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Summary

We introduce effective balancing scores for estimation of the mean response under a missing at 

random mechanism. Unlike conventional balancing scores, the effective balancing scores are 

constructed via dimension reduction free of model specification. Three types of effective 

balancing scores are introduced: those that carry the covariate information about the missingness, 

the response, or both. They lead to consistent estimation with little or no loss in efficiency. 

Compared to existing estimators, the effective balancing score based estimator relieves the burden 

of model specification and is the most robust. It is a near-automatic procedure which is most 

appealing when high dimensional covariates are involved. We investigate both the asymptotic and 

the numerical properties, and demonstrate the proposed method in a study on Human 

Immunodeficiency Virus disease.
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1. Introduction

In social and medical studies, the primary interest is usually the mean response, the 

estimation of which can be complicated by missing observations due to nonresponse, drop 

out or death. The data observed are triplets {(Yi, δi, Xi), i = 1, ···, n}, where Yi is the 

response, δi = 1 if Yi is observed and δi = 0 if Yi is missing, and Xi is the vector of covariates 

and always observed. Under the missing at random mechanism (Rosenbaum & Rubin, 

1983); that is, Pr(δ = 1 | X, Y) = Pr(δ = 1 | X), estimation of E(Y) is mostly developed using 

the parametric form of the missingness pattern π(X) = Pr(δ = 1 | X) or the response pattern 

m(X) = E(Y | X). Important methods include regression estimation (Rubin, 1987; Schafer, 
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1997), inverse propensity score estimation (Horvitz & Thompson, 1952), augmented inverse 

propensity weighting estimation (Robins et al., 1994), and their modified versions such as 

D’Agostino (1998), Scharfstein et al. (1999), Little & An (2004), Vartivarian & Little 

(2008), and Cao et al. (2009). A review of most methods can be found in Lunceford & 

Davidian (2004) and Kang & Schafer (2007). Consistency and efficiency of these estimators 

rely on correct model specification. Even for the “doubly robust” estimators, either π(X) or 

m(X) needs to be correctly specified for consistency and both correctly specified for 

efficiency (Robins & Rotnitzky, 1995; Hahn, 1998). When X ∈ ℝp is high dimensional, 

model specification is challenging: it is hard for a parametric model to be sufficiently 

flexible to capture all the important nonlinear and interaction effects yet parsimonious 

enough to maintain reasonable efficiency.

One family of estimators are built upon the balancing score. According to Rosenbaum & 

Rubin (1983), a balancing score b(X) has the property E(Y | b(X)) = E(Y | b(X), δ = 1). 

Therefore, E(Y) can be estimated via b(X) over the complete cases {(Yi, δi, Xi) : δi = 1}. The 

most well known balancing scores include the propensity score (Rosenbaum & Rubin, 1983) 

and the prognostic score (Hansen, 2008). The mean response can be estimated via the 

balancing score by such nonparametric approaches as stratification (Rosenbaum & Rubin, 

1983) and nonparametric regression (Cheng, 1994). Of course, the naive balancing score is 

X. However, estimation using X as a balancing score is subject to the curse of dimensionality 

when X ∈ ℝp is high dimensional (Abadie & Imbens, 2006).

Balancing scores have been estimated through parametric modeling. In comparison to the 

other estimators, balancing score based estimators are less sensitive to model 

misspecification, largely due to the nonparametric approaches to utilize the balancing score 

(Rosenbaum, 2002). One important property of the balancing score based estimator, which 

has rarely been utilized, is that full parametric modeling is actually unnecessary. For 

example, if π(x) = f{b(x)} for some function b(X) and unknown function f, then E(Y) can be 

estimated via b(X) through stratification or nonparametric regression as subjects with similar 

values in b(X) have similar values in π(X). Provided that we can find such a function b(X), 

there is no need for the full parametric form of π(X).

In this work, we introduce the effective balancing score. Like the propensity score and the 

prognostic score, the effective balancing score creates a conditional balance between the 

subjects with response observed and the subjects with response missing. Unlike the 

conventional balancing scores, estimation of the effective balancing score is free of model 

specification via the technique of dimension reduction (Li, 1991; Cook & Weisberg, 1991; 

Cook & Li, 2002; Li & Zhu, 2007; Li & Wang, 2007). The effective balancing score carries 

all X information about the missingness or the response in the sense δ ⊥ X | S or Y ⊥ X | S, 

where S stands for the effective balancing score and ⊥ stands for conditional independence. 

It thus leads to consistent estimation of E(Y) with little or no loss in efficiency. As a 

parsimonious summary of X, the effective balancing score is of dimension much smaller 

than p. Compared with existing methods, the effective balancing score based estimator has 

the following advantages: (1) It relieves the burden of model specification and is the most 

robust with potentially optimal efficiency; (2) Through the technique of dimension 

reduction, the effective balancing score is of low dimension which enables the effective use 
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of stratification and nonparametric regression; (3) It avoids the shortcoming of inverse 

propensity weighting, i.e., instability caused by estimates of π(X) that are close to zero.

2. Effective balancing score

2·1. Effective balancing score

Let  be the response from X ∈ ℝp. Usually  relates to X through only a few linear 

combinations; that is,  with βk ∈ ℝp : k = 1, ···, K distinctive 

vectors. Let B = (β1, ···, βK) with β1, ···, βK orthonormal and K the smallest dimension to 

satisfy the conditional independence, then B is a basis of the central dimension-reduction 

space  with K the structural dimension (Cook, 1994). The columns of B are arranged in 

descending order of importance; that is, λ1 ≥ λ2 ≥ ··· ≥ λK > 0 where λk measures the amount 

of X information carried by  and is explained in §3.2. In general, K is much smaller than 

p. If we let S = B′X, then S ∈ ℝK is a parsimonious summary of X: it is of lower dimension 

than X but carries all X information about . In this paper, we refer to B = (β1, ···, βK) as the 

effective directions.

Let  = δ and Bδ be the effective directions of , then

(1)

and we refer to  as the effective propensity score.

Let  = Y and denote BY as the effective directions of , then

(2)

Obviously,  is a prognostic score satisfying the definition of Hansen (2008). We refer 

to  as the effective prognostic score.

Each effective score creates the conditional balance

(3)

where S is either Sδ or SY. For S = Sδ, (3) follows similarly as in Theorem 3 of Rosenbaum & 

Rubin (1983). For S = SY,

where the second equation is due to missingness at random and the last equation to (2). 

Since the last expectation is E(δ | S) = Pr(δ = 1 | S), (3) follows. It is immediate from (3) that 

both effective scores are balancing scores.
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Example 1—Suppose Y | X is normal with mean m(X) = X1 + exp(X2 + X3) + X1X4 and 

variance , with the probability of observing Y as 

. Then, the prognostic score is {m(X), σ2(X)} and the 

propensity score is π(X). The effective prognostic score is { } and the 

effective propensity score is { }.

The effective balancing scores may have higher dimensions than their conventional 

counterparts. However, estimation of the propensity score and the prognostic score requires 

correct model specification and is subject to the challenges discussed in §1. The effective 

balancing scores, on the other hand, can be obtained without model specification.

We can also let  = (δ, Y) be a bivariate response. Denote Bd as the effective directions for 

, then

(4)

In other words,  carries all X information about both δ and Y, and creates both 

propensity balance and prognostics balance. We refer to  as the effective double 

balancing score. In Example 1,  is the same as SY.

Remark 1—As shown by (1) and (2), so long as either independence in (4) holds, Sd is a 

balancing score satisfying the conditional balance (3). It is for this reason that we refer to Sd 

as the effective double balancing score.

In summary, both the effective prognostic score and the effective double balancing score 

have the properties

The first property implies E(Y | S) = E(Y | S, δ = 1), which ensures unbiased estimation of 

E(Y) via S from the complete cases. The second property implies that S carries all X 

information about the response, which ensures efficient estimation of E(Y) via S. The 

effective propensity score possesses only the first property and is not as efficient as the other 

two. We will show in §3 and §4 that Sd can improve over SY under certain situations. 

Without loss of generality, we assume E(X) = 0 and cov(X) = Ip the identity matrix.

2·2. Estimation of effective balancing score

To find the effective balancing scores is to find the effective directions: the effective 

directions of  for the effective propensity score and the effective directions of  for the 

effective prognostic score. For the effective double balancing score, we need the effective 

directions of .
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Remark 2—Under missingness at random, there is the relationship  =  for 

continuous response Y. The effective directions of  can be estimated through the 

univariate response δY. A similar approach applies if Y is categorical. See Appendix 1.

There are many dimension reduction methods for estimating the effective directions. The 

most fundamental methods are the sliced inverse regression (Li, 1991) and the sliced 

average variance estimation (Cook & Weisberg, 1991). Both methods are developed under 

the linearity condition; that is, E(X | B′X) is a linear function of B′X. Many new methods 

have been developed to improve over these two. To improve estimation efficiency, there are 

the likelihood based methods of Cook (2007), Cook & Forzani (2008) and Cook & Forzani 

(2009). To relax the distribution assumption, Li & Dong (2009) and Dong & Li (2010) 

proposed methods to remove the linearity condition, and Ma & Zhu (2012) successfully 

applied a semiparametric approach to eliminate all distributional assumptions. These 

methods lead to root-n consistent estimates under proper conditions. As to be shown in 

Theorem 2, the proposed estimation of E(Y) requires only the effective direction estimates to 

be root-n consistent. In this work, we adopt the fitted principal component method of Cook 

(2007) in the numerical studies unless stated otherwise. More information about these 

dimension reduction methods is given in §6.

Remark 3—Under missingness at random, there is the relationship

following Chiaromonte et al. (2002). That is, the effective directions of  include both 

the effective directions of  and the effective directions of .

In addition to the method in Remark 2, Remark 3 suggests a pooling method for the 

effective directions of . Since δ and Y are mostly related, there is likely overlap between 

 and . Therefore, the pooling method needs to be followed by such a method as Gram-

Schmidt’s orthogonolization to remove redundancy.

3. Mean response estimation via effective balancing score

In this section, let S stand for the effective balancing score and B the matrix of effective 

directions. We first consider B as known and later investigate the impact from the estimation 

of B. As S = B′X consists of linear combinations of X, it is always observed. As B has 

columns of orthonormal vectors, S has the identity covariance matrix. Since S carries all X 

information about the missingness or the response, we can use S ∈ ℝK instead of X ∈ ℝp for 

the estimation of E(Y) through stratification or nonparametric regression. In this work, we 

focus on nonparametric regression.

3·1. Nonparametric regression via effective balancing score

Let m(S) = E(Y | S) be the conditional mean response given the effective balancing score, 

then E(Y) = E{m(S)} can be estimated through the estimation of m(S). To obviate model 

specification, we estimate m(·) by nonparametric kernel regression (Silverman, 1986)
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(5)

where Si = B′Xi, (u) = det(H)−1 (H−1u) for u = (u1, ···, uK) with H the bandwidth matrix 

and (·) the kernel function. Since S has identity covariance, we take H = hnIK with hn a 

scalar bandwidth (Härdle et al., 2004). We then estimate E(Y) by

(6)

We refer to μ̂ as the nonparametric regression via effective balancing score estimator, or 

briefly the nonparametric balancing score estimator. By the result of Devroye & Wagner 

(1980), m̂(s) converges in probability to E(δY | s)/E(δ | s). It is immediate from (3) that E(δY | 

s) = E(δ | s)E(Y | s). Therefore, m̂(s) converges in probability to m(s), and consequently (6) to 

μ = E(Y).

Theorem 1—Under the regularity conditions, the nonparametric balancing score estimator 

μ̂ is asymptotically normally distributed. If as n → ∞, hn → 0 and , then

with

where π(S) = E(δ | S).

For S = SY or S = Sd, due to (2) and (4), we have Y ⊥ X | S and thus var(Y | S) = var(Y | X). It 

follows that

, which is the optimal efficiency for the semiparametric estimators of E(Y), see Hahn (1998). 

This means that the nonparametric balancing score estimation via SY or Sd is both consistent 

and optimally efficient. For S = Sδ, as var(Y | S) ≥ var(Y | X), the optimal efficiency may not 

be reached.

Theorem 2—With B replaced by its root-n consistent estimate B̂, the nonparametric 

balancing score estimators have the same asymptotic properties as in Theorem 1.
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Proof of Theorem 1 and 2 are given in the Appendix. Due to Theorem 2, we will use Sδ, SY, 

and Sd for the effective balancing scores whether B is known or estimated.

3·2. Dimension of effective balancing score

To determine the dimension of the effective balancing score is to determine K, the number 

of effective directions. A simple approach is the sequential permutation test of Cook & Yin 

(2001).

The dimension of the effective balancing score affects performance of the proposed 

estimator through nonparametric regression (5). Following Theorem 1, the impact from 

nonparametric regression is asymptotically negligible for hn ~ n −α with 0 < α < 1/K. For 

larger K, selection of hn is more constrained as α falls in a narrower range. More 

specifically, nonparametric regression introduces bias  and variance  to μ̂, 

see Appendix 2. The mean squared error of μ̂ is minimized at hopt ~ n −2/(K+4). At hopt, the 

asymptotic variance is n −1 σ2 + n −8/(K+4) . If K ≤ 3, μ̂ is root-n consistent and the variance 

from nonparametric regression is asymptotically negligible. If K = 4, μ̂ is root-n consistent 

but the variance from nonparametric regression is not asymptotically negligible. If K > 4, μ̂ 

converges slower than n−1/2. Ideally, we would like S of dimension no more than 3 to reach 

the minimum mean squared error, root-n consistency, and negligible impact from 

nonparametric regression. Note that without dimension reduction; that is, S = X ∈ ℝp, the 

proposed estimator reduces to the nonparametric regression estimation of Cheng (1994) 

which can perform poorly for large p.

We compare the three effective balancing scores. The effective double balancing score and 

effective prognostic score improve over the effective propensity score, as SY and Sd lead to 

more efficient estimation than Sδ as shown by Theorem 1. The effective double balancing 

score can improve over the effective prognostic score when  is more than three-

dimensional but  is less than three-dimensional. Here is a hypothetical example. Suppose 

 has 5 effective directions,  has one effective direction, and Bd = (Bδ, BY) has the 

effective propensity direction Bδ as the most important. To maintain conditional balance (3), 

SY needs to be of dimension 5. For Sd, we can use only the first three components: while the 

first component ensures conditional balance and thus consistency, the other two components 

enhance efficiency.

We can use  in case of K > 3, which shows generally good 

performance in numerical studies. Most dimension reduction methods estimate βk’s as the 

eigenvectors of a kernel matrix, and the corresponding eigenvalue λk reflects the amount of 

X information carried by , see §6. When the first three components carry enough X 

information in the sense that (λ1 + λ2 + λ3)/(λ1 + ···, λK) is no less than 0.90, S* leads to 

good estimation. We refer to S* as the dimension further reduced effective score. If K > 3 

and the first three components carry a low percentage of X information, which rarely 

happens in practice, we can use generalized additive modeling for the estimation of E(Y | S). 

That is, instead of the multivariate kernel regression (5), E(Y | S) is estimated through the 

additive model , where each gk is nonparametric and 
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estimated by smoothing on a single coordinate, see Hastie & Tibshirani (1986). Though the 

generalized additive model is a bit restrictive by assuming the additivity, it relieves the curse 

of dimensionality that hinders multivariate kernel regression when K is big.

3·3. Estimation procedure

Step 1. Estimate the effective directions B and determine the dimension K;

Step 2. If K ≤ 3, compute the effective balancing score S = B̂′X; if K > 3, let 

 be the dimension further reduced effective score;

Step 3. Estimate E(Y) by nonparametric regression via the effective balancing score S or 

the dimension further reduced effective score S*.

For bandwidth selection, the optimal bandwidth is hopt ~ n−2/(K+4) which minimizes the 

mean squared error of μ ̂ and can be estimated by the plug in method (Fan & Marron, 1992), 

see Appendix 2. This optimal bandwidth is smaller than the conventional bandwidth hn ~ n
−1/(K+4), which is optimal for the estimation of conditional mean m(S) (Härdle et al., 2004). 

At the conventional bandwidth, though the proposed estimator does not attain the minimal 

mean squared error, the bias and variance from nonparametric regression are asymptotically 

negligible. Therefore, when the sample size is large, we can use the conventional bandwidth 

which is easier to determine (Sheather & Jones, 1991).

For variance estimation, we can use the asymptotic variance formula in Theorem 1. The 

asymptotic variance leaves out the negligible terms; that is, the variability introduced by the 

estimation of the effective directions and the nonparametric regression of m(S). We 

recommend bootstrap for variance estimation: bootstrap n samples from the original triplets 

{(Yi, Xi, δi) : i = 1, ···, n} with replacement; compute the nonparametric balancing score 

estimate μ̂(b) over the bootstrapped data {(Yi, Xi, δi)(b) : i = 1, ···, n}; repeat these two steps 

many times and use the sample variance of μ̂(b) as the estimate of var(μ̂). The bootstrap 

estimate includes all sources of variation.

4. Numerical Studies

We investigate the numerical performance of the proposed estimators: μ̂
δ uses the effective 

propensity score, μ̂
Y uses the effective prognostic score, and μ̂

d uses the effective double 

balancing score. Also computed are the commonly used model based estimators: the 

parametric regression estimation μ̂
reg, the inverse propensity weighted estimator μ̂

ipw, and 

the augmented inverse propensity weighted estimator μ̂
aipw. In the model based estimations, 

we use linear regression for m(X) and linear logistic regression for π(X). In all simulations, 

200 datasets with n = 200 or n = 1000 are used.

In simulation 1, X = (X1, ···, X10) has components of independent N(0, 1), π = expit(X1) and 

Y = 3X1 + 5X2 + ε with ε of independent N(0, 1). Estimation results are in Table 1. With 

m(X) linear and π(X) logistic linear, both working models are correct for the model based 

estimations. We see the nonparametric balancing score estimators have comparable 

performance to the model based estimators. Due to adoption of the nonparametric 

procedures, additional bias and variation are introduced to the proposed estimators. 
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However, the additional bias and variation diminish as sample size gets large. The 

estimators μ̂
Y and μ̂

d reach the optimal efficiency, and μ̂
δ is less efficient. The last 

observation agrees with the discussion following Theorem 1.

In simulation 2, X = (X1, ···, X10) has components of independent N(0, 1), π = 

expit{exp(X2)} and  with ε of 

independent N(0, 1). Estimation results are in Table 2. As m(X) is nonlinear and π(X) is log-

logistic, the working models are incorrect and we see large bias in the model based 

estimators. The nonparametric balancing score estimators show negligible bias and good 

efficiency.

In this simulation,  has one effective direction,  has four effective directions, and 

has four effective directions. For μ̂
Y and μ̂

d, we use only the first three components of the 

estimated SY and Sd. Among its first three components, Sd has X2 as information conveyer 

for δ and the other two components as primary information conveyers for Y. Therefore, the 

dimension reduced score  still maintains the conditional balance (3) and leads to 

consistent estimate with good efficiency. For SY, its first three components carry around 

93% X information about Y. The dimension reduced score  does not maintain the 

conditional balance, but it conveys enough X information for the proposed estimation: μ̂
Y 

has much smaller bias and is more stable than the model based estimators. This simulation 

also shows that μ̂
d can outperform μ̂

δ and μ̂
Y : it outperforms the former in efficiency and the 

latter in consistency.

Dimension reduction methods are mostly developed under certain distributional 

assumptions. It is thus worth investigating robustness of the proposed estimation to the 

distribution assumptions under which the effective directions are estimated. For this 

purpose, we have the following simulation. In simulation 3, Z1, ···, Z4 are independent N(0, 

1), π = expit(−Z1 + 0.5Z2−0.25Z3−0.1Z4), and Y = 210 + 4Z1 + 2Z2 + 2Z3 + Z4 + ε. Suppose 

the covariates actually observed are X1 = exp(Z1/2), X2 = Z2/(1 + exp(Z1)), X3 = (Z1Z3/25 + 

0.6)3, X4 = (Z3 + Z4 + 20)2, X5 = X3X4, and X6, ···, X10 of independent uniform (0, 1). This 

setup mimics that of Kang & Schafer (2007). Here we use the sliced inverse regression to 

estimate the effective directions, even though X does not satisfy the linearity condition, to 

explore robustness.

Estimation results are in Table 3. Here we see that the proposed estimation is quite robust to 

mild violation of the linearity condition. This is not surprising, as sliced inverse regression is 

not sensitive to the linearity condition (Li, 1991). The effective balancing scores are all 4-

dimensional, and we use the dimension reduced effective scores in the proposed estimation. 

Though the dimension reduced effective scores lose some X information, the proposed 

estimators still outperform the model based estimators. The inverse propensity weighting 

estimator μ̂
ipw has huge bias and variability, demonstrating the instability associated with 

inverse propensity weighting. The doubly robust estimator μ̂
aipw has poor performance, 

exemplifying the drawback of doubly robust estimators whose performance relies on model 

specification.
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In summary, the proposed estimators have comparable performance to the model based 

estimators when the parametric models are correctly specified, and outperform the model 

based estimators otherwise. The proposed estimators also show roughly root-n consistency. 

When the effective balancing score is more than three dimensional, its first three 

components lead to good estimate.

5. Application

We demonstrate the proposed estimation by an Human Immunodeficiency Virus study, 

where 820 infected patients received combination antiretroviral therapy and had baseline 

characteristics measured prior to therapy, see Matthews et al. (2011). The baseline 

characteristics included weight, body mass index, age, CD4 counts, HIV viral load, 

hemoglobin, platelet, SGPT, and albumin. We are interested in the CD4 counts 96 weeks 

post therapy. Due to drop out and death, around 50% patients were lost to follow-up at 96 

weeks. It is plausible to assume missing at random; that is, whether a patient stayed in the 

study depended on his/her baseline characteristics. In this study, X is the vector of baseline 

characteristics and Y is the CD4 counts at 96 weeks. Our interest is the mean CD4 count 

E(Y).

We first fit the response pattern m(X) = E(Y | X) by linear regression and the propensity 

score π(X) = Pr(δ = 1 | X) by linear logistic regression. Figure 1 shows poor fit of m̂(X) and π̂

(X). With X of dimension 9, it is nearly impossible to try out all possible higher order terms 

for m(X) and π(X). This casts doubt on the reliability of model based estimators. We turn to 

the effective balancing scores for the estimation of E(Y).

The estimates of E(Y) are in Table 4, where the standard deviations are estimated by 

bootstrap with 200 replications. In the proposed estimation, the effective propensity score 

Sδ; is 1-dimensional, the effective prognostic score SY and the effective double balancing 

score Sd are 2-dimensional, where the dimensions are determined by the sequential 

permutation test (Cook & Yin, 2001).

Diagnostic analysis indicates overlapping of  and . More specifically, the first effective 

direction of  and that of  are close, both close to the first effective direction of . As 

the first effective direction of  conveys about 70% X information about Y, the three 

nonparametric balancing score estimates are quite close. The inverse propensity weighting 

estimator π̂
ipw shows big bias and variability due to the poor fit of π̂(X) and the sensitivity 

associated with inverse weighting. In spite of the poor fit of m̂(X), the regression estimator 

μ̂
reg seems to have little bias. This is because the bias of μ̂

reg is , 

and averaging over the samples can sometimes mitigate the point-wise bias in m̂(X).

6. Discussion

Most dimension reduction methods recover B = (β1, ···, βK) as the eigenvectors of a kernel 

matrix. The sliced inverse regression takes cov{E(X | )} as the kernel matrix and the sliced 

average variance estimation uses E[{I − cov(X | )}2], both estimated through slicing the 

response . The eigenvectors corresponding to the K largest eigenvalues are the estimates. 
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Both methods give root-n consistent estimates under the linearity condition, which is 

satisfied if X has an elliptically symmetric distribution. The sliced average variance 

additionally assumes cov(X | B′X) to be constant.

The principal fitted component method of Cook (2007) is an extension of the sliced inverse 

regression. The method first finds a basis function Fy = {f1(y), ···, fr(y)} for the inverse 

regression X | Y, and then estimates the effective directions through PF X, the projection of X 

onto the subspace spanned by Fy. Though derived from normal likelihood function, the 

method is not tied to normality. It has “double robustness” in the sense that root-n 

consistency is attained under either normality or Fy is well correlated to E(X | Y). 

Appropriate selection of Fy allows more effective utilization of the inverse regression 

information than the sliced inverse regression. Approaches for finding Fy include the inverse 

response plot of X versus Y (Cook, 1998), spline basis, and inverse slicing. When the inverse 

regression X | Y has isotropic errors, estimates of β1, ···, βK are simply the K largest 

eigenvectors of cov(PF X). Cook (2007), Cook & Forzani (2008) and Cook & Forzani 

(2009) give details about this method under various scenarios. Ding & Cook (2013) further 

extends this method to matrix-valued covariates.

Recently, Ma & Zhu (2012) proposed the semiparametric dimension reduction method. It is 

the only method that requires no distributional assumptions for root-n consistency. The 

estimation of B = (β1, ···, βK) is from an estimating equation derived from a semiparametric 

influence function. By appropriately defining the terms in the influence function, this 

semiparametric method includes many dimension reduction methods as special cases. For 

example, one estimating equation takes the form

which reduces to the sliced inverse regression under the linearity condition. Consistency is 

achieved if either E(· | Y) or E(· | BT X) is correctly specified, and nonparametric regression 

is proposed for estimating the two conditional means to circumvent model specification. 

This method can also handle categorial covariates so long as at least one covariate is 

continuous. This is a powerful method for dimension reduction but involves intensive 

computation.

As mentioned in §2, any root-n consistent dimension reduction method is good for finding 

the effective directions in the proposed method. We can pick a method of our convenience 

so long as the distributional assumptions are satisfied.
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Appendix

Appendix 1. Proof for = 

Denote Bd as the basis for  and Bd* as the basis for . From (4),

It follows that  and  ⊂ .

Note that

where the second equation is due to Pr(Y = 0 | X) = 0 for Y continuous. Since Bd* is the basis 

for , the right hand side of the above equation is a function of . Thus 

and  ⊂ .

Note that
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The second equation is true due to missing at random. In the above equations, Pr(δY ≤ y | X) 

is a function of  as Bd* is the basis for , Pr(δ = 0 | X) and Pr(δ = 1 | X) are functions 

of  as  ⊂ . Therefore, Pr(Y ≤ y | X) is a function of . It follows that 

 and  ⊂ .

As  ⊂  and  ⊂ , it follows from Remark 2 that  ⊂ .

If Y is categorical, we can perform a shift transformation Y* = Y + c such that Y* > 0. It 

follows that  =  = .

Appendix 2. Proof of Theorem 1

Theorem 1 is developed under the following regularity conditions:

1. The kernel function satisfies: ∫u (u)du = 0, ∫ uuT (u)du = I2, and ∫ (u)du 
= , with  < ∞ and  < ∞.

2. π(x) is bounded away from 0.

3. The density of x is bounded away from 0.

We write n1/2(μ̂ − μ) as

with

where  = {(Xj, Yj, δj) : j ≠ i}. It is obvious that n1/2An converges in distribution to N (0, 

var{m(S)}).

By (5),
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with  and f(s) the density of S. It follows that

Similar to the argument for Theorem 2.1 of Cheng (1994), it can be shown that 

 with

Due to conditional independence (3),  converges in distribution to N (0, E{var(Y | 

S)/π(S)}).

For Cn, E(Cn) = 0 and , 

thus Cn = op(n−1/2). As An and  are independent, n1/2(μ̂ − μ) is asymptotically normal of 

mean 0 and variance var{m(S)} + E{var(Y | S)/π(S)}.

Following Ruppert & Wand (1994), the negligible terms involving H are

With H = hnIK,  and ,

In the above expressions, , where ∇m(s) and 

(s) stand for the gradient and the Hessian matrix of m(s), respectively, ∇πf/πf(s) = {π(s)

∇f (s) + ∇π(s)f(s)}/{π(s)/{π(s)f(s)} with ∇π(s) and ∇f (s) the gradients of π(s) and f (s), 

respectively.

The mean squared error is

The optimal bandwidth, which minimizes the mean squared error, is
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which can be estimated by the plug-in method.

Appendix 3. Proof of Theorem 2

Denote the proposed estimator under B̂, the root-n estimate of B, as  which is given as in 

(6) except that

with Ŝ = B̂X.

The difference between  and μ̂ comes from that between (Si − Sj) and . With 

H = hnIK,  and . 

The latter can be further written as

At optimal bandwidth hn ~ n−2/(K+4) and B̂ − B = Op(n−1/2), the second term inside the 

kernel function is O{n−K/(2K+8)} = op(n−1/2). It follows that , and  is 

asymptotically equivalent to μ̂.
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Fig. 1. 
Parametric fit to the response and the missingness. On the left is the observed response 

versus the fitted response from linear regression. On the right is the box plot of the fitted 

propensity score from linear logistic regression: 0 for the subjects with Y missing and 1 for 

the subjects with Y observed.
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