SCIENTIFIC O % 3V

REPg}RTS

SUBJECT AREAS:
QUANTUM OPTICS
IMAGING TECHNIQUES
IMAGING AND SENSING

Received
28 October 2014

Accepted
19 February 2015

Published
19 March 2015

Correspondence and
requests for materials
should be addressed to
W.G. (gongwl@siom.
ac.cn)

High-resolution far-field ghost imaging
via sparsity constraint

Wenlin Gong & Shensheng Han

Key Laboratory for Quantum Optics and Center for Cold Atom Physics of CAS, Shanghai Institute of Optics and Fine Mechanics,
Chinese Academy of Sciences, Shanghai, 201800, China.

Ghost imaging (GI) is a method to nonlocally image an object with a single-pixel detector. However, the
speckle’s transverse size at the object plane limits the system’s imaging resolution for conventional GI linear
reconstruction algorithm. By combining the sparsity constraint of imaging object with ghost imaging
method, we demonstrate experimentally that ghost imaging via sparsity constraint (GISC) can dramatically
enhance the imaging resolution even using the random measurements far below the Nyquist limit. The
image reconstruction algorithm of GISC is based on compressive sensing. Factors affecting the
reconstruction quality of high-resolution GISC, such as the receiving system’s numerical aperture and the
object’s sparse representation basis, are also investigated experimentally. This high-resolution imaging
technique will have great applications in the microscopy and remote-sensing areas.

the imaging resolution is mainly restricted by the system’s Rayleigh limit and detection signal-to-noise ratio

(SNR)'?. For example, the telescope with a large aperture is currently very difficult to be manufactured, thus
the imaging resolution is basically circumscribed with the optical system’s Rayleigh limit in remote sensing. For
fluorescence imaging, because the fluorescent is weak and easy to be disturbed by the stray light in detection, the
imaging resolution is limited mainly by the detection SNR.

Over the last decades, numerous ‘hardware’ methods have been invented to improve the resolution of far-field
imaging. Several techniques based on point-by-point scanning or fluorescence imaging have been introduced to
improve the imaging resolution®”’. However, they require scanning or repetitive experiments, which limits real-
time applications and makes them impossible to be applied in the field of imaging such as remote sensing. Apart
from hardware solutions, several algorithmic approaches for far-field high-resolution imaging have been sug-
gested by using additional a priori information on the optical system®?. However, the degree of improvement is
extremely sensitive to both noise in the measured data and the accuracy of the assumed a priori knowledge>*'>. In
addition, for an N-pixel image, these high-resolution imaging methods require at least N samples to reconstruct
the image (this is called the Nyquist limit of the measurement).

Ghost imaging (GI), which is based on the quantum or classical correlation of fluctuating light fields, has
demonstrated theoretically and experimentally that one can nonlocally image an unknown object without
scanning the object, by using a single-pixel detector at the object path'*~°. Because all the photons reflected
(or transmitted) from the object illuminate the same single-pixel detector, this technique has the ability of high
detection SNR. However, the imaging resolution of this technique is limited by the speckle’s transverse size at the
object plane for conventional GI linear reconstruction algorithm'®"”. When signals satisfied a certain sparsity
constraint, Donoho had demonstrated mathematically that super-resolution restoration was possible*"**.
Recently, the image’s sparsity has been taken as a quite general assumption, a compressive sensing (CS) technique
enables the reconstruction of an N-pixel image from much fewer than N global random measurements®**. This
technique has already been successfully applied to super-resolution imaging®>**, remote sensing®”**, and com-
pressive imaging®~*'. For GI, the fluctuating light field obeys Gaussian statistical distribution and the measure-
ment process is globally random. Therefore, when CS is applied to the image reconstruction of GI, high-
resolution far-field ghost imaging via sparsity constraint (GISC) is possible with the use of random measurement
below Nyquist limit because a natural object can be sparsely expressed in a proper representation basis (or under a
suitable basis transform)>*,

In this paper, we have experimentally demonstrated the high-resolution ability of GISC, by comparing the
reconstruction results of GI and GISC techniques. We also discuss the effect of receiving system’s numerical
aperture and the object’s sparse representation basis on the quality of high-resolution GISC.

F ar-field high-resolution imaging is always an important topic in imaging science. In practical applications,
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Figure 1| The experimental schematic of lensless far-field ghost imaging with pseudo-thermal light.

Results

Experimental setup. Fig. 1 presents experimental schematic of
lensless far-field GI with pseudo-thermal light. The scheme is
similar to standard pseudo-thermal GI two-detectors setup
mentioned in Ref. 30, but the speckle’s transverse size at the object
plane is too large to resolve the object and the test detector is fixed in
the far field of the object, thus a single pointlike detector is enough to
record global information from the object. In the experiment, as
shown in Fig. 1, a Gaussian-shape laser (the wavelength A =
650 nm and the diameter 5.0 mm) firstly goes through a hole (the
diameter about 3.05 mm, see Fig. 2(a)) and then is focused onto a
diffuser by a lens with the focal length f = 250 mm. The distance
between the lens f and the diffuser is about zo = 190 mm and the

(b)
Wi

beam diameter on the diffuser is about D = 0.58 mm (see Fig. 2(b)).
When the diffuser is slowly rotating, a pseudo-thermal light source
can be generated'*™'®. Next, the light modulated by the diffuser is
divided by a beam splitter (BS) into a test and a reference paths. In the
test path, the light goes through a double-slit (slit width a = 100 pm,
slitheighth = 500 um and center-to-center separation d = 200 pm)
and then to a detector D; fixed in the far field of the object (namely
z;>2d’ /7). In the reference path, the same light propagates directly
to a charge-coupled device (CCD) camera D,. Both the object and the
CCD camera D, are located in the far field of the source (namely
z>2D?/}). In addition, the reconstruction algorithms used for GI
and GISC are the same as in Ref. 30.
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Figure 2 | The characters of some important parameters used in the experiment. (a). The profile of the laser beam through the hole before the lens fand
its cross-section at maximum value (along the red-line direction of the image); (b). the profile of the laser beam on the diffuser and its cross-section at
maximum value (along the red-line direction of the image); (c). an image of a single speckle pattern record by the CCD camera D;; (d). the normalized
second-order correlation distribution of light field at the reference detection plane; (e). the Fourier-transform distribution of (d).
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Figure 3 | Experimental reconstruction of a double-slit in different receiving areas with z; = 500 mm (the speckle’s transverse size at the object plane
Ax, = 1280 mm). (a). The cross-section curve of normalized second-order correlation distribution at (x,, y, = 100) direction displayed in Fig. 2(d) (the
curve’s full-width at half-max is corresponding to the resolution limitation of GI); (b). the object (100 X 100 pixels, the pixel sizeis 13 pum X 13 pm); (c).
the probability distribution of the intensity values measured by the bucket detector D, relative to the statistical mean; (d). the object’s Fourier-transform
diffraction patterns received by the test detector D; (e). GI reconstruction results (K = 10000); (f) GISC reconstruction results (with K = 3000 (K/N =
30% the Nyquist limit)). The receiving areas of the detector D, shown in (1-3) are 1.6 mm X 1.6 mm, 3.2 mm X 3.2 mm, and 6.4 mm X 6.4 mm,

respectively.

Experimental results. The parameters listed in Fig. 1 are set as
follows: z = 1200 mm, the pixel size of the camera D, is 13 um X
13 pum, and the single-shot exposure time is set to 1 ms. Fig. 2(c)
presents an image of a single speckle pattern measured by the camera
and the normalized second-order correlation distribution of light
field at the reference detection plane is displayed in Fig. 2(d)". For
GI, the resolution limitation is determined by the full-width at half-
max of normalized second-order correlation distribution, which is
also equal to the transverse size of the speckle shown in Fig. 2(c)'*".
By operating the Fourier transform to the normalized second-order
correlation distribution, the angular spectrum illuminating the
object is shown in Fig. 2(e).

To demonstrate the high-resolution ability of GISC, Fig. 3 and
Fig. 4 present experimental results of a double-slit recovered by GI
and GISC methods in different receiving areas L; X L, and different
distances z;, using the schematic shown in Fig. 1. For GISC method,
we have utilized the gradient projection for sparse reconstruction
algorithm® and the double-slit is sparsely expanded in Cartesian
representation basis. By measuring the normalized second-order
correlation distribution displayed in Fig. 2(d), as shown in
Fig. 3(a), its cross-section curve’s full-width at half-max is about
1280 um, which coincides with the theoretical result Ax, = Az/D
= 1345 um'*". Therefore, as shown in Fig. 3(e), the object’s image
can not be reconstructed by conventional GI linear reconstruction
algorithm because the speckle’s transverse size at the object plane Ax;
is much larger than center-to-center separation of the object'®".
However, the imaging resolution can be dramatically improved by
GISC method even if the number of random measurements used for
image recovery is far below the Nyquist limit (see Fig. 3(f) and
Fig. 4(a-d)). Usually, similar to the k-space spectral analysis
method™, the improvement degree of imaging resolution can also
be evaluated by measuring the angular spectrum of reconstructed
images. In comparison with the angular spectrum of GI reconstruc-
tion result, it is clearly seen that, as displayed in Fig. 4(e) and Fig. 4(f),
the angular spectrum with more than 6 times wider can be retrieved
by GISC. Further, generally speaking, the intensity values measured
by the bucket detector D; satisfy a Gaussian distribution when the
transverse size of the speckle illuminating the object is smaller than
the object’s dimensions®. However, for the case demonstrated in
this paper, the bucket intensity values have a similar Rayleigh distri-
bution (see Fig. 3(c)). By calculating the standard-deviation I and

the statistical mean (I) of the bucket intensity values, the ratio of its
mean to standard deviation (I)/6I = 1.16, which further validates the
high-resolution ability of GISC. In addition, as the receiving areas of
the detector D, are increased or the distance between the object and
the detector D, is decreased, the quality of GISC will be improved
(see Fig. 3(f) and Fig. 4(a-d)), which can be explained by Eqs. (5-7)
(see Methods part) because the Euclidean term in Eq. (5) will
approach zero such that Eq. (5) becomes the linear ¢;-norm pro-
blem as the increase of the receiving system’s numerical aperture
L
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Figure 4 | Experimental GISC reconstruction results of the same double-
slit in different distances z;, and the other conditions are the same as Fig.
3 (K = 4000, namely 40% the Nyquist limit). (a). z; = 500 mm; (b). z; =
200 mm; (). z; = 100 mm; (d) z; = 10 mm. The receiving area of the
detector D, is 6.4 mm X 6.4 mm. The green solid curves displayed in (e)
and (f) are the cross-section of Fourier-transform distributions of GI and
GISC reconstruction results at (fy, 0) direction in the case of (d),
respectively. The red solid curve is the cross-section of Fourier-transform
distribution of the object shown in Fig. 3(b) at (f;, 0) direction. The blue
solid curve is the cross-section of the image shown in Fig. 2(e) at (f, 0)
direction.
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In order to verify the high-resolution ability of GISC for more
general images and the effect of the object’s sparse representation
basis on the quality of GISC, as shown in Fig. 5(c,g) and Fig. 5(e;h), a
transmission aperture (“zhong” ring, 100 X 100 pixels, the pixel size
is 13 um X 13 pm) is also reconstructed successfully by GISC when
the aperture is sparsely expanded in cartesian and two-dimensional
discrete cosine transform (2D-DCT) representation basis, respect-
ively. It is clearly seen that the recovered image obtained in 2D-DCT
representation basis is much better than that obtained in cartesian
representation basis because the aperture has sparser representation
in 2D-DCT basis, which means that using the same measurement
data, the images with better quality can be achieved by choosing a
proper representation basis***'. Therefore, for the first time, we dem-
onstrate experimentally that far-field high-resolution imaging can be
realized by utilizing the object’s sparsity constraint and random
measurement even below the Nyquist limit in ghost imaging
schemes.

Discussion

By calculating the correlation function between two light fields, it is
impossible for GI to obtain both the image in real-space of the dou-
ble-slit and its diffraction pattern at the same time in fixed GI
schemes'”"**. However, by taking the image’s sparsity as a priori,
for far-field GI system shown in Fig. 1, when the speckle’s transverse
size at the object plane is much larger than center-to-center separa-
tion of the double-slit and the test detection plane is located in the far
field of the double-slit, the double-slit’s Fourier-transform diffrac-
tion pattern and its real-space image, as shown in Fig. 3(d,f), can be
obtained by GISC method at the same time. Moreover, the recon-
struction results of GISC don’t only depend on how we measure the
object as in GI frame (see Fig. 3(f) and Fig. 4(a-d)), but also depend
on how sparse the object is in the representation basis (see Fig. 4(d)
and Fig. 5(c,e)). Actually, for any GI system, we can find a suitable
representation basis in which the object is sufficiently sparse, thus
high-resolution imaging can be achieved and GISC will be a universal
high-resolution imaging method. Understanding what happens at
quantum level and the quantitative description of imaging resolution
in GISC seem to be an interesting challenge deserving more
investigation.

Conclusion
In conclusion, by combining GI method with the object’s sparsity
constraint, we have achieved experimentally high-resolution far-field

GI by using random measurement even below the Nyquist limit. Both
the approaches to realize the linear ¢;-norm problem and an optimal
representation basis can dramatically enhance the image’s reconstruc-
tion quality. We have also shown that Fourier-transform diffraction
pattern of the object and its image in real-space can be obtained by
GISC method at the same time. This brand new far-field high-reso-
lution imaging method will be very useful to microscopy in biology,
material, medical sciences, and in the filed of remote sensing, etc.

Methods

The intensity distribution I;(x;,y;) at the detection plane can be expressed as®

L) = [dxldyldxzdyzES(xl,yo[E‘(xz,yz)]* "

X i (Xi,yis X2,y i (i, X1.p1); =1,

where the index s is defined as the sth measurement. E*(x,y) and [E*(x,y)]* denote the
light field at the plane (x, y) and its phase conjugate, respectively. h;(x;, y;; X, ) (i = 1,t)
denote the impulse response functions of the reference and the test paths from the
plane (x, y) to the plane (x;, ;).

13-17

GI reconstruction. For ghost imaging">~", the correlation function between the two

detectors is:

4GD(x,y,) = de[dyt

del dy1dx,dy, GV (x1.y15 %2,92) @

X hy(xp,y1; Xz,yz)hi(xr,Yr; X1 ,}’1)|2~

where G"V(Xy,y1; X5,y,) is the first-order correlation function at the source plane. By

computing the intensity correlation between the intensity distributions I (x,,y,) at the

reference detection plane and the total intensities B* = Z I} (x¢,y:) recorded by the
Xe)t

detector Dy, the object’s image can be obtained without the utilization of the object’s

sparsity in the process of image restoration, namely called GI linear reconstruction

algorithm'*

1 K 1 K K
(2,2) _ s 9 s 9
AG>(xp,yr) = X ;:1 L (xp.yr)B — T 55:1 L(xyr) ;:1 B. (3)

where K is the total measurement number. Using GI linear reconstruction algorithm
described by Eq. (3), the results of GI with pseudo-thermal light demonstrated in Refs.
16, 17 suggest that the imaging resolution of GI is determined by the speckle’s
transverse size at the object plane (namely Ax, = /z/D). Therefore, for the scheme
shown in Fig. 1, the object’s image can not be resolved by GI linear reconstruction
algorithm when the speckle’s transverse size at the object plane is larger than the
character of the object.

GISC reconstruction. Mathematically speaking, any image can be expanded by an

orthonormal basis (such as a Fourier basis and a wavelet basis). However, only a small
number of the expansion coefficients are nonzero, and the largest coefficients can

4000 rpCT Coefticients

5000
d)

Figure 5 | Recovered results of an aperture (“zhong” ring) in different representation basis, under the same conditions of Fig. 4 and z, = 10 mm (K =
6000, namely 60% the Nyquist limit). (a). The object; (b). GI reconstruction; (c). GISC reconstruction when the object is represented in cartesian basis;
(d). the object’s DCT coefficients; and (e). GISC reconstruction when the object is represented in 2D-DCT basis. The green solid curves displayed in (f)—
(h) are the cross-section of Fourier-transform distributions of the reconstruction results (b), (c), (e) at (f;, 0) direction, respectively. The red solid curve is
the cross-section of Fourier-transform distribution of the object (a) at (f,, 0) direction. The blue solid curve is the cross-section of the image shown in

Fig. 2(e) at (f, 0) direction.
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express the image’s main features”**. Therefore, the image is considered to be sparse
or compressible in an appropriate representation basis, for example, a transmission
double slit in Cartesian representation basis. Based on the theory of CS, there are an
infinite number of images, which—after being convoluted by the random
measurement matrix—will obtain the intensities recorded by the test detector for the
setup shown in Fig. 1; our goal is to find the sparsest one. It has been mathematically
and experimentally demonstrated that if the object is sparse enough, then any
sparsity-based reconstruction method is bound to find the sparsest solution with
measurements even below the Nyquist limit*>*. Employing the assumption of the
object’s sparsity in a representation basis, we try to realize far-field high-resolution
imaging by using GISC method***". In the framework of GISC, each of the speckle
intensity distributions I;(x,,y,) (m X n pixels) is reshaped as a row vector (1 X N,N =
m X n) for GI system shown in Fig. 1. After K measurements, the random sensing
matrix A (K X N) is reconstructed and meanwhile, the intensities (B*) recorded by the
test detector D, are arranged as a column vector Y (K X 1). If we denote the unknown
object as a N-dimensional column vector X (N X 1) and X can be represented as X =
-o such that o is sparse (namely there are only K. non-zero entries in the column
vector o, K.<N and \ denotes the transform operator to the sparse basis), then the
object X can be reconstructed by solving the following convex optimization
program®:

1
X ="Y-o; which minimizes: 3 Y —AX]J3 + <o), (4)

where 7 is a nonnegative parameter, ||v||, denotes the Euclidean norm of V, and
(Ivll, = Zi v; is the ¢;-norm of V. Therefore, for the image with sparse cartesian

representation, the reconstruction process of GISC shown in Fig. 1 can be written as
follows based on Eq. (4):

1 [ .
Taisc =|T’|; which minimizes : 3 |IB —j dxdyL(x,y)| T' (x

()

+ TGyl Vs=1--K.

Where

L(x,p)oc del dy1dxydy, E*(x1,1) [E* (%2,2)]

x exp{ — 2/'17—: [Ger —x2)x+ (1 —y2)y]}-

oc J dxydy, dxady,dx' dy' dx" dy" E*(x1,1) [EF (x2,92)]"

X T(x' ) T*(x" y”)smc[— (' x’)]sinc[}%l o' —y") (7)
XeX1D{ (x 2ty —xa—yy)}
sin(7x)

Here sinc(x) = , Taisc is the object’s transmission function recovered by

GISC method, and L, is the effective receiving aperture of the test detector D,. Based
on the theoretical analysis described in Refs. 22, 23, the imaging resolution of GISC
will depend on both the object’s sparsity in the representation basis and the mutual
coherence of random measurement matrix. For GISC, in order to evaluate quanti-
tatively the improvement degree of imaging resolution, we can measure the angular
spectrum of reconstructed images compared with GI reconstruction result, similar to
the k-space spectral analysis method*".
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