990. All but one of the studies pub-

FIG 1 Flow chart of our literature search strategy and study accrual. C-limulus and G-limulus refer to the chromogenic and gelation versions of the LAL assay,
respectively. Note that studies may have been excluded for more than one reason but have been counted only once.
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lished after 1990 used the chromogenic version of the LAL assay
(Table 1).

There were two studies (24, 32) for which the patients were
classified at two breakpoints into subgroups with either high

(�660 pg/ml), low (25 to 660 pg/ml), or nondetectable (�25 pg/
ml) levels of endotoxemia. There were 12 studies (14 groups) that
were limited to patients with either sepsis or septic shock. All of
these 12 studies used the chromogenic version of the LAL assay,
and 11 of these 12 studies were published after 1990. The other 30
studies examined a diverse range of patient groups, such as pedi-
atric, perioperative, febrile neutropenic oncology, or otherwise-
unspecified adult patient groups, and used either version of the
LAL assay.

The 42 studies included data for 3,868 patients, with 1,389
patients among the 10 newly included studies (5–7, 15, 22, 24, 32,
37, 43, 44). The number of patients in each study with GN bacte-
remia was lower among studies published up to and in 1990 (pre-
1990, median of 9 patients, with an interquartile range of 3 to 16)
versus those published after 1990 (post-1990, median of 15 pa-
tients with an interquartile range of 8 to 21). There were 295 E. coli
(Fig. 2), 239 non-E. coli Enterobacteriaceae, and 133 P. aeruginosa
(Fig. 3) GN bacteremias (Table 2). The concordance between the
detection of endotoxemia and GN bacteremia is displayed in the
HSROC plots (Fig. 2 and 3), and the summary DORs are shown in
Table 3. The DORs were lower among the 12 studies limited to
patients with sepsis than were the DORs among all studies.

Among the 12 studies limited to patients with sepsis, the pro-
portion of patients without GN bacteremia who were endotox-
emia positive was 49% (95% confidence interval [CI], 33 to 64%).
In contrast, the proportions of patients with detectable endotox-
emia among bacteremic patients for these 12 studies were as fol-
lows: E. coli bacteremias, 57% (CI, 40 to 73%; 12 studies); Kleb-
siella bacteremias, 41% (CI, 29 to 55%; 9 studies); Enterobacter
bacteremias, 32% (CI, 10 to 67%; 5 studies); Proteus bacteremias,
76% (CI, 51 to 91%; 3 studies); Serratia bacteremias, 32% (CI, 10
to 67%; 1 study); P. aeruginosa bacteremias, 69% (CI, 57 to 79%; 9
studies). Only in the cases of patients with bacteremia caused by P.
aeruginosa (P � 0.004) or Proteus species (P � 0.04), and not those
with bacteremia caused by E. coli (P � 0.55) or other Enterobacte-
riaceae, were the differences compared to those in patients with-
out GN bacteremia statistically significant. Among the 12 studies
limited to patients with sepsis, the DORs were marginal, and the
DORs in relation to E. coli bacteremias and the category of non-E.
coli Enterobacteriaceae bacteremias, but not that in relation to P.
aeruginosa, included unity within the respective 95% confidence
intervals (Table 3).

DISCUSSION

Endotoxin is present in all GN bacteria. Hence, it might be
expected that endotoxemia detection, especially in newer as-
says, would perform better as a diagnostic marker of GN bac-
teremia than methods using clinical criteria, which perform
poorly (51–53). Moreover, GN bacteremia has a high mortality
in association with sepsis despite antibiotic therapy, and obser-
vations derived from animal models generally, but not always
(48, 54), have implicated a key role for endotoxemia in GN
bacteremia pathogenesis. Hence, it might also be anticipated
that the concordance between endotoxemia and GN bactere-
mia would be high in those patients with sepsis. However, the
diagnostic and prognostic significance of endotoxemia is com-
plex, and the findings here are somewhat at variance with these
expectations.

Endotoxemia is detected in approximately half of those with
GN bacteremia, and similarly, GN bacteremia is detected in ap-

TABLE 1 Studies analyzed to determine the concordance of
endotoxemia with Gram-negative bacteremia

First author, yr
(reference)

LAL
versiona

Sensitivity
limitb

(ng/ml)
Patient
population

Total
no. of
patients

Ahmed, 2004 (4) C 0.004 Pediatric 35
Bailey, 1976 (5) G 5 Surgical 24
Bion, 1994 (6) C 0.02 Surgical 52
Byl, 2001 (7) C 0.005* Sepsis syndrome 23
Clumeck, 1977 (8) G 3 Unrestricted 46
Cooperstock, 1985 (9) G 1 Pediatric 37
Danner, 1991 (10)c C 0.01 Sepsis syndrome 96
Dofferhoff, 1992 (11) C 0.005 Sepsis syndrome 18
Engervall, 1997 (12) C 0.005* Neutropenic 22
Feldman, 1974 (13) G 1 Pediatric 78
Fossard, 1974 (14) G 1 Surgical 25
Garcia Curiel, 1979 (15) G 1 Shock 41
Giamarellos-Bourboulis,

1999 (16)
C 0.1 Urosepsis 25

Goldie, 1995 (17)c C 0.002 Sepsis syndrome 129
Guidet, 1994 (18)c C 0.005 Sepsis syndrome 81
Hass, 1986 (19) C 0.01 Pediatric 35
Hynninen, 1995 (20) C 0.013 Neutropenic 98
Jirillo, 1975 (21) G 1 Pediatric 10
Kelsey, 1982 (22) G 50 Pediatric 30
Ketchum, 1997 (23)c C 0.005 Sepsis syndrome 362
Kritselis, 2013 (24)c,d C 0.6 Sepsis syndrome 341
Kritselis, 2013 (24)c,d C 0.025 Sepsis syndrome 341
Lau, 1996 (25) C 0.01 Surgical 38
Levin, 1970 (26) G 5 Unrestricted 93
Levin, 1972 (27) G 5 Suspected

bacteremia
217

Martinez, 1973 (28) G 5 Suspected
bacteremia

75

Massignon, 1996 (29)b C 0.004 Sepsis syndrome 55
McCartney, 1987 (30) C NS Neutropenic 26
Oberle, 1974 (31) G 0.5 Pediatric 23
Opal (high), 1999 (32)c,d C 0.6 Sepsis syndrome 727
Opal (low), 1999 (32)c,d C 0.02 Sepsis syndrome 727
Pearson, 1985 (33) G 0.1 Unrestricted 41
Prins, 1995 (34)c C 0.04 Urosepsis 30
Scheifele, 1985 (35) G 0.2 Pediatric 43
Shenep, 1988 (36) G 0.025 Pediatric 20
Strutz, 1999 (37) C 0.01 Sepsis 28
Stumacher, 1973 (38) G 0.5 Unrestricted 126
Suyasa, 1995 (39) G 0.01 Unrestricted 13
Togari, 1983 (40) G 0.5 Pediatric 10
Van Deventer, 1988 (41) C 0.005 Unrestricted 433
Van Dissel, 1993 (42) C NS Sepsis syndrome 14
Watzke, 1987 (43) C 0.01 Unrestricted 20
Wong, 2013 (44) C 0.003 Neutropenic 103
Yoshida, 1993 (45)c C 0.003 Neutropenic 125
a LAL assay version abbreviations: C, chromogenic; G, gelation.
b The Limulus assay sensitivity limit to an internal control endotoxin standard (in ng/
ml). For those studies which used EU rather than ng/ml (marked with an asterisk), a
conversion based on the formula 1 EU � 100 pg was used. NS, not specified.
c Data provided via personal communication with the study author.
d For two studies (24, 32), there is a double entry of data in the table because patients
were analyzed at both high and low endotoxemia detection breakpoints. In the HSROC
analysis (Table 3; Fig. 2 and 3), the study weights for the data for each breakpoint from
these two studies were halved.
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proximately half of those with endotoxemia. It has been estab-
lished in previous analyses that the concordance of endotoxemia
with GN bacteremia overall is weak regardless of whether a more-
or less-sensitive version of the LAL assay is used (3). The questions
addressed here were the additional influences of GN bacteremia
species type and the use of sepsis criteria for patient inclusion on
this concordance and on the endotoxemia detection rates in stud-
ies published over the past 4 decades.

There were wide ranges of GN bacteremia types, patient

groups, and study sizes among the studies published since the
original studies of the Limulus assay for endotoxemia detection
in the early 1970s. The findings here indicate that the concor-
dance of endotoxemia with GN bacteremias differs between
GN bacteremias of different types. The concordance is surpris-
ingly weak, especially for Enterobacteriaceae GN bacteremia and
among studies of patients with sepsis. The concordance be-
tween endotoxemia and GN bacteremia found here was higher
for P. aeruginosa than for most Enterobacteriaceae. Among stud-

FIG 2 Plot of sensitivity versus specificity from 37 studies for all patients
populations (39 groups; top plot) and for patients with sepsis (14 groups;
bottom plot) for the detection of endotoxemia using the Limulus assay versus
E. coli bacteremia, together with the fitted HSROC curve and the bivariate
summary estimate (solid square) for sensitivity and specificity together with
the corresponding 95% confidence ellipse (inner broken line) and 95% pre-
diction ellipse (outer dotted line). The symbol size for each study is propor-
tional to the study size.

FIG 3 Plot of sensitivity versus specificity for 31 studies for all patient popu-
lations (33 groups; top plot) and for patients with sepsis (11 groups; bottom
plot) for the detection of endotoxemia using the Limulus assay versus Pseu-
domonas aeruginosa GN bacteremia together with the fitted HSROC curve and
the bivariate summary estimate (solid square) for sensitivity and specificity,
together with the corresponding 95% confidence ellipse (inner broken line)
and 95% prediction ellipse (outer dotted line). The symbol size for each study
is proportional to the study size.
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ies limited to patients with sepsis, only in the cases of bactere-
mia with either P. aeruginosa or Proteus spp. was the proportion
with endotoxemia found to be significantly above the back-
ground detection rate.

Moreover, the prognostic significance of endotoxemia is de-
pendent on the copresence of GN bacteremia and is unequal for

GN bacteremias of different types. For example, endotoxemia
with E. coli bacteremia has no prognostic significance (55). The
somewhat surprising finding here is that the concordance between
endotoxemia and GN bacteremia was lower within studies that
used sepsis criteria for patient inclusion versus studies that se-
lected patients more broadly, despite the fact that the studies of

TABLE 2 Detection rates by species group for each of the studies included in our analysis

First author, yr (reference)

Detection rate (no. of patients) among species groupa

E. coli
Non-E. coli
Enterobacteriaceae P. aeruginosa

Non-GN
bacteremia

TP FN TP FN TP FN FP TN

Ahmed, 2004 (4) 1 0 0 0 3 0 12 19
Bailey, 1976 (5) 1 0 0 0 0 0 12 11
Bion, 1994 (6) 0 0 0 0 1 1 31 19
Byl, 2001 (7) 6 2 0 0 0 0 3 12
Clumeck, 1977 (8) 5 3 0 0 2 0 2 34
Cooperstock, 1985 (9) 3 0 0 0 1 1 6 26
Danner, 1991 (10)b 5 4 1 3 2 0 32 49
Dofferhoff, 1992 (11) 1 1 1 1 2 0 6 6
Engervall, 1997 (12) 1 0 0 1 1 1 4 14
Feldman, 1974 (13) 0 9 0 4 2 10 0 53
Fossard, 1974 (14) 1 0 0 0 1 0 22 1
Garcia Curiel, 1979 (15) 0 3 1 10 0 1 3 23
Giamarellos-Bourboulis, 1999 (16)b 2 8 1 1 0 0 4 9
Goldie, 1995 (17)b 1 1 3 1 2 0 83 38
Guidet, 1994 (18)b 9 7 5 0 0 0 20 40
Hass, 1986 (19) 0 0 0 0 2 0 8 25
Hynninen, 1995 (20) 1 0 1 0 0 0 0 96
Jirillo, 1975 (21) 0 0 1 1 0 0 4 4
Kelsey, 1982 (22) 0 1 0 0 1 0 0 28
Ketchum, 1997 (23)b 3 20 5 22 2 3 109 198
Kritselis, 2013 (24)b,c 6 56 9 45 1 23 13 188
Kritselis, 2013 (24)b,c 25 37 24 30 15 9 66 135
Lau, 1996 (25) 5 3 1 0 0 0 20 9
Levin, 1970 (26) 0 2 0 5 2 1 7 76
Levin, 1972 (27) 4 3 6 10 6 1 19 168
Martinez, 1973 (28) 1 3 0 3 1 0 1 66
Massignon, 1996 (29) 9 2 3 0 3 1 21 16
McCartney, 1987 (30) 0 1 0 0 0 0 8 17
Oberle, 1974 (31) 0 0 1 0 2 0 6 14
Opal (high), 1999 (32)b,c 18 21 15 18 16 15 241 383
Opal (low), 1999 (32)b,c 33 6 27 6 24 7 496 128
Pearson, 1985 (33) 5 0 1 1 0 0 2 32
Prins, 1995 (34)b 4 5 0 0 1 0 2 18
Scheifele, 1985 (35) 0 1 0 0 0 0 20 22
Shenep, 1988 (36) 0 1 2 0 1 0 3 13
Strutz, 1999 (37) 4 4 1 0 0 1 8 10
Stumacher, 1973 (38) 7 11 10 18 2 4 26 48
Suyasa, 1995 (39) 0 0 0 0 4 0 0 9
Togari, 1983 (40) 0 0 1 0 0 0 7 2
Van Deventer, 1988 (41) 7 2 4 0 0 0 14 406
Van Dissel, 1993 (42) 2 0 2 0 0 0 7 3
Watzke, 1987 (43) 0 0 3 1 1 0 4 11
Wong, 2013 (44) 8 0 5 0 1 0 89 0
Yoshida, 1993 (45)b 1 0 6 5 4 3 35 71
a Abbreviations: TP, true positive, the number of patients with endotoxemia and Gram-negative bacteremia; FP, false positive, the number of patients with endotoxemia and
without Gram-negative bacteremia; FN, false negative, the number of patients without endotoxemia and with Gram-negative bacteremia; TN, true negative, the number of patients
with neither endotoxemia nor Gram-negative bacteremia. Patients with polymicrobial bacteremia were not included in the analysis.
b Data provided via personal communication with the study author.
c For two studies (24, 32), there is a double entry of data in the table because patients were analyzed at both high and low endotoxemia detection breakpoints. In the HSROC
analysis (Table 3; Fig. 2 and 3), the study weights for the data for each breakpoint from these two studies were halved.
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patients with sepsis all used the more sensitive chromogenic ver-
sion of the Limulus assay.

This finding is surprising for three reasons. In the application
of any assay, the use of a more sensitive version would be expected
to achieve a higher true-positive rate (sensitivity). However, this is
generally achieved at the cost of a lower true-negative rate (spec-
ificity), an expected trade-off (49). Also, given the presumption of
a key role of endotoxemia in the mediation of sepsis, a higher
concordance between endotoxemia and GN bacteremia would
have been expected among studies of patients meeting the criteria
for sepsis versus studies of patients more broadly selected. The
third reason relates to the complex interrelation between the
pathogenesis of bacteremia on the one hand and, on the other
hand, the structure-function activity related to how endotoxemia
is sensed by the host immune system, which is dependent on the
specific lipopolysaccharide structure, and also with regard to how
it is detected in the Limulus assay, which is not so dependent.

In this regard, there are key structural differences between the
lipid A components of the endotoxin molecule (LPS) of different
GN bacteria. Enterobacteriaceae such as E. coli characteristically
have a lipid A with a hexa-acyl structure, whereas other lipid A
structures are present in non-Enterobacteriaceae species, such as P.
aeruginosa (47). The hexa-acyl structure of lipid A is now known
to be optimal for the recognition of GN bacteremia by the host
immune system via the MD2–Toll-like receptor 4 interaction and
the stimulation of cytokine release. The lipid A structure is not
critical for sensing by the clotting proteins of the blood cells of the
Limulus polyphemus horseshoe crab, from which the LAL assay
was derived.

It should be noted that the LAL assay is an assay for endotoxin,
not for GN bacteria per se. With an amount of LPS of �0.025
pg/CFU from E. coli or P. aeruginosa, it would be expected that
there would be 0.25 pg/ml of endotoxin for a bacteremia with 10
viable bacteria per 1 ml of blood (56). Even if this estimated total
amount of bacterial cell-bound endotoxin were to be completely
available for detection in association with a bacteremia, this would
still be below the detection limit of even the most sensitive LAL
assay (5 pg/ml). In contrast, but in line with these estimates, in
experimental rabbit (57, 58) and canine (59) models of GN bac-
teremia with either E. coli or Pasteurella sp. bacterial challenge, GN
bacteremias at levels of �10,000 CFU/ml corresponded to endo-
toxemia levels of 10 ng/ml (58), 500 ng/ml (57), and 50 EU/ml
(�5 ng/ml) (59). Note, however, that these bacteremia levels are
approximately 1,000 times higher than those typically seen in sep-
sis in humans.

The quantitative relationship between endotoxemia and GN
bacteremia is not simple and is subject to influence from several
additional bacterial, physicochemical, and patient factors. In par-

ticular, the activity of endotoxin is not a uniform gravimetric
property for endotoxins of different bacterial origins. Also, the
mode of LPS aggregation (60), the interactive effect of plasma
(61), and the presence of nonviable bacterial cells and cell frag-
ments that accompany a GN bacteremia (62) influence the rela-
tionship. Moreover, differential kinetics of endotoxemia and GN
bacteremia are likely each influenced by the presence of virulence
factors, which differ for different species of GN bacteria (63).

There are several strengths of this analysis. A broad range of
studies have been included, in order to address the impact of fac-
tors that cannot be addressed in an animal model of sepsis. The
specification of the type of GN bacteremia was a requirement for
inclusion in this analysis. The number of studies increased after
additional data were sought from authors of potentially eligible
studies to enable their inclusion. This resulted in a substantial
increase in eligible studies and patient data available, compared to
those included in a previous analysis (3). Also, the method of
meta-analysis was optimal to enable the inclusion of studies across
a broad range of assay breakpoints and studies of various sizes. No
single study among those included here would have been suffi-
ciently powered to answer the questions of interest. The findings
would not have been achievable using any previously available
meta-analytic method. Moreover, there were 12 studies of patient
groups with sepsis, and the restricted concordance appeared con-
sistent across this subgroup of studies; hence, the findings appear
to be generalizable. The patient group with sepsis is of particular
interest, as it would be in this group that any new therapies for
either endotoxemia or sepsis would likely be tested.

The influence of several other study parameters, such as study
size, study design quality, and method of plasma pretreatment,
have been considered elsewhere (2, 3). For example, a dispropor-
tionate number of small studies (n � 25) had 100% sensitivity for
the detection of endotoxemia (3). Otherwise, these parameters
were each found to have a minor impact on concordance com-
pared to the factors identified here.

The findings here are in contrast to paradoxical observations
from a controlled model of septic shock in dogs. In the dog, im-
plantation of an intraperitoneal infected clot induces bacteremia
with various selected Gram-negative and Gram-positive challenge
bacteria, together with cardiovascular changes characteristic of
septic shock leading to mortality (48, 54, 59, 65, 66). This model
enables the study of quantitative levels of endotoxemia as mea-
sured with the chromogenic LAL assay as well as bacteremia. In
comparative studies with this model, a relatively avirulent strain of
E. coli versus P. aeruginosa (48), Staphylococcus aureus (66), or a
more virulent strain of E. coli (65) showed similar quantitative
levels of bacteremia, whereas the associated hemodynamic changes
and shortened survival times were in each case more severe than those
observed in association with the avirulent E. coli strain, as would be
expected (48, 65, 66). Surprisingly, despite these expected differ-
ences, in each study the levels of endotoxemia were 3-fold (65) to
10-fold (48) lower or even undetectable (46) versus the levels seen
after challenge with the avirulent E. coli strain. Interestingly, en-
dotoxins extracted and purified from the virulent and avirulent E.
coli strains were equal with respect to potency and endotoxin
amount per bacterium; hence, the lack of an association between
endotoxemia and disease severity in this experimental model
could not be explained on this basis (65).

Moreover, following intraperitoneal challenge with strains of
E. coli with (O6:H1:K2) or without (O86:H8) virulence factors for

TABLE 3 Summary data for endotoxemia concordance with GN
bacteremia

GN bacteremia species group

DORa (95% CI), no. of studies

All studies Studies of sepsisb

E. coli 3.2 (1.7–6.0), 37 1.4 (0.89–2.3), 14
Non-E. coli Enterobacteriaceae 2.8 (1.5–5.5), 31 1.5 (0.82–2.8), 13
Pseudomonas aeruginosa 5.8 (2.4–13.7), 31 1.7 (1.02–3.0), 11
a DOR � (TP/FN)/(FP/TN), derived using HSROC meta-analysis.
b All studies of sepsis used chromogenic versions of the LAL assay, which are typically
100-fold more sensitive than gelation-based versions.
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human disease, survival times were shorter and the associated he-
modynamic changes were more severe after challenge with the
virulent strain, as might be expected. However, there were three
paradoxical observations: (i) bacteremia occurred earlier and
more frequently after challenge with the avirulent E. coli strain; (ii)
levels of endotoxemia were 3-fold higher after challenge with the
avirulent E. coli strain; (iii) challenge with heat-killed bacteria at a
10-fold-higher dose was associated with a reversal of the effects on
survival and hemodynamic changes seen with live bacterial chal-
lenge, as the survival was significantly shortened after challenge
with the killed nonvirulent bacteria versus the killed virulent bac-
teria. Despite this reversal, the levels of endotoxemia were again
3-fold higher after challenge with the killed avirulent versus the
killed virulent E. coli strains (65).

Limitations. There are several limitations of this analysis. Both
endotoxemia and GN bacteremia are episodic phenomena, and
endotoxemia levels may be increased by antibiotic therapy (64).
For example, in one clinical study (10) of 100 patients with sepsis
in an intensive care unit (ICU) setting, the cumulative percentage
of patients found to have endotoxemia rose from 20% to 40%
between 0 and 24 h after study entry. For all but three studies
included here, the timing of antibiotic administration in relation
to determinations of endotoxemia and bacteremia is unclear.

The studies included in our analysis were published over a
period of over 40 years, during which time supportive and antibi-
otic therapies and underlying patient prognosis factors likely var-
ied. Many relevant patient-specific details, such as age and patient
comorbidities, were not available. The findings in this analysis
differ slightly from the findings of a previous analysis (3) in which
the summary DORs were higher than those derived here. This
difference may be a consequence of the studies included in the
present analysis being slightly larger in size and mostly more re-
cently published, as well as our analysis having been restricted to
bacteremias within three categories of GN bacterial species.

Even with data for 3,868 patients from 42 studies published
over the past 4 decades, it is still unclear how substantial the dif-
ferences are in the proportion of patients with detectable endotox-
emia for different GN bacteremia species. The estimates here im-
ply differences that may be as great as 40%. However, given the
small numbers for each species, the associated 95% confidence
intervals are as wide as 50%.

Another limitation is that the estimations of endotoxemia detec-
tion and the detection of bacteremia in the studies here do not take
into account bacterial cells that were either nonviable or difficult to
grow using current methods, as well as cell fragments associated with
a GN bacteremia and how these associations may differ for different
specific types of GN bacteremia (62, 63). For example, for Neisseria
meningitidis, the concordance of endotoxemia is higher for these
fragments than it is for viable bacterial cells (63).

Conclusion. The concordance between endotoxemia and GN
bacteremia differs for different types of GN bacteremia and is
marginal among studies using sepsis criteria for patient inclusion.
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