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Netrins and Frazzled/DCC promote the migration and
mesenchymal to epithelial transition of Drosophila midgut cells

Melissa Pert1, Miao Gan1, Robert Saint2 and Michael J. Murray1,*

ABSTRACT

Mesenchymal-epithelial transitions (METs) are important in both

development and the growth of secondary tumours. Although the

molecular basis for epithelial polarity is well studied, less is known

about the cues that induce MET. Here we show that Netrins, well

known as chemotropic guidance factors, provide a basal polarising

cue during the Drosophilamidgut MET. Both netrinA and netrinB are

expressed in the visceral mesoderm, the substrate upon which

midgut cells migrate, while their receptor frazzled (fra) is expressed

in midgut cells. Netrins are required to polarise Fra to the basal

surface, and Netrins and Fra undergo mutually-dependent

endocytosis, with Fra subsequently trafficking to late endosomes.

Mutations to fra and netrins affect both migration and MET but to

different degrees. Loss of fra strongly delays migration, midgut cells

fail to extend protrusions, and apico-basal polarisation of proteins

and epithelium formation is inhibited. In netrin mutants, the

migration phenotype is weaker and cells still extend protrusions.

However, apico-basal polarisation of proteins, including Fra, and

FActin is greatly disrupted and a monolayer fails to form.

Delocalised accumulations of FActin are prevalent in netrin

mutants but not fra mutants suggesting delocalised Fra may

disrupt the MET. bPS localisation is also affected in netrin

mutants in that a basal gradient is reduced while localisation to

the midgut/VM interface is increased. Since a similar effect is seen

when endocytosis is inhibited, Netrin and Fra may regulate Integrin

turnover. The results suggest Netrin-dependent basal polarisation of

Fra is critical for the formation of an epithelium.
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INTRODUCTION
Transitions between epithelial and mesenchymal cell types are an

important mechanism during animal development (Thiery et al.,

2009). In a mesenchymal to epithelial transition (MET),

migratory mesenchymal cells organise themselves into a

columnar monolayer, and establish apico-basal polarity and

lateral cell-cell adhesions. METs are important in development,

and in cancer progression, where they are thought to promote the

growth of secondary tumours (Chaffer et al., 2007; Yao et al.,

2011). The molecular mechanisms underpinning epithelial

polarity have been well characterised in Drosophila, primarily

by studies of cellularisation, the follicular epithelium, and the

imaginal disc epithelia (for review see Tepass, 2012). How apico-

basal polarity is initially established during an MET, however, is

less well known. In some cases an existing epithelium provides

instructive cues to mesenchymal cells which incorporate into the

epithelium (e.g. stellate cell intercalation into the Drosophila

malphigian tubule) (Campbell et al., 2010). For epithelia that

form de-novo, contact with the extra-cellular matrix appears

important. For example, in the developing Drosophila egg-

chamber, the polarisation of the follicular epithelium begins with

the establishment of a basal membrane domain on the side of the

cells contacting the basement membrane, which contains bPS

Integrin but excludes apical proteins such as E-Cadherin and

bHeavyspectrin. This is prior to, and independent of apical cues

associated with the germ-cell cyst (Tanentzapf et al., 2000).

Similarly, when vertebrate MDCK cells form 3D epithelial cysts

in vitro, a key initial step appears to be interaction of Integrins

with the ECM, which establishes an apico-basal axis via a Rac-

dependent process (O’Brien et al., 2001; Yu et al., 2005). Basal

cues also appear important in the formation of the Drosophila

midgut epithelium, the subject of this study.

The midgut forms from two mesenchymal cell masses, at

opposite ends of the embryo, which migrate towards each other

along the visceral mesoderm (VM). During migration the main

cell type, the Primary Midgut Epithelial Cells (PMECs),

progressively form an epithelium whose basal side contacts the

VM. Epithelium formation depends upon contact with the VM

(Tepass and Hartenstein, 1994b), and the MET is disrupted when

the basally located ECM component Laminin is lacking

(Yarnitzky and Volk, 1995). Whether apical cues are involved

is unknown, but the key apical determinant Crumbs is not

expressed and a circumferential zonula adherens belt does not

form (Campbell et al., 2011; Tepass and Hartenstein, 1994a)

though E-Cadherin is required for the MET (Tepass and

Hartenstein, 1994b).

In a screen to find new genes regulating EMTs we identified

netrinA (Manhire-Heath et al., 2013). Netrins are a conserved

family of secreted proteins, related to the extracellular matrix

proteins, laminins, with a diverse range of functions during

development including axon guidance, cell migration, epithelial

plasticity, and angiogenesis (reviewed in Bradford et al., 2009;

Sun et al., 2011). During wing disc eversion Netrins promote the

breakdown of the zonula adherens by downregulating the DCC-

receptor Fra (Fra) (Manhire-Heath et al., 2013). DCC/Fra family

receptors have been previously linked to epithelial adhesion and

polarity. In Drosophila, fra mutant clones in eye-antennal discs

cells lose epithelial polarity and appear to become invasive and
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migratory (VanZomeren-Dohm et al., 2011). In vertebrates, the
DCC paralog Neogenin is required to maintain cell polarity and

epithelial structure in the neural tube (Kee et al., 2008), and DCC
promotes cell-cell adhesions in HT29 cells (Martı́n et al., 2006).

Given the role of DCC/Neo/Fra family receptors in epithelial
morphogenesis and migration, and the fact that netA and netB are

transcribed in the VM (http://www.flyexpress.net/), while fra is
transcribed in midgut cells (Kolodziej et al., 1996), we tested for
a role in the formation of the midgut epithelium. Here we show

that Netrins and Fra regulate both the migration and the MET of
the midgut cells, and that Fra and NetB undergo mutually
dependent endocytosis. Fra plays a primary role in migration

whilst Netrin polarisation of Fra to the basal membrane appears
critical for the MET. In addition, we present evidence that the
Netrin/Fra pathway can regulate Integrin localisation, but also

show that Integrin and Frazzled pathways act in parallel to
promote migration. Our findings establish Netrins and DCC
receptors as new factors controlling the transition of migrating
cells into an epithelium.

MATERIALS AND METHODS
Drosophila genetics
The following fly stocks were used in this study: netABDMB23, netAD, netBD

(Brankatschk and Dickson, 2006), UAS-netA and UAS-netB (Mitchell

et al., 1996), netABDGN (Newquist et al., 2013), pebbled-GAL4 (Sweeney

et al., 2007), UAS-Fra-HA (Garbe et al., 2007), mysXG43FRT101,

mysXG43FRT101;bn1, ovoD1FRT101;hsFLP38, ovoD1FRT101;hsFLP38,bn2

(Devenport and Brown, 2004). The following strains were obtained from the

Bloomington Drosophila Stock Center: fra3, Df(2R)BSC880, UAS-fra, UAS-

YFP-rab5DN, UAS-YFP-rab5, UAS-GFP-MoeABD, 48Y-GAL4, twist-GAL4.

Since netAD, netBD are both homozygous/hemizygous viable, all

mutant embryos for these alleles were derived from homozygous/

hemizygous parents. netABD/Y embryos were obtained by crossing FM7/

Y males to either netABDMB23/FM7 female parents (hereafter netABD

embryos) or netABDMB23/netABDGN female parents (hereafter

netABD(M+Z) embryos). Our mutant analysis of fra utilised the protein

null allele, fra3, either homozygous or in transallelic combination with

the deficiency Df(2R)BSC880.

To obtain embryos doubly mutant for mys and fra. mys XG43FRT101/

ovoD1 FRT101; fra3/hsFLP38 females were crossed to FM7ftz-lacZ/Y;

fra3/CyO males and embryos genotyped by immunostaining for bgal and

Fra.

Immunohistochemistry and imaging
The following primary antibodies were used: from the Developmental

studies Hybridoma bank: rat anti-E-Cadherin (DCAD2, 1:100), anti-Fas3

(7G10, 1:100), anti-Fas2 (1D4, 1:100), mouse anti-b-gal (40-1a-c, 1:100),

anti-beta-PS (CF.6G11, 1:20), anti-alpha-PS1(DK.1A4, 1:20), alpha-

PS2(CF.2C7, 1:100); rabbit-anti-GFP (Invitrogen, 1:500), mouse-anti-

GFP (Roche, 1:500), rabbit-anti-Fra (Kolodziej et al., 1996) (a gift from

Florence Maschat, 1:250). Rabbit-anti-NetA a peptide antibody raised

against residues 633–642 (unpublished; a gift from Ben Altenhein,

1:100), and rabbit anti-NetB (1:100)(Albrecht et al., 2011), rat anti-

Cheerio (1:500) (Sokol and Cooley, 2003) (a gift from Lynn Cooley),

rabbit anti-Asense (1:2000) (Brand et al., 1993) (a gift from Yuh Nung

Jan), rabbit-anti-ALK (a gift from Ruth Palmer) (1:500) (Lorén et al.,

2003). Secondary antibodies used were highly cross-absorbed varieties.

Fluorescent Alexa-488, Alexa-568 (Invitrogen) or Dy649 (Jackson

ImmunoResearch) used at 1:200.

Fluorescence microscopy was performed on an Olympus FV1000

confocal microscope. ImageJ was used for all image preparation and

analysis.

Embryonic staging and quantification of migration
Staging was based on the external morphology of the embryo, coupled with

the morphology of the VM (visualised with either anti-FasIII or anti-Alk).

In embryos classed as mid stage 12, the anterior lip of the germband was

midway through retraction and the VM still had ,10–30% wrapped over

onto the dorsal side. At stage 13 the yolk mass viewed from the dorsal side

had a rounded posterior profile and teardrop shape (not the ball like shape

seen at stage 14), and the posterior end of the VM extended dorsally for a

short distance, but no longer wrapped around onto the dorsal side. The gap

was defined as the maximum of left and right sides normalised to the

antero-posterior extent of the VM.

Germband retraction appeared normal in netABD, fra and netABD;fra

mutant embryos and the timing of retraction in netABD and fra3 mutant

embryos (measured from gastrulation to mid-stage 12) was not

significantly different from sibling control embryos. In contrast, some

mys GLC, and nearly all mys;fra GLC embryos appeared to fail in germ

retraction. For mys;fra embryos, therefore, all embryos were treated as

stage 12.

Quantification of bPS gradients
Confocal z-sections of the posterior midgut epithelium were taken, and

an average projection representing 2.5 mm in the dorsoventral and antero-

posterior axes was produced. Intensities of each antibody across this

cross-section were plotted on a line graph. The VM/midgut interface was

defined as the point at which the ratio of mean Alk levels on VM side

versus the midgut side were at a maximum. To calculate the bPS gradient

the midgut side was divided into ten sections and an average level for

each section calculated to remove any fluctuations. Intensity values were

normalised to the maximum and minimum of these averages. The

gradient of the bPS staining was then calculated from the first to last of

the five sections closest to the VM.

RESULTS
Netrin localisation in midgut cells is dependent on Fra
Drosophila contains two netrin genes, netrinA (netA) and netrinB

(netB), which lie in tandem to one another on the X chromosome
(Mitchell et al., 1996). To assess the role of Netrins in midgut

migration we used the alleles netAD and netBD, in which the
promoter regions and first 367 and 370 residues respectively of
each gene are deleted, and the small deficiency netABDMB23

(hereafter netABD), which deletes both genes completely
(Brankatschk and Dickson, 2006). We also used a recombined
version of this chromosome, netABDGN, which is homozygous

viable (Newquist et al., 2013) (see Materials and Methods).
Given that netA and netB are transcribed in the visceral

mesoderm, we first wished to examine distribution of Netrin
proteins. The NetA antibody did not work well in embryos and

showed a generally indistinct ubiquitous punctate pattern (data
not shown). NetB had an embryo-wide punctate expression but
was also clearly upregulated within the VM (Fig. 1A).

Interestingly it was also enriched inside midgut cells, towards
their basal end in both control and netAD embryos (Fig. 1A,B,F,
arrows). In netBD and netABD embryos both the VM-specific and

midgut-specific NetB patterns were abolished (Fig. 1C,D)
confirming the specificity of the staining and suggesting that
there is little, if any, maternal NetB present in stage 12–13
netABD embryos.

Since netB is transcribed in the VM we speculated that the
NetB present inside midgut cells might be due to receptor
mediated endocytosis. To test this we examined NetB expression

in embryos lacking the receptor Fra. In these fra mutant embryos,
NetB was still clear in the VM, but the basal puncta in midgut
cells were lost (Fig. 1E,G).

Thus, Netrins, which are transcribed within the VM, becomes
internalised within the adjacent midgut cells in a Fra dependent
manner. Since the NetB antibody gave the clearest results the

following analysis is restricted to NetB.
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Fra localisation in midgut is dependent on Netrins
In stage 12 control embryos, Fra localised to the plasma
membrane, and was enriched on the basal side of the migrating
midgut cells (Fig. 2A,B). In the cytoplasm Fra appeared speckled

with large, conspicuous puncta evident (Fig. 2B0, arrowheads).
At stage 13 the basal enrichment and strong intracellular punctate
staining were also clear especially in the cells towards the

posterior of the embryo (Fig. 2C,F). No midgut-specific
expression pattern was observed in fra mutant embryos
(Fig. 2D), confirming the specificity of the antibody and that

there is little, if any, maternal Fra protein in stage 13 fra mutant
embryos. In netABD mutants the basal polarisation of Fra was less
pronounced, while expression along the lateral membranes was
increased (Fig. 2E,G). Furthermore no intracellular Fra punctae

were observed suggesting that Fra requires Netrins for
internalisation.

In vertebrate neurons, Netrin-1 can induce endocytosis (Piper

et al., 2005) and downregulation (Kim et al., 2005) of its receptor
DCC, a mechanism thought to allow growing axons to become
desensitised to their guidance cues. Since a similar system might be

operating in the midgut we therefore wished to determine whether
Netrins were inducing endocytosis of Fra in midgut cells. We first
tested whether the NetB and Fra punctae colocalised with the
endosome marker YFP-Rab5 (Zhang et al., 2007). Rab5 is present

on both the plasma membrane and in early endosomes (Chavrier
et al., 1991), and is required in the fusion of plasma membrane-
derived endocytic vesicles with early endosomes (Bucci et al.,

1992). Some co-localisation between YFP-Rab5 positive
endosomes and NetB punctae was seen along the basal side of
the midgut (Fig. 3A,C). Co-localisation of YFP-Rab5 with Fra was

also seen in the basal parts of midgut cells, but also in more apically
situated punctae (Fig. 3D,F). Inhibition of endocytosis by
expression of the dominant negative transgene UAS-YFP-

rab5S43N altered both NetB and Fra expression patterns. NetB

enrichment in the basal regions of the midgut cells was greatly
reduced (Fig. 3B), suggesting that endocytosis of NetB on the
basal side of the midgut was being blocked. Similarly, although Fra

was still basally polarised, the intracellular punctae were lost and
more Fra was found on lateral membranes (Fig. 3E). We also
tested Fra colocalisation with the late endosome marker Rab7-GFP

and the recycling endosome marker Rab11-GFP. Fra extensively
colocalised with Rab7-GFP (Fig. 3G), but not Rab11-GFP
(Fig. 3H), suggesting that endocytosed Fra may be targeted for
degradation, as in axons.

To test for colocalisation of NetB and Fra we expressed a HA-
tagged fra transgene in the midgut. Fra-HA largely recapitulated
the endogenous Fra localisation with internal punctae and basal

polarisation, though there was more localisation to cell
membranes perhaps due to higher expression levels. Fra-HA
and NetB co-localised on the basal surface of the midgut

(Fig. 3I,J) and in 36.9%62.3 (SEM, n55) of the intracellular,
FraHA-positive punctae (Fig. 3K) (see supplementary material
Fig. S1). Both Fra-HA and NetB colocalised with Rab5 (Fig. 3L).

Taken together the results suggest that NetB and Fra are
endocytosed together, in a mutually dependent manner, at the
basal surface of the midgut.

Netrins and Fra are required for embryonic midgut migration
We next determined if Netrins and Fra played a functional role in
midgut migration. To quantify migration rates we stained

embryos for either Filamin-1 (Cheerio) or E-Cadherin to
visualise the midgut cells and measured the maximum gap
between anterior and posterior midgut rudiments, as a fraction of

total VM length, at two key stages: mid stage 12, when cells in

Fig. 1. Netrin internalisation on the basal side of midgut cells requires
Fra. Stage 13 embryos immunostained with Fas3 (red A–G) to identify the
VM, NetB (green A–G; grey A9–G9) and Fil-1 (blue, F–G; grey F0–G0).
(A) NetB is expressed in the visceral mesoderm (A9, brackets) and is basally
enriched in the midgut cells (arrows) (n.50 embryos, Note: unless otherwise
stated embryos depicted in figures exhibit phenotypes representative of all
observed embryos). Anterior is to the left for all embryos (and throughout this
paper). (B) netAD embryo. NetB expression appears normal (n518
embryos). (C) netBD embryo. No midgut-specific expression in observed
(n54). (D) netABD embryo. No tissue-specific expression is observed (n56).
(E) fra3/Df(2R)BSC880 embryo. NetB expression is seen in the VM, but the
line of enrichment towards the basal end of midgut cells is lost (arrows)
(n56). (F–G) High-resolution images of NetB localisation. NetB is expressed
in the VM and is enriched within the midgut cells towards their basal end
nearest the VM (F9, arrow). (G) fra3/Df(2R)BSC880 embryo. NetB is lost from
the basal side of the midgut cells (G9, arrow). Scale bars, 20 mm.

Fig. 2. Fra basal polarisation and internal puncta are dependent upon
Netrins. Stage 12 (A,B) and stage 13 (C–G) embryos stained with Fas3 (red;
grey B9) and Fra (green; grey A9,B0,C–E,F9,G9). (A) Fra is expressed in the
migrating midgut primordia (n512). (B) High-resolution image of the boxed
region indicated in A. Fra expression is enhanced on the basal side of the
midgut cells (B0, arrow), and in some intracellular punctae (B0, arrowheads).
(C) Fra is strongly, basally polarised by stage 13, and is present in
intracellular punctae (n513). (D) No Fra could be detected fra3/

Df(2R)BSC880 embryo (n55). (E) netABD embryo. Fra expression becomes
increased in the lateral membranes, and the intracellular punctate expression
is lost (n521). (F) In a w1118 embryo Fra is enriched within midgut cells
towards their basal surface (F9, arrow) and localises to intracellular punctae
(F9, arrowheads). (G) In a netABD embryo basal polarisation is less
pronounced (arrow), levels on lateral membranes are increased
(arrowheads) and punctae are lost. Scale bars, 20 mm.
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wild type embryos are just meeting and stage 13, when migration

is complete (see Materials and Methods for staging criteria).
Migration was not affected in netAD embryos and, surprisingly,

was slightly accelerated in netBD embryos (Fig. 4G; Table 1).
Migration was significantly delayed in netABD/Y (hereafter

netABD) embryos at stage 12 (Fig. 4B), though the posterior
and anterior midgut rudiments had met by stage 13 (Fig. 4G;
Table 1). In netABD (and fra mutants) the VM appeared normally
formed and expressed the usual VM markers, Fas3 and Alk. The

netABD migration delay was rescued by mesoderm-specific
expression of either netA or netB using the twist-GAL4 driver
(Fig. 4G; Table 1). Since migration only showed a delay when

both netrins were deleted, and either gene could rescue that delay,
we conclude that the two paralogs act redundantly in midgut
migration.

To assess migration in embryos lacking Fra we examined
embryos homozygous for the protein null allele, fra3, or
heterozygous for fra3 and the deficiency Df(2R)BSC880, which

deletes fra. Migration rates for these genotypes were not
significantly different (p50.14 at stage 12, p50.8 at stage 13),
but were delayed in comparison with control embryos at stage 12
(Fig. 4C,G; Table 1). This delay was comparable to netABD

mutants at stage 12, but by stage 13 fra mutants still exhibited a
gap (unlike netABD mutants) (Fig. 4G), though this was closed at
later stages (data not shown). The delay was rescued by

expression of a fra transgene using the midgut driver 48Y-

GAL4 (Martin-Bermudo et al., 1997) (Fig. 4G; Table 1). Since
migration in fra mutants was more strongly affected than in

netABD mutant we speculated that the zygotic null netABD
embryos might be being partly rescued by maternal Netrin.
However, migration rates in netABD (M+Z) embryos (which are

both maternal and zygotic null - see Materials and Methods) were
not significantly different from netABD embryos at stage 12.5
(p50.65) or stage 13 (p50.30) (Fig. 4G). This implies that Fra
has some Netrin-independent activity in migration. Combined

loss of netrins and fra enhanced the fra phenotype, though the
difference was not significant, with an increased delay at stage 12
(p50.2), and a larger gap remaining at stage 13 (p50.24)

(Fig. 4D,F,G; Table 1). As with fra and netABD mutants the gap
was also closed at later stages (data not shown).

Next we examined the morphology of migrating cells with the

FActin reporter GFP-MoeABD (GMA) (Kiehart et al., 2000). At
mid-stage 12 the cells at the front in control embryos were flattened
out upon the VM in the direction of motion, giving the mass of cells
a wedge shape (Fig. 5A). Cells at the front extended fine

protrusions (Fig. 5A9) and the FActin was concentrated at the
point of contact with the VM (Fig. 5A0). In netABD mutants the
streamlined shape and protrusions were present though less

prominent than in controls (Fig. 5B,B9). Patches of strong FActin
accumulation were still present but no longer polarised to the basal
surface (Fig. 5B0). Similar results were seen for netABD(M+Z)

mutants (data not shown). In fra mutants the midgut primordia
were more rounded, protrusions were rare, and the enrichment of
FActin at the basal contact point was greatly reduced (Fig. 5C).

Thus the formation of protrusions and FActin accumulations, and
the stretching out of PMECs along the VM occur more normally in
netABD mutants than in fra mutants again suggesting Fra has some
netrin-independent functionality.

Netrins and Fra are required for the formation of a columnar
epithelium
Next we tested whether the formation of the epithelium was
affected in netABD and fra mutants. At stage 13, following
completion of migration, the PMECs form a columnar epithelium

with apico-basal polarisation of proteins, such as Filamin-1

Fig. 3. NetB and Fra endocytosis and colocalisation. Stage 13 embryos
immunostained for Fas3 (blue A–F), NetB (red A–C,I; blue L; grey
A9,B9,C0,J9,K9,L0), Fra (red, D–H; grey D9,E9,F0–H0), GFP (green, A–H,L; grey
C9,F9,G9,H9,L9) and HA (green I; grey K,L09). (A) In embryos expressing YFP-
Rab5 (green), NetB (red) is enriched in the basal regions of the midgut
(arrow) (n55). (B) This line is greatly reduced in embryos expressing
dominant-negative YFP-rab5S43N (B9, arrow) (n58). (C) NetB colocalises
with YFP-Rab5 extensively in basal regions of the cell, and in some internal
puncta (yellow arrowheads) (n55). (Note: some puncta express only NetB/

Fra (red arrowheads), while others express only Rabs (green arrowheads)

indicating that colocalisation in C, F and G is not due to ‘‘bleedthrough’’

between channels). (D) In embryos expressing YFP-Rab5 (green), Fra (red)
is enriched in the basal regions of the midgut and in many internal puncta
(arrowheads) (n58). (E) In embryos expressing dominant-negative YFP-

rab5S43N internal puncta are absent and stronger lateral membrane staining
is seen (E9, arrow) (n55). (F) Fra colocalises with Rab5 in many internal
puncta (yellow arrowheads) (n58). (G) Fra colocalises with Rab7-GFP
expressing late endosomes (n55). (H) No colocalisation was seen with the
recycling endosomal marker Rab11-GFP (n57). (I–K) Co-localisation
between NetB and Fra. A stage 13 embryo 48Y-GAL4/+;UAS-fra-HA/+

embryo, stained with HA (green) to show Fra expression and NetB (red)
(n54). (I) Co-localisation between NetB and Fra was seen predominately on
the basal side of the midgut cells. (J–J9). Zoomed image of the region
indicated by the right box in I. Arrowheads indicate co-localisation between
NetB and Fra on the basal side of the midgut. (K–K9) Zoomed image of the
left box in I. NetB and Fra-HA colocalise in some internal punctae. (L) Stage
13 embryo co-expressing Rab5-GFP and Fra-HA shows colocalisation of
NetB, Rab5 and Fra in some internal puncta (arrowheads) (n55). Scale bars,
20 mm (A,B,D,E); 10 mm (C,F,G,H,J,K,L).
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(Fig. 6A). In netABD mutants Filamin-1 was more evenly

distributed around the cells, and cells were more rounded and
were not organised into a single layer (Fig. 6B). A similar though
less severe defect was seen in fra mutants (Fig. 6C). The basal
enrichment of FActin seen during migration was also a feature of

the nascent epithelium in control embryos (Fig. 5D0, arrows). In
netABD mutants FActin accumulations were prevalent around the
cell membranes but were not polarised to the basal side

(Fig. 5E0). In fra mutants there was a small amount of FActin
at the basal side but a lack of FActin accumulations in the lateral
parts of the cells (Fig. 5F0). Localisation of E-Cadherin was also

affected. E-Cadherin is basally localised during migration at stage
12 (data not shown), but becomes enriched on the apical surface
at stage 13 (Fig. 6D). In netABD and fra mutants, E-Cadherin

expression was disrupted, with increased expression around the

entire cell membranes (Fig. 6E,F). The failure in the formation of

a columnar epithelial layer in netABD embryos was clearest in
embryos stained for the cell-cell adhesion molecule Fas2, which
marks the shared membranes between adjacent PMECs
(supplementary material Movies 1, 2).

The effects on FActin accumulations in netABD and fra mutants
is similar to a recent report concerning the worm orthologues
UNC-6 (Netrin) and UNC-40 (Fra) in the anchor cell of the

worm, C. elegans. FActin clusters are normally enriched at the
basal membrane, but in unc-6 mutants undergoes repeated cycles
of accumulation and dissolution at random locations around the

cell, whilst in unc-40 mutants these strong accumulations are
missing and FActin is weakly polarised to the basal surface
(Wang et al., 2014). Thus, the failure to undergo the MET

correlates with mislocalised accumulation of both Fra and FActin.

Fig. 4. Embryonic midgut migration is delayed in
netrin and fra mutants. (A–F) Stage 12 (A–D) and
stage 13 (E–F) embryos immunostained for Fas3 (red)
to identify the VM, and for E-Cadherin (green; grey A9–
F9) to identify the midgut. Dotted line depicts extent of
midgut. (A) w1118 control embryo with the midgut
primordia just meeting. (B) In a netABD embryo migration
is delayed. (C) fra3/Df(2R)BSC880 mutant embryo
showing a greater migration delay. (D) Combined loss of
netrins and fra enhanced the delay phenotype. (E) Stage
13 w1118 control embryo. The epithelium has formed,
and only ICPs (arrow) and AMPs (arrowhead) are yet to
incorporate into the epithelium. (F) netABD;fra3 mutant.
A gap between the primordia is still evident. Note: The
VM was well formed and continuous in all of these
genotypes. Any apparent breaks are due to the VM
being outside the focal planes shown. (G) Quantification
of migration delay in stage 12 and stage 13 embryos.
For p-values and n-values see Table 1. Scale bars,
20 mm. *** 5 p,0.001, ns 5 p.0.05.

Table 1. Midgut migration gap at stage 12 and 13

Stage 12 Stage 13

Genotype Gap 6 S.E.M. N p-value Gap 6 S.E.M. N p-value

w1118 10.14%61.30 18 – 0.1660.0706 40 –
netABD 22.55%62.40 21 0.0001 0.2960.16 45 0.38189
netABD(M+Z) 20.86%62.82 14 0.0008 0.0060.0 15 0.31484
netAD 6.74%61.90 9 0.1478 0.1760.1675 12 0.9462
netBD 4.23%60.87 12 0.0022 0.1760.1014 26 0.8863
netABD; twiGAL4/UAS-netA 10.65%62.05 4 0.8634 0.4460.4382 7 0.2790
netABD; twiGAL4/UAS-netB 3.18%61.18 4 0.0461 060 12 0.3687
fra3 18.65%61.91 9 0.001 1.3960.5522 17 0.0001
fra3/Df(2R)BSC880 13.25%62.79 4 0.32012 1.6660.97 10 0.0003
fra3, 48YGAL4/fra3, UAS-fra 5.19%62.29 4 0.1118 060 10 0.4119
netABD; fra3 24.90%65.87 3 0.0011 2.6560.3079 5 0.00001
mys 18.16%61.80 9 0.0014 11.7163.41 13 ,0.0001
mys; fra3 * 38.42%61.99 12 ,0.0001 – – –

Values associated with the quantification presented in Fig. 4. p-values were obtained using a two-tailed student’s t-test between w1118 and the indicated
genotype. p-values given in the main text are also two-tailed student’s t-tests.
*Note: failure of germ band retraction in mys;fra3 embryos made stg 12 and stg 13 embryos difficult to distinguish so these were pooled.
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These results establish the Netrin pathway as a new regulator of

the midgut MET.

Adult midgut precursors are correctly specified but
misplaced in netrin mutants

In addition to the PMECs, the midgut consists of two other cell

types, the Adult Midgut Precursors (AMPs) and the Interstitial

Cell Precursors (ICPs). AMPs and ICPs, which express the neural

precursor gene asense (Tepass and Hartenstein, 1995), maintain a

more mesenchymal phenotype and only incorporate into the

epithelium at later stages (Tepass and Hartenstein, 1995). Since

cell fate changes, in which PMECs are transformed towards the

AMP fate, can disrupt migration (Tepass and Hartenstein, 1995)

we also checked if the cell populations were normally specified in

netrin mutants. Stage 11 and 12 embryos immunostained for

Asense showed the expected population of AMPs and ICPs,

though the position and number of AMPs was altered. In control

embryos we were able to detect ,50 AMPs in the anterior half of

the embryo (7C) (Fig. 7A; n58 embryos). In netABD embryos,

there were only ,30–40 AMPs detectable (Fig. 7B,C; n57

embryos). Since migration is delayed in netABD embryos it may

be that some AMPs had not yet migrated out of the head regions

and were therefore not accounted for. In control embryos all

Fig. 5. FActin distribution and cellular morphology in control, netrin
and fra mutant embryos. Stage 12 (A–C) and 13 (D–F) embryos
immunostained for Fas3 (red) and GFP (green) in which the FActin marker
GFP-MoeABD is expressed by the pebbled-GAL4 driver, in control (A,D),
netABD (B,E) and fra3/Df(2R)BSC880 (C,F) mutant embryos. A9–C9 show the
migrating front of the anterior midgut. A0–F0 show cross-sections at dotted
lines in A–F. D9–F9 show a magnified image of the nascent epithelium in the
posterior half of the midgut. (A) At mid stage 12 midgut cells from the anterior
and posterior primordia are moving together (n58). Cells form a streamlined
wedge shape (arrow), and extend protrusions (A9, arrowheads). FActin is
enriched basally at the point of contact with the VM (A0, arrow). (B) In netABD

mutants the overall shape of the migrating anterior midgut primordium is
similar, and protrusions are evident (B9). Patches of FActin enrichment are
present (arrows) but are not polarised to the basal side (B0) (n519). (C) In fra

mutants, the midgut has a smoother profile (C9), basal polarisation is not
clear, and patches of FActin enrichments are less obvious (C0) (n56).
(D) Control embryo at stage 13. The midgut cells have organised themselves
into a columnar monolayer. Due to variable GAL4 expression levels
individual cells can be distinguished, extending from the VM through to the
AMP cells on the apical surface of the epithelium (arrowhead). FActin is still
basally polarised (D9,D0, arrows), though there is also some enrichment at
the apical surface (D0, arrowhead) (n55). (E) In netABD mutants the
columnar arrangement is less apparent (E9). FActin patches are prevalent
(arrows) but located around cell bodies, and not polarised to the basal
surface (E0) (n511). (F) fra mutant, in which a gap is still evident (arrow). The
epithelium is closer to wild type (F9), and basal polarisation of FActin is
greatly reduced (F0, arrow) (n55). FActin patches seen on lateral membranes
in netABD embryos are missing (F,F9,F0 brackets). A0–F0 (d5dorsal,
v5ventral, i5inside, o5outside).

Fig. 6. Netrins and Fra are required for the midgut MET. Stage 13
embryos showing disruption of epithelium formation. Boxed regions in
(A–F) are magnified in (A9–F9), and cross-sections taken at the dotted lines
are shown in (A0–F0). (A) w1118 control embryo. Filamin-1 is basally polarised
(arrows; A9–A0) (n527). (B) netABD embryo. Basal polarisation of Filamin-1 is
lacking (B9–B0). Instead it is distributed around the entire cell membranes
(arrowheads) (n528). (C) fra3/Df(2R)BSC880 embryo. Basal polarisation is
reduced though not absent (C0, arrow) and expression is increased around
the entire cell membranes (arrowheads) (n514*). (D) w1118 embryo.
E-Cadherin is apically polarised in the midgut cells (arrows) (n510). (E,F) In
netABD embryo (n59) and fra3/Df(2R)BSC880 embryos (n510) E-Cadherin
apical localisation is reduced but still apparent (arrows) and shows
increased expression around the entire cell membranes (arrowheads). * for
fra mutants, n-values are pooled from fra3/Df(2R)BSC880 and fra3/fra3

genotypes which exhibited the same phenotype. Scale bars, 20 mm.

Fig. 7. Adult midgut precursor cells are mislocalised in netABD mutant
embryos. (A,B) Stage 12 embryos immunostained with Fas3 (blue) to
mark the VM, Filamin-1 (green) to mark the midgut and Asense (red) to mark
the Adult Midgut Precursor (AMP) cells. Images show only the anterior
midgut. (A9–B9) represent cross sections taken at the dotted line in
(A,B). (A) The AMPs in w1118 embryos are located on the apical surface of
the developing midgut epithelium. None come into contact with the VM. (B) In
netABD embryos, some AMPs are found in contact with the VM
(arrowheads). (C) Quantification of AMP numbers in w1118 (light grey) (n53,
n55, at stg 11, 12 resp.) and netABD embryos (n53, n54, at stage 11, 12
resp.). (D) Proportion of AMPs in contact with the VM in netABD embryos.
Scale bars, 20 mm.
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AMPs were positioned on the apical surface of the PMEC cells,

whereas in netABD embryos ,20% of AMPs were in contact with

the VM (Fig. 7B, arrowheads, Fig. 7D), a highly significant

difference (p,0.001 at both stage 11 and 12). We speculate that

the early intercalation phenotype is due to the failure in the

formation of an epithelium, i.e. normally the strong lateral cell-cell

and basal cell-ECM adhesions of the midgut epithelium inhibit

AMP intercalation until later stages.

Netrin/Fra internalisation is not dependent on Integrins
We next wished to understand how the Netrin/Fra pathway might

relate to the other well established signalling pathway regulating
midgut development, the Integrins. These two molecular pathways
could have significant cross-talk since several signalling

components (e.g. FAK) are known to act downstream of both
DCC family receptors and Integrins. In addition, direct binding
between Netrins and an Integrin has been demonstrated using human

pancreatic epithelial cells, which could adhere to and migrate upon
Netrin-1 in vitro via the a6b4 Integrin receptor (Yebra et al., 2003).

We first tested whether Netrins, Fra and Integrins were
dependent upon each other for correct localisation. In Drosophila

there are two b Integrin subunits, bPS and bn, and five a subunits,
aPS1/mew, aPS2/if, aPS3/scb, aPS4, aPS5 (Brown, 2000;
Devenport and Brown, 2004). bPS, is expressed widely in the

embryo while bn is specific to the midgut. Germline clones of bPS

(hereafter bPS mutants) show delays in midgut migration, while in
mutants lacking both bPS and bn (i.e. complete Integrins nulls)

migration completely fails (Devenport and Brown, 2004).
In bPS mutants, NetB was still expressed in the VM and

basally enriched in the midgut cells (Fig. 8A,B; compare to
Fig. 1A,F). Basal polarisation of Filamin-1 was normal (Fig. 8B0)

as previously reported (Devenport and Brown, 2004). Fra was
also basally polarised and punctate as in control embryos
(Fig. 8C,D; compare to Fig. 2C,F) though there appeared to be

a modest increase in expression at the lateral membranes (arrows
in Fig. 8D9). In embryos lacking both bPS and bn midgut
development was highly disrupted making it difficult to assess

whether NetB and Fra localisations were completely normal.
Nevertheless, in embryos that appeared to be approximately stage
13 one could still clearly see basal enrichment and internal puncta

for NetB (Fig. 8E) and Fra in midgut cells (Fig. 8F).
The results show that the key features of NetB and Fra

localisation, polarisation and internalisation, are not dependent
upon Integrins though, Integrins may play a subtler role in

regulating Fra given the redistribution to the lateral membrane.

Integrin bPS/aPS1 localisation is dependent upon Netrin/Fra
signalling
Next we tested whether localisation of Integrins was dependent
upon Netrins or Fra. We examined localisation of bPS, which is

expressed in both midgut and VM cells, aPS1, which is expressed
in the midgut cells, and aPS2, which is expressed in the VM
(Bogaert et al., 1987; Leptin et al., 1989; Wehrli et al., 1993). In

stage 13 control embryos, bPS was expressed throughout the VM
and in the midgut and was punctate. In the midgut, an apico-basal
gradient of expression was observed with highest levels towards
the basal regions of the midgut cells (Fig. 9A,B; For

quantification methods and results see Fig. 9I–K and Materials
and Methods). In both netABD (Fig. 9C,D) and fra (Fig. 9E,F)
embryos bPS was present within midgut cells but did not form an

obvious gradient (quantified in Fig. 9K). Instead an increased line
of expression was apparent at the interface between the midgut
and VM (Fig. 9D,F, arrowheads).

Immunostaining for aPS1, which is known to form
heterodimers with bPS in the midgut, did not work well in
control embryos and exhibited no obvious pattern. Interestingly,
however, like bPS, a weak line of aPS1 was observed at the

interface between the midgut and VM in netABD embryos, and
even more clearly in fra embryos, though never in controls
(supplementary material Fig. S2). This suggests that loss of Net/

Fra signaling somehow changes the levels of aPS1 at the plasma
membrane or its accessibility to antibodies.

Finally, aPS2, which was clearly expressed in the VM and also

localised to the midgut/VM interface was not affected in netrin
and fra mutants (data not shown). Similarly localisation of the
ECM components Nidogen and Laminin B appeared normal

suggesting that changes in Integrin localisation were not due to
gross changes to the ECM (data not shown).

Integrins are known to undergo endocytosis and recycling
(Margadant et al., 2011), and internalisation of Integrins has been

documented in Drosophila (Yuan et al., 2010). We speculated
therefore that the bPS gradient might be due to endocytic
turnover of Integrins on the basal surface of midgut cells, and that

the loss of a gradient and increased levels of aPS1/bPS at the
plasma membrane in netABD and fra mutants might be due to a
disruption of this turnover. We therefore examined whether bPS

colocalised with Rab5, and whether it was affected by inhibition

Fig. 8. NetB and Fra expression in integrin mutants. mys (A–D) and
mys;bn (E,F) maternal/zygotic mutants stained with Fas3 (red B,D–H; grey
D0), Fil-1 (blue B; green G,H; grey B0), NetB (green B,E; grey A,B9), and Fra
(green D,F; grey C,D9). (A,B) In stage 13 mys embryos NetB expression
appears normal, with a strong line of enrichment, basally in the midgut cells
(arrows). Note that Filamin-1 also shows normal basal polarisation (B0) as
previously reported (Devenport and Brown, 2004). (n54) (C,D) In stage 13
mys mutant embryos Fra expression is relatively normal with enrichment on
the basal side of the midgut (C,D9) and intracellular punctae (arrowheads),
though localisation to lateral membranes appeared slightly stronger (arrows).
(n55) (E) mys;bn embryo showing basal enrichment of NetB within midgut
cells (E9, arrow). (n55) (F) mys;bn embryo (stage 13) showing Fra basal
enrichment (arrow) and intracellular punctae (arrowheads) (n55).
(G–H) Basal polarisation of Filamin-1 is clear in stage 12 and 13 mys

embryos (G) (n513) but lost in mys;fra3 mutant embryos (n512). G9 and H9

show cross sections of G and H at the position of the dotted lines. Scale bars,
20 mm (A,C,E,F,G,H); 10 mm (B,D).
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of endocytosis with Rab5DN. bPS did extensively colocalise with
Rab5 (Fig. 9L). In addition, expression of UAS-YFP-rab5S43N had

a similar, though more pronounced, effect on the localisation of
bPS to loss of netrins or fra, with a reduction in the gradient and
increased localisation to the PMEC/VM interface (Fig. 9G,H,K).

Since this raised the possibility that migration defects in fra

mutants could potentially be due to some effect on Integrins, we
tested the effects of combined loss of fra and mys. We compared

migration rates, and Filamin-1 polarisation in mys germline clones
with and without Fra. Migration in mys;fra embryos was clearly
more delayed than in either mys or fra alone (p,0.001) (Fig. 4G),
and as expected the normal polarisation of Filamin-1 apparent in mys

embryos (Fig. 8G) was lost in mys;fra double mutants (Fig. 8H).

Thus, localisation of bPS/aPS1, is dependent upon Netrin/Fra
pathways, which may promote Integrin turnover at the basal

plasma membrane. However, it is clear that Integrins and
Frazzled play independent, additive roles in migration.

DISCUSSION
Netrins and Fra are required for midgut migration
We have shown that Netrins and Fra are important both for the
migration of midgut cells and for their transition into a polarised,

monolayered epithelium. Their role in migration appears to be a
typical example of chemoattraction whereby cells/axons
expressing a receptor follow a pathway that expresses the

ligand. Fra is critical for this role, since the fine protrusions,
strong FActin accumulations and wedge-shaped morphology of
midgut cells were absent in fra mutants and migration was

strongly affected. netABD mutants, both zygotic and
maternal+zygotic nulls, exhibited a similar but less pronounced
migration delay. NetA and NetB play redundant roles in this
migration since a delay only occurred when both genes were

deleted, and either gene could rescue that delay. These results
also imply that Fra can activate motility signaling pathways in the
absence of Netrins. A similar effect has been seen in C. elegans

where the Fra orthologue UNC-40 has several roles that are
independent of the netrin orthologue UNC-6 (Alexander et al.,
2009; Honigberg and Kenyon, 2000; Yu et al., 2002) (and see

Discussion below).

Netrins and Fra are required for the midgut MET
Loss of Netrins, and to a lesser extent Fra, also disrupted apico-
basal polarisation of Filamin-1, FActin and E-Cadherin, and the
formation of a columnar, monolayered epithelium. In addition, in
netABD mutants, AMP cells, were able to intercalate into the

PMEC layer by stage 12, an event that doesn’t usually occur until
stage 14, when the columnar epithelium, which is dependent upon
E-Cadherin adhesion (Tepass and Hartenstein, 1994b), relaxes

into a looser arrangement (Tepass and Hartenstein, 1995). An
important question is how the molecular pathways controlling
migration and those controlling MET are related. There is clearly

significant overlap since some genes such as Laminins are
required for both the MET (Yarnitzky and Volk, 1995) and
migration (Urbano et al., 2009). However, the pathways cannot be
exactly the same since the relative strength of migration

phenotypes versus MET phenotypes is different for different
genes. For, example Integrin bPS2 mutants, which have delayed
midgut migration, still show basal localisation of Filamin-1

(Devenport and Brown, 2004) while migration rates appear
normal in shg mutants, but the MET is disrupted (Tepass and
Hartenstein, 1994b). Similarly, in this work, we have found that

loss of fra most strongly affected migration, while loss of netrins
had a stronger affect on MET.

While this could indicate separate molecular pathways, an

alternative explanation is suggested by recent work in the worm
showing similar, differential phenotypes in unc-6 and unc-40

mutants (Wang et al., 2014). In unc-6 mutants, clusters of UNC-
40 and FActin are not reduced in intensity but are no longer

polarised to the basal side, whereas in unc-40 mutants
accumulations of FActin are reduced, but still polarise to the
basal surface. Thus, in the absence of UNC-6, UNC-40 can

cluster and promote FActin, but stabilization of those clusters on
the basal side requires UNC-6. Similarly, in our system, Netrins
were not needed for FActin accumulations and protrusions, but

were essential to polarise Fra, FActin and Filamin-1 to the basal

Fig. 9. Integrin expression is altered in netrin and fra mutant embryos.
Stage 13 embryos stained with Alk (red) to mark the VM and Integrin bPS
(green A–H; grey A9–H9). Embryos in A,C,E and G are shown at higher
resolution in B,D,F,H. (A,B) w1118 embryo. bPS is expressed in the VM and
the midgut. Midgut expression is strongest on the basal side of the midgut
cells, and forms a gradient going apically into the cell. (C–F) netABD

(C,D) and fra3/Df(2R)BSC880 (E,F) embryos. The bPS gradient of
expression in the midgut is greatly reduced, and a more distinct line of bPS
expression is seen at the interface between the VM and midgut
(D9,F9, arrowheads). (G,H) Similar changes are seen in embryos in which
endocytosis is inhibited by expression of dominant negative YFP-Rab5.
Arrowhead in H9 indicates increased expression on lateral membranes.
(I,J) Method of quantifying bPS gradient. A small section of the midgut
epithelium was averaged in both the anterior-posterior and dorso-ventral
directions to arrive at a single intensity profile for bPS (green) and Alk (red)
(J). The normalised bPS slope for the basal half of the midgut was
determined (see Methods for details). (K) Mean slopes for the four
genotypes. N-values, and p-values with respect to w1118 (student’s t-test) are
w1118 (n56), netABD (n56, p50.082), fra (n56, p,0.001) and rab5DN (n55,
p,0.01). The three mutant genotypes were not significantly different from
each other. (L) Colocalisation of the early endosome marker Rab5-GFP
(green L; grey L9) and bPS (red L; grey L0) (arrowheads). Note exposure level
for bPS is much higher than in p Canels A–H. Scale bars, 20 mm in A,C,E; 10
mm in B,D,F,H,L. *** 5 p,0.001, ns 5 p.0.05.
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side, and this was clearly crucial for the formation of an
epithelium. Thus, while Fra clearly plays a role in the MET, the

role of Netrin in localising Fra to the basal side appears to be even
more important.

Netrin and Fra are endocytosed in the midgut cells
Our results also indicate that Netrins and Fra undergo mutually
dependent endocytosis on the basal side of midgut cells. NetB and
Fra both colocalised with the early endosome marker Rab5, and

inhibition of the early endocytic pathway reduced the number of
both NetB and Fra puncta. Furthermore, ligand and receptor
internalisations were mutually dependent upon each other since

Fra puncta were lost in netABD mutants and NetB puncta were
lost in fra mutants. NetB and FraHA also showed substantial
colocalisation (i.e. ,40%) with each other, and, given that only

NetB was being detected, the total proportion of FraHA/Netrin-
positive vesicles could be greater. Fra also colocalised with the
late endosome marker Rab7 suggesting that it is degraded in the
lysosome, which raises the question of whether downregulation

of Fra might be necessary for the MET to occur.
In axon guidance, Netrin binding to DCC in the growth cone

leads to rapid endocytosis and degradation of DCC, which is

thought to desensitise the growth cone, allowing it to adapt to
increasing basal levels of a ligand as it moves up a concentration
gradient (Piper et al., 2005). Adaptation to a gradient seems unlikely

in the midgut, however, since all VM cells appear to express NetB
at similar levels meaning that the concentration of NetB along the
length of VM should be relatively constant. Nevertheless, removal

of Fra from the membrane in midgut cells might be required to
attenuate the Netrin-dependent activation of motility pathways, so
that a transition to an epithelial cell type can occur.

That said, we were not able to detect any disruption to either

migration or the MET when endocytosis was inhibited. However,
since endocytic pathways are known to be crucial for other cell
migration events (reviewed in Jones et al., 2006; Le Roy and

Wrana, 2005) including those that are Integrin-dependent (Caswell
and Norman, 2008) we expect that the lack of a phenotype is
because the time frame over which the migration/MET event takes

place (,1–2 h) is too short for the down-stream consequences of
inhibiting endocytosis by Rab5DN to manifest. To definitively test
the importance of Fra degradation on the MET it will be necessary
to find ways of specifically disrupting Fra trafficking, either by

mutations to fra or by finding other proteins that regulate Fra but do
not disrupt endocytosis in general.

Interactions between Netrins and Integrins
Given both the Netrin/Fra pathway and the Integrin pathway
regulate early midgut development an important question now is:

how do these two pathways interact? Our data showing that
combined loss of Fra and bPS has a clear additive phenotype
indicates that, to a large degree, the pathways act in parallel.

Nevertheless there are several hints that cross talk may exist.
Firstly, the migration phenotype of fra mutants was slightly
enhanced by loss of netrins. While this could potentially be due to
very low levels of maternal Fra persisting in fra mutants, which

we are not able to detect, another possibility is that Netrins are
directly interacting with Integrins, as has been demonstrated in
vertebrate studies (Yebra et al., 2003).

However, we also found that mutations to both netrins and fra

had a subtle effect on Integrin localisation, in that the basal gradient
of bPS within PMECs was strongly reduced, and an increased

signal of both bPS and aPS1 was detected at the PMEC/VM

interface. This phenotype was also seen when endocytosis was
inhibited suggesting that Fra signaling may regulate turnover of the

bPS/aPS1 Integrin. One possible mechanism for this is through
shared downstream pathway components of Fra/DCC family
receptors and Integrins (reviewed in Nikolopoulos and Giancotti,
2005). For example, activation of both Integrins and DCC

receptors can lead to activation of FAK and Src family kinases
(SFKs) (reviewed in Huttenlocher and Horwitz, 2011; Ren et al.,
2004; Stein et al., 2001; Sun et al., 2011). Similarly, RhoGTPases,

such as Rac and Cdc42, act downstream of both Integrins
(reviewed in DeMali et al., 2003; Pirraglia et al., 2013; Price
et al., 1998; Yu et al., 2005) and DCC (Li et al., 2002; Shekarabi

and Kennedy, 2002). Thus, activation of Fra could potentially
increase the pools of signaling factors in basal parts of the midgut
cells, which could then promote Integrin turnover.

Whether Fak56 or SFKs could mediate this effect is not clear,
however. Fak56 mutants have no obvious effect on midgut
migration or development (Grabbe et al., 2004), and turnover of
Integrin complexes in myotendinous junctions was not affected by

FAK disruption (Yuan et al., 2010). Also, a Fra transgene in which
all Tyr residues in the cytoplasmic domain are mutated to Phe can
fully rescue fra midline crossing defects (O’Donnell and Bashaw,

2013) suggesting Fra phosphorylation by Src or other Tyrosine
kinases may not be important in Drosophila. However, Fak56 and
SFKs do appear to act downstream of aPS3/bn in regulating

neuromuscular junction growth (Tsai et al., 2008) and this Integrin
heterodimer is expressed in the midgut (Devenport and Brown,
2004), so further investigation is warranted. In the case of the Rho

GTPases, both Rac1 and Cdc42 have been implicated in midgut
migration (Martin-Bermudo et al., 1999), and loss of the Rac GEF
trio enhances fra midline phenotypes (Forsthoefel et al., 2005) so
again it will be important to determine whether disruption of these

signaling components affects Integrin localisation.
In summary, our results provide a new model for MET in

which migrating cells are guided along a pathway by a

chemoattractant, but subsequently become apico-basally
polarised in response to that same chemoattractant, and are
thereby induced to form an epithelium. It will be important now

to map out the pathways acting downstream of Fra and see how
these might interact with Integrins, as well as establishing the
mechanism, and importance of Fra endocytic trafficking in the
MET.
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