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Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance
in solving many realistic problems. In the original PSO and most of its variants all particles are treated
equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ
complex networks to represent the population structure of swarms and propose a selectively-informed PSO
(SIPSO), in which the particles choose different learning strategies based on their connections: a
densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with
few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on
widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its
existing variants in success rate, solution quality, and convergence speed. We also explore the evolution
process from a microscopic point of view, leading to the discovery of different roles that the particles play in
optimization. The hub particles guide the optimization process towards correct directions while the
non-hub particles maintain the necessary population diversity, resulting in the optimum overall
performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light
on the underlying mechanism of information exchange in natural swarm and flocking behaviors.

O
ptimization1–3 aims to seek the minimal or maximal point in the constrained parameter space of a
system, which is highly challenging due to the increasing complexity of real problems we face in modern
society. To solve real-world optimization problems researchers learned from the collective behaviors of

social animals, yielding several intelligent algorithms4–6. Among those, particle swarm optimization (PSO),
proposed by Kennedy and Eberhart5, is a typical swarm-intelligence algorithm that derives the inspiration from
the self-organization and adaptation in flocking phenomena7–11.

In PSO, a flock of particles move in a constrained parameter space, interact with each other, and update their
velocities and positions according to their own and their neighbors’ experiences, searching for the global
optimum. Owing to its simplicity, effectiveness and low computational cost, PSO has gained significant popu-
larity and improvements. Most studies on improving the PSO fall into three categories. (1) Modifying the model
coefficients. Shi and Eberhart introduced an inertia weight to reduce the restriction on velocity and better control
the scope of search12. Later on, they employed fuzzy system and stochastic mechanism to better adapt the inertia
weight13. Clerc and Kennedy introduced a constriction coefficient to ensure the convergence of the particles14.
Trelea used dynamical system theory to analyze the PSO algorithm and derived the guidelines for choosing
appropriate parameters15. Zhan et al. proposed an adaptive PSO in which model coefficients can vary according to
evolutionary states16. (2) Considering the population structure. Kennedy showed that the sociometric structure
and small-world manipulation interacted with function can produce a significant effect on performance17.
Kennedy and Mendes examined the impact of topological structure more detailedly, leading to the identification
of superior population configurations18. Liu et al. proposed the scale-free PSO (SFPSO) which employs degree-
heterogeneous (scale-free) topologies and is able to significantly improve the optimization performance19. (3)
Altering the interaction modes. Mendes et al. revised the way how each particle is influenced by its neighbors,
resulting in the fully-informed PSO (FIPSO)20,21 in which each particle learns from every individual in its
neighborhood rather than the single best one. The performance of FIPSO is closely related to the population
structure22. Liang et al. proposed the comprehensive learning PSO that allows each dimension of a particle to learn
from different neighbors23. Li et al. proposed the adaptive learning PSO in which each particle can adaptively
guide its behavior of exploration and exploitation24. They further proposed the self-learning PSO (SLPSO) that
allows each particle to adaptively choose one of four learning strategies in different situations with respect to
convergence, exploitation, exploration, and jumping out of the basins of attraction of local optima25.
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However, most of the existing PSO algorithms treat all particles
equally, prompting us to explore the impact of heterogeneous sight
ranges: the hub particles (leaders) have a broad sight of the popu-
lation; each non-hub particle (follower) has only a single source of
information. The former would make the optimization process well
guided by the leaders while the latter allows the followers to move
without unnecessary interference. We found that our algorithm,
selectively-informed PSO (SIPSO), taking into account the indivi-
duals’ heterogeneity, can balance the exploration and the exploita-
tion in the optimization process thus it achieves better performance.

In the following we will briefly introduce the PSO and its typical
variants and then describe our SIPSO algorithm in detail.

GPSO & LPSO. For a minimum optimization problem with D
independent variables and an objective function f(x), the PSO
algorithm represents the potential solutions with a flock of
particles. Each particle i has a position xi 5 [xi1, xi2, …xiD] and a
velocity vi 5 [vi1, vi2, … viD] in the D-dimensional space. The goal is
to find an optimal position xi of any particle i that makes the objective
function f(x) minimum. Initially the particles’ positions and velocities

are generated randomly. Then, at each time step (iteration), each
particle updates its position and velocity according to the following
equations5:

v i~g: v izU 0,c1ð Þ: pi{xið ÞzU 0,c2ð Þ: pn,i{xi
� �� �

ð1Þ

xi~xizv i ð2Þ

where g~
2

2{Q{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2{4Q

p�� �� , Q 5 c1 1 c2 . 4. Here pi is the best

historical position found by particle i, pn,i is the best historical position
found by i’s neighbors, c1 and c2 are the acceleration coefficients. U(a,
b) is a random number drawn at each iteration from the uniform
distribution [a, b]. Therefore, c1 and c2 balance the impacts of each
particle’s own and its neighbors’ experiences, and g indicates the
learning rate. Based on previous extensive analysis14 we choose the
appropriate settings as c1 5 c2 5 2.05 and g 5 0.7298. Previous
studies17,18,20–22 have found that the interaction topology of particles
has a great influence on final optimization results. Two versions of
canonical PSO algorithm with different topologies are most
commonly used: the GPSO with a fully connected network
(Fig. 1(a)) and the LPSO with a ring (Fig. 1(b)). GPSO converges
more rapidly than LPSO, yet, is more susceptible to be trapped at
local optima17.

FIPSO. In the canonical PSO each particle is influenced by itself and
the best-performed particle in its neighborhood. This ‘‘single-
informed’’ strategy may ignore some important information from
the remaining neighbors. Mendes et. al. hence proposed a ‘‘fully-
informed’’ version of PSO (FIPSO)20,21, in which each particle adjusts
its velocity according to the experiences of its all neighbors:

v i~g: v iz
1
ki

X
j[N ið Þ

U 0,Qð Þ: pj{xi

� �0
@

1
A ð3Þ

where N ið Þ is the node set of i’s neighbors, ki is the number of i’s
neighbors (i.e., ki is i’s degree and ki~ N ið Þj j), pj is the best historic

Figure 1 | Network structure representing the interactions between
particles. (a) A complete network with 20 nodes (particles). Each node

connects to all others. (b) A ring network with 20 nodes. Each node links to

its nearest two neighbors. (c) A scale-free network with 20 nodes, in which

the node size represents the node degree, i.e. the number of edges

associated with the node. It shows that most nodes have low degrees, yet

there exist a few high-degree nodes (hubs).

Table 1 | Success rate

f1 f2 f3 f4 f5 f6 f7 f8

GPSO 0.99 1.00 1.00 1.00 1.00 0.87 0.34 0.25
LPSO 0.92 1.00 1.00 1.00 1.00 1.00 0.71 1.00
SFPSO 0.96 1.00 1.00 1.00 1.00 0.99 0.66 0.98
GFIPSO 0 0 0 0.74 0.52 0 0.98 0
LFIPSO 0.99 1.00 1.00 1.00 0.88 1.00 1.00 1.00
SFIPSO 0.53 0.45 0.16 1.00 1.00 0.47 1.00 0.18
SLPSO 0.99 1.00 0.16 0.10 1.00 0.96 0.66 1.00
SIPSO 1.00 (kc 5 5) 1.00 (kc 5 3) 1.00 (kc 5 3) 1.00 (kc 5 4) 1.00 (kc 5 2) 1.00 (kc 5 3) 1.00 (kc 5 2) 0.99 (kc 5 3)
SIPSO (kf ix

c ~5) 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.99

Table 2 | Solution quality

f1 f2 f3 f4 f5 f6 f7 f8

GPSO 1.96e 1 1 3.00e 2 100 6.78e 2 23 4.12e 2 3 6.01e 1 1 9.96e 2 3 3.55e 2 2 1.24e 2 14
LPSO 2.31e 1 1 8.60e 2 47 7.90e 2 27 9.46e 2 3 5.65e 1 1 5.56e 2 3 2.80e 2 2 7.69e 2 15
SFPSO 1.76e 1 1 8.61e 2 64 1.99e 2 37 4.37e 2 3 4.67e 1 1 1.02e 2 2 2.57e 2 2 1.93e 2 14
GFIPSO - - - 2.94e 2 2 5.71e 1 1 - 1.41e 2 3 -
LFIPSO 2.59e 1 1 3.7e 2 11 7.03e 2 7 5.60e 2 3 8.32e 1 1 1.96e 2 5 8.87e 2 3 2.96e 2 6
SFIPSO 6.30e 1 1 2.54e 2 3 4.03e 2 3 1.21e 2 2 1.31e 1 1 2.35e 2 2 2.34e 2 3 4.35e 2 3
SLPSO 2.28e 2 2 1.14e 2 58 1.20e 2 33 4.39e 2 2 0 1.66e 2 2 3.97e 2 2 2.34e 2 14
SIPSO 1.55e 1 1

(kc 5 5)
1.64e 2 116

(kc 5 3)
2.86e 2 63

(kc 5 3)
3.45e 2 3

(kc 5 4)
1.07e 1 1

(kc 5 2)
4.23e 2 3

(kc 5 3)
2.94e 2 3

(kc 5 2)
9.24e 2 15

(kc 5 3)
SIPSO (kf ix

c ~5) 1.55e 1 1 4.67 2 109 1.20e 2 61 3.45e 2 3 2.19e 1 1 4.25e 2 3 8.21e 2 3 1.12e 2 14
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Table 3 | Convergence speed

f1 f2 f3 f4 f5 f6 f7 f8

GPSO 524.5 314.5 485.2 358.0 162.7 300.0 484.5 400.2
LPSO 856.4 660.0 764.8 1006.1 388.0 646.2 648.9 887.3
SFPSO 700.7 503.4 548.5 541.9 260.6 482.5 564.8 607.2
GFIPSO - - - 23.4 31.7 - 47.2 -
LFIPSO 1985.1 2209.1 2594.9 1209.6 3367.2 2238.5 1773.0 2512.1
SFIPSO 160.6 229.4 274 70.0 234.7 222.9 198.1 250.2
SLPSO 854.2 1798.3 1851.7 4836.0 1762.1 1730.5 1146.1 1916.4
SIPSO 275.1 (kc 5 5) 271.2 (kc 5 3) 300.9 (kc 5 3) 105.6 (kc 5 4) 351.7 (kc 5 2) 269.2 (kc 5 3) 275.7 (kc 5 2) 307.8 (kc 5 3)
SIPSO (kf ix

c ~5) 275.1 288.5 317.3 115.0 161.9 285.7 266.6 327.6

Figure 2 | The impact of kc on the solution quality of the algorithm for eight benchmark functions. In all sub-figures the vertical axes represent the

solution quality for each function f by the average fitness of different runs F~
1

M

XM

j~1
f xj
�

� �
{f xopt
� �� 	

, where M is the number of independent runs, xj
�

is the best solution found in j-th run, and xopt is the (known) optimum solution for the given function f. Therefore, the smaller the value of F, the better the
performance of the algorithm.
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position found by j. Studies21,22 have revealed that, with appropriate
parameter settings, the FIPSO can outperform the traditional PSO, but
it is susceptible to the topology alteration. In some topologies the
FIPSO may perform even worse than the canonical PSO.

SFPSO & SFIPSO. Recently, many natural and man-made networks
have been found to exhibit scale-free property, i.e. the degree
distribution is power-law26,27. Examples include neural networks28,
citation networks29, World Wide Web30, Internet31, software
engineering32, and on-line social networks33. In scale-free net-
works, only a few nodes are densely connected hubs and most
nodes are low degree non-hub nodes, resulting in high hetero-
geneity of node’s degrees (Fig. 1c). This discovery has triggered the
interest of studying the impacts of underlying network structures on
dynamical processes34–40 and also of introducing scale-free topologies
into evolutionary optimization algorithms19,41–43. In particular, Liu
et al. investigated the influence of scale-free population structure on
the performance of PSO19. Their results indicated that the scale-free
PSO (SFPSO) outperforms the traditional GPSO and LPSO. In the
following we also compare our algorithm to the fully-informed
versions of SFPSO and GPSO (called SFIPSO and GFIPSO hereaf-
ter, respectively).

SLPSO. In most traditional PSO algorithms, a single learning mode
is used for all particles, which may restrict the intelligence for a
particular particle to deal with different situations. Li et al.
proposed the self-learning PSO (SLPSO) that enables the particles
to switch between four modes: exploitation, exploration, jumping
out, and convergence25. Each mode has a set of operations to
update the particles’ velocity and position. A common strategy was
introduced to allow each particle to adaptively choose the most
suitable mode which depends on evolutionary stages and local

fitness landscape. Experimental comparisons showed that SLPSO
outperforms several peer algorithms in terms of mean value,
success rate and overall ranking, especially for some complex high-
dimensional functions. Yet, three key parameters of SLPSO need to
be chosen very carefully through a parameter tuning approach, as
these parameters significantly affect the algorithm’s performance.
Note that in SLPSO, although each particle is able to switch
between different modes, the learning strategy of choosing suitable
modes is identical for all particles.

Selectively-informed PSO. The algorithms described above
assumed that all particles are single-informed or fully informed, or
adopt the same strategy for switching between different modes,
overlooking the heterogeneity of individuals. Here we propose
the selectively-informed PSO (SIPSO) algorithm that takes into
consideration the heterogeneity of individuals’ learning strategies.
The population structure of our SIPSO is represented by a scale-
free network (see Methods). And the learning strategy of each
particle depends on its degree:

v i~
g: v iz

1
ki

P
j[N ið Þ

U 0,Qð Þ: pj{xi

� � !
, if kiwkc

g: v izU 0,c1ð Þ: pi{xið ÞzU 0,c2ð Þ: pn,i{xi
� �� �

, if kiƒkc

8>><
>>: ð4Þ

where ki is the degree of particle i, kc is the threshold to determine a
particle fully- or single-informed. The densely-connected hubs

Figure 3 | The impact of kc on the success rate and convergence speed. (a)

The success rate represented the proportion of successful runs. (b) The

steps required to reach the goal value. The smaller the number of required

steps, the higher the convergence speed.

Figure 4 | The mean fitness and the diversity of the swarm population
during the optimization process. (a) The evolution of the mean fitness on

the function f1, i.e., Fmean~
1
N

XN

j~1
f1 xið Þ{f1 xopt

� �� 	
where N is the

total number of particles, xi is the position of particle i, and xopt 5 1 is the

optimum solution of f1. The inset shows the last steps for SIPSO and

SFPSO. (b) The evolution of the population diversity s (see main text)

during the optimization processes.
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(k . kc) are provided with more information to better lead the
optimization process. The non-hub particles (k # kc) are less
affected so that they can move in the search space with more
freedom, maintaining the diversity of the population. Note that,
when kc 5 kmin 2 1, all the particles are fully-informed thus the
algorithm is degenerated to SFIPSO; when kc 5 kmax, all the
particles take the canonical learning strategy, turning the algorithm
to SFPSO. Here we are interested in the information selectivity, i.e,
kmin 2 1 , kc , kmax. For example, in Fig. 1c, when kc 5 5 the grey
nodes (particles) with degree higher than 5 are fully-informed and
the rest red nodes are single-informed.

Results
Overall performance. We test the performance of our algorithm on
eight widely-used benchmark functions f1–8 (see Methods) and
compare it to other seven algorithms for three criteria: success rate,
solution quality, and convergence speed (see Methods). Note that in
SIPSO the optimal value of the degree threshold kc varies for different
test functions. We also show the results for a fixed threshold (kf ix

c ~5)
over all the functions.

Table 1 lists the comparison of success rate. Our algorithm SIPSO
shows significant advantages, i.e., 99% on f8 and 100% on all the other
functions. Even with a fixed threshold kf ix

c ~5 the SIPSO also gets
very satisfactory success rates.

Table 2 lists the results in terms of solution quality. For each
function, the best solutions are highlighted in bold and ‘‘–’’ means
that the corresponding algorithm fails to reach the acceptable solu-
tion even once. For functions f2–4 our SIPSO remarkably outper-
forms the other algorithms, for f1, f5, f6 and f8 the SIPSO ranks 2nd

of all the algorithms, while for f7 it ranks 3rd. When the degree
threshold is fixed as kf ix

c ~5, the solution quality still ranks top 3 of
all the algorithms over eight test functions.

Table 3 shows the convergence speed of each algorithm, repre-
sented by the steps required to reach the goal value. Thus the smaller
the number of required steps, the higher the convergence speed. The
best cases are marked in bold. Our SIPSO has a relatively fast con-
vergence speed on all the functions, ranking 2nd on f1, f2, f3, f6 and f8,
3rd on f4 and f7, 4th on f5. SFIPSO has the fastest convergence speed on
f1, f2, f3, f6, and f8, and the GFIPSO converges fastest on f4, f5 and f7. It
is worth noting that, faster convergence does not necessarily mean a
better optimization trial. Actually, too fast convergence may lead to
the problem of prematureness, i.e., being trapped at local optima. For
example, as shown in Table 2 the solution qualities of SFIPSO and
GFIPSO are really bad for most benchmark functions, although their
convergence are very fast. In the fully-informed algorithms, each
particle’s information can be quickly transferred to all other indivi-
duals in the swarm thus the algorithms converge rapidly, resulting in
prematureness. In contrast, in our SIPSO, only the hub particles are
fully-informed and there are many non-hub particles taking the
single-informed learning strategy to maintain the population divers-
ity. Consequently, our SIPSO can achieve better performance with a
satisfactory convergence speed.

The impact of kc. As described above we find that for each function
there is an optimal value of the threshold kc with which our algorithm
SIPSO performs best. Hence we investigate the impact of kc on
the performance for all eight benchmark functions. The results of
solution quality, success rate and convergence speed are shown in
Figs. 2 and 3. One can see that, for the solution quality on all
functions except f5 and f7 SFPSO (the rightmost data point)
outperforms SFIPSO (the leftmost data point), while for f5 and f7 it
reverses. However, on all the functions except for f7, neither SFIPSO
nor SFPSO is able to obtain the best result. With kc between kmin and
kmax our algorithm SIPSO achieves the best performance (Fig. 2).
Similar results for success rate are shown in Fig. 3(a). Our SIPSO has
high success rate on all functions with an appropriate kc. As shown in

Fig. 3(b), increasing the number of fully-informed particles can
significantly improve the convergence speed and our SIPSO has
moderate speed of convergence.

The microscopic point of view. To uncover the underlying
mechanism of our algorithm, we explore the optimization process
from a microscopic point of view. We compare our SIPSO (kmin 2 1
, kc , kmax) to SFIPSO (kc 5 kmin 2 1) and SFPSO (kc 5 kmax) that
are all on scale-free networks, excluding the influence of other
factors. For the sake of simplicity, in the following we will present
the results for the function f1. The results for other functions are alike
and not shown here.

Figure 5 | The fitness of particles with different degrees during the

optimization process. Here F kð Þ~ 1
Nk

XN

i~1
f1 xið Þ{f1 xopt

� �� 	
d ki,kð Þ,

where Nk is the number of particles with degree k. And d(ki, k) 5 1 if ki 5 k,
and 0 otherwise. (a) SFPSO, i.e. kc 5 kmax; (b)SFIPSO, i.e. kc 5 kmin 2 1.
(c) SIPSO, i.e. kmin 2 1 , kc , kmax, here we show the evolution of F(k) for
kc 5 5.
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First, we examine the mean fitness (Fmean) of the swarm popu-
lation during an optimization process, with the definition

Fmean~
1
N

XN

i~1
f1 xið Þ{f1 xopt

� �� 	
where N is the total number of

particles, xi is the position of particle i, and xopt 5 1 is the optimum
solution of f1. As shown in Fig. 4(a) the SFIPSO has the fastest
convergence as each particle uses full information from all of its
neighbors, but it is trapped at some local optima in the early stage
(, 150 iterations). Despite their relatively low convergence SIPSO
and SFPSO are able to achieve higher qualities of final solutions, and
SIPSO is the best for the mean fitness.

Second, we compare the population diversity of SFPSO, SFIPSO
and SIPSO, which indicates the extent of exploration during the
searching process of the swarm. The population diversity is defined

as45 s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1
xi{�xk k= N{1ð Þ

r
where N is the total number of

particles, and �x~
XN

i~1
xi is the mean position (center) of the

swarm. Thus, the larger the s, more diverse is the swarm. And a very
small s means that all particles are aggregated together, diminishing
the capability of exploration. As shown in Fig. 4(b), the diversity of
SFIPSO decreases quickly to a very small value due to the informa-
tion redundancy of the fully-informed learning. Consequently,
SFIPSO is not able to escape once gets stuck at a local optimum.
Both SFPSO and SIPSO have a high level of diversity during the
optimization, which ensure the thorough search in the parameter
space thus improve the probability of finding the global optimum.

Furthermore, we investigate the fitness of particles with different

degrees, i.e., F kð Þ~ 1
Nk

XN

i~1
f1 xið Þ{f1 xopt

� �� 	
d ki,kð Þ, where Nk is

the number of particles with degree k. d(ki, k) 5 1 if ki 5 k, and 0
otherwise. The particles in SFPSO have only one information source,
which is very unstable during the optimization process. So the fluc-
tuation of the particles’ fitness in SFPSO are violent (Fig. 5(a)). In
SFIPSO, all particles are fully-informed, making the algorithm con-
verge fast but prematurely (Fig. 5(b)). Our SIPSO combines the
advantages of the two algorithms. The fitness of hub particles mono-
tonously decreases, indicating that the hubs play the role of guiding
the swarm. On the contrary, the non-hub particles have oscillating
fitness, maintaining the necessary diversity of the swarm (Fig. 5(c)).
The two different roles of the particles in SIPSO result in the appro-
priate trade-off between the convergence speed and the population
diversity.

Discussion
Taking into account the heterogeneity of individuals behaviors
in flocking we propose the Selectively-Informed Particle Swarm
Optimization (SIPSO) algorithm. In SIPSO, the particles interact

with their neighbors and change the searching direction and speed
by learning from the experiences of themselves and their neighbors.
Each particle’s learning strategy depends on its degree: the hubs are
able to learn from all of their neighbors (fully-informed) while each
non-hub particle learns from a single yet best-performed neighbor.
Consequently, the hubs have bird’s eye views of the swarm and can
better lead the population; the non-hub particles are less influenced
thus can search in the space with high freedom, maintaining the
diversity of the population.

We test the performance of our SIPSO on eight benchmark func-
tions. The results show that SIPSO has high success rate, high solu-
tion quality, and acceptable convergence speed. We examine the
optimization process from a microscopic point of view and reveal
that, indeed, there are two different roles that the particles play in the
SIPSO. Moreover, our algorithm is able to balance the population
diversity and the convergence speed during optimization processes,
improving the overall performance in comparison with other seven
algorithms.

It is worth noting that we do not introduce adaptation into our
SIPSO algorithm, i.e., all parameters including kc are set initially and
do not change during the optimization process, but instead we dis-
criminate the nodes with different degrees, in contrast to SLPSO
which adopts adaptive strategies in search of the optimum. Despite
the lack of adaptation, our SIPSO works very well in the benchmark
test functions. This finding uncovers the importance of considering
the individuals’ heterogeneity in particle swarm optimization.
Nevertheless, as shown in previous works (e.g., refs. 24, 25), adapta-
tion can improve PSO’s performance. It is fairly expected that adap-
tively tuning the value of kc during the searching process could
improve our SIPSO’s performance, which deserves future pursuits.

Methods
Benchmark functions. To make a comprehensive comparison to test the
effectiveness of our algorithm we designed extensive experiments. We choose eight
benchmark functions (Table 4) that have been widely used17,18,20,21,44. Functions f1 2 f4

are unimodal, which are relatively easy to solve. Functions f5 2 f8 are multi-modal
with a large number of local optima so that the algorithm really suffers from being
premature. Functions f6 and f7 are the same Griewank function with different
dimensions. In fact, f7 is considered more difficult18. Column 2 shows the formula of
the fitness function. Column 3 shows the dimension of the problem D. Column 4
gives the range that variables can take. In column 5 the optimum values of the
problems are presented. Column 6 defines the goal value to judge whether a run (trial)
is successful or not.

Parameter settings. The parameters of experiments are set as follows. The population
size is 50. For each algorithm and each benchmark function, the experiment consists
of 100 independent runs. The maximal iteration is 5000. For SFPSO, SFIPSO and
SIPSO, the scale-free network has maximal degree 14 and minimal degree 2. We
generate the scale-free networks by Barabási-Albert model46, which has two main
mechanisms: growth and preferential attachment. Starting with m0 fully-connected
nodes, at each time step we add a new node to the network and connect it to m existing

Table 4 | Benchmark functions

Name Formula D Range Optimum Goal

Rosenbrock f1 xð Þ~
XD{1

i~1
100 xiz1{x2

i

� �2
z xi{1ð Þ2 30 [230, 30]D 0 100

Sphere f2 xð Þ~
XD

i~1
x2

i
30 [2100, 100]D 0 0.01

Schwefel’s P2.22 f3 xð Þ~
XD

i~1
xij jzPD

i~1 xij j 30 [210, 10]D 0 0.01

QuadricNoise f4 xð Þ~
XD

i~1
ix4

i zrandom 0,1½ Þ 30 [21.28, 1.28]D 0 0.05

Rastrigin f5 xð Þ~
XD

i~1
x2

i {10 cos 2pxiz10 30 [25.12, 5.12]D 0 100

Griwank
f6 xð Þ~ 1

4000

XD

i~1
x2

i {PD
i~1 cos

xiffiffi
i
p z1

30 [2600, 600]D 0 0.05

Griwank
f7 xð Þ~ 1

4000

XD

i~1
x2

i {PD
i~1 cos

xiffiffi
i
p z1

10 [2600, 600]D 0 0.05

Ackley
f8 xð Þ~{20 exp {0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

i~1
x2

i

r !
{exp

1
D

XD

i~1
cos 2pxi
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nodes(m , m0). The probability Pi that the new node is connected to an existing node

i depends on i’s degree: Pi~
ki

Sjkj
, where j runs over all the existing nodes. Here we set

the parameters m0 5 4 and m 5 2.

Criteria. To compare the performance of different algorithms we use three criteria:
solution quality, convergence speed, and success rate. The solution quality is the final
fitness value at the end of 5000 iterations. The convergence speed is represented by the
number of iterations required to reach the goal. Obviously, the larger the number of
required iterations, the lower the convergence speed. The success rate is the fraction of
successful runs. Both the solution quality and the convergence speed are average
values over the successful runs.
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