Skip to main content
. 2015 Mar 19;10(3):e0119091. doi: 10.1371/journal.pone.0119091

Table 1. Experimental results: Baseline vs. Case sensitive vs. Information gain.

Ontology Baseline Case sensitive (CS) Information Gain (IG) CS + IG
P R F1 P R F1 P R F1 P R F1
CL 84.95 72.22 78.07 84.95 72.22 78.07 83.02 71.67 76.93 83.02 71.67 76.93
GO_CC 80.29 71.70 75.75 83.32 72.95 77.79 80.93 73.19 76.86 83.56 73.18 78.02
GO_BPMF 55.48 23.55 33.06 55.48 23.55 33.06 47.67 34.04 39.72 47.67 34.04 39.72
ChEBI 47.83 54.54 50.97 47.34 53.28 50.13 44.35 51.97 47.86 43.83 50.82 47.06
PRO 28.59 63.53 39.43 41.72 52.72 46.58 27.48 63.96 38.45 40.39 53.33 45.96
SO 50.68 52.39 51.52 50.50 51.76 51.12 45.60 50.43 47.89 43.71 48.73 46.08

Bolded values denote an increase in F-Score against the baseline. Using a case-sensitive processing approach leads to an increase in F-Score ranging from 0.02 to 0.07 on three of the six ontologies—i.e., CL, GO_CC and PRO. Similarly, information gain improves the F-Score in two ontologies—i.e., GO_CC and GO_BPMF. The efficiency of the combined approaches mirrors proportionally their individual behaviour.