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Spatially distinct atrophy is linked to
b-amyloid and tau in preclinical
Alzheimer disease

ABSTRACT

Objectives: To determine whether an MRI-based Alzheimer disease (AD) signature biomarker can
detect tau-related neurodegeneration in preclinical AD, and to assess whether AD signature cor-
tical thinning is associated with cognitive changes in cognitively normal (CN) older individuals.

Methods: In a large cohort of CN individuals (n 5 188), we measured the hippocampal volume
and cortical thickness within independently defined AD signature regions. We cross-sectionally
assessed the associations between AD signature cortical thinning or hippocampal atrophy
with CSF biomarkers of tau (increased tau) and b-amyloid (Ab) (decreased Ab42). We also
examined the impact of AD signature cortical thinning or other biomarker changes (i.e., hippo-
campal atrophy, reduced CSF Ab42, or increased CSF tau) on cognitive performance in
CN individuals.

Results: Elevated CSF tau was associated with AD signature cortical thinning but not hippocam-
pal atrophy. In contrast, decreased CSF Ab42 was associated with hippocampal loss but not AD
signature cortical thinning. In addition, AD signature cortical thinning was associated with lower
visuospatial performance. Reduced CSF Ab42 was related to poorer performance on episodic
memory.

Conclusions: Spatially distinct neurodegeneration is associated with Ab and tau pathology in
preclinical AD. Ab deposition and AD signature cortical atrophy independently affect cognition
in CN older individuals. Neurology® 2015;84:1254–1260

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; CDR 5 Clinical Dementia Rating; CN 5 cognitively normal.

Isolated amyloidosis is the earliest stage of preclinical Alzheimer disease (AD), followed by neu-
rodegeneration and then subtle cognitive decline.1 However, recent work has observed that
some cognitively normal (CN) individuals have neurodegeneration (e.g., AD-like brain atrophy
on structural MRI) independent of amyloidosis.2–4 These observations motivate the investiga-
tion of tau-related neurodegenerative process in preclinical AD. In addition, discrepant data exist
regarding the relationships between amyloidosis or neurodegeneration and cognitive decline in
preclinical AD.3,5

Neurodegeneration can be measured using the hippocampal volume or cortical thickness
within the topography affected by AD (i.e., “AD signature”).6,7 The AD signature has been
shown to predict prognosis in individuals without dementia,8 although an important gap
remains. Specifically, the AD topography has been derived primarily as a function of clinical
assessment and not biomarkers. Many supposed CN older persons may have biomarker evi-
dence of AD pathology.9 Some individuals with clinically defined AD do not have biomarker
evidence of AD pathology.10

Here, we refined the AD signature using a cohort of clinical and biomarker-confirmed
CN and symptomatic AD individuals. In a separate group of CN individuals (n 5 188),
we investigated whether abnormal CSF biomarker of tau pathology was associated with
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neurodegenerative changes (AD signature cor-
tical thinning or hippocampal atrophy) in pre-
clinical AD. We also examined whether
amyloidosis (reduced CSF b-amyloid [Ab]
42) mediated the effects of tau on neurodegen-
eration. We assessed the impact of neurode-
generation or amyloidosis on cognition in CN
individuals.

METHODS Participants. Participants were research volun-

teers enrolled in longitudinal studies of memory and aging at

the Knight Alzheimer’s Disease Research Center at Washington

University in Saint Louis. Recruitment procedures have been

previously published.11 Inclusion criteria were as follows: (1)

age 65 years or older, (2) brain MRI and CSF collection com-

pleted within 12 months of clinical assessment, and (3) normal

cognition or mild dementia due to AD, indicated by a Clinical

Dementia Rating (CDR) of 0 and 1, respectively,12 assessed at the

time closest to MRI scanning and CSF collection. Participants

(n 5 308) were divided into 2 cohorts. Cohort 1 was used

for definition of the topography of AD signature while cohort

2 was used for analyzing the relationships among MRI-based

biomarkers (cortical thickness within AD signature and

hippocampal volume), CSF biomarkers (Ab42 and tau), and

cognitive measures.

Standard protocol approvals, registrations, and patient
consents. The Human Research Protection Office at Washington

University in Saint Louis School of Medicine approved this

study. Written informed consent was obtained from each par-

ticipant. The guidelines of the Strengthening the Reporting of

Observational Studies in Epidemiology13 were followed if

applicable.

Clinical and neuropsychological assessments. The partici-
pant and a collateral source underwent separate semistructured

interviews conducted by experienced clinicians. The presence or

absence of dementia was determined by clinicians according to

the principle of intraindividual decline relative to prior functional

level.14 A diagnosis of dementia due to AD was made according to

standard criteria.14

All participants completed a neuropsychological battery that

assessed the following domains: episodic memory, executive func-

tion, visuospatial ability, and semantic. For each domain, a com-

posite score was formed by averaging z scores of individual tests
(appendix e-1 on the Neurology® Web site at Neurology.org).

This assessment was performed within 2 months of clinical

evaluation.

CSF collection and APOE genotyping. After an overnight

fast, CSF (20–30 mL) was obtained and analyzed for Ab42,

tau, and phosphorylated tau181 by plate-based ELISA

(INNOTEST; Innogenetics, Ghent, Belgium).15 Genotyping

for APOE was conducted using procedures previously reported.16

Structural MRI acquisition and preprocessing. Participants
were scanned on either Siemens 3T Trio (n5 110 in cohort 1 or

n5 155 in cohort 2) or 1.5T Vision (n5 10 in cohort 1 or n5

33 in cohort 2) scanner (Siemens Medical Systems, Erlangen,

Germany). High-resolution structural scans were obtained with

a T1-weighted magnetization-prepared rapid gradient echo

sequence. Images were processed with FreeSurfer (version 5.10)

(http://surfer.nmr.mgh.harvard.edu) (appendix e-2).

Definition of the topography of AD signature. The topog-
raphy of AD signature was identified in cohort 1 comprising

participants with mild AD (CDR 1, n 5 20) and a portion of

CN participants (CDR 0, n 5 100). The CN participants were

randomly chosen from CN individuals who were negative

for CSF Ab42 (.500 pg/mL) and CSF tau (,500 pg/mL).17

All participants with mild AD had either reduced CSF Ab42

(#500 pg/mL) or elevated Pittsburgh compound B binding

(mean cortical binding potential $0.18).17 Demographics and

biomarker data for cohort 1 are provided in table 1.

For each participant in cohort 1, following the preprocessing

of structural MRI data, the cortical surface representing the

gray-white boundary was inflated into a sphere.18 The inflated

spheres were registered to a common spherical coordinate sys-

tem that aligned cortical folding patterns across participants.19

The surface maps of cortical thickness were compared between

the mild AD and CN participants using a general linear model

with adjustment for age, sex, the presence of APOE e4 allele,

and scanner type (3T Trio vs 1.5T Vision). The group differ-

ence map was thresholded at a vertex-wise p, 0.001 and cluster

size $100 mm2. The participants with mild AD exhibited

cortical thinning in the entorhinal cortex, fusiform gyrus,

inferior, middle and superior temporal gyri, superior and infe-

rior parietal lobules, posterior cingulate gyrus, and precuneus

(figure 1). These regions hereafter are collectively referred to as

the AD signature.

Measurements of AD signature cortical thickness and
hippocampal volume in CN individuals. Demographics and

biomarker data for cohort 2 (n 5 188) are provided in table 2.

For each participant included in cohort 2, AD signature regions,

as identified above, were mapped back to this participant’s indi-

vidual space. Thickness values were obtained from each region

Table 1 Demographic characteristics of the cohorts used for definition of AD
signature regions

CN AD

No. 100 20

Mean age (SD), y 71 (9) 76 (6)

Age range, y 65–90 69–87

Sex, % male 50 52

Mean education (SD), y 15 (3) 14 (2)

APOE genotype, % e41 26 75

Clinical status

Mean MMSE score (SD) 29 (1) 23 (3)

CDR, no. of 0/1 100/0 0/20

Biomarker profiles

Mean CSF Ab42 (SD), pg/mL 782 (205) 315 (75)a

Mean CSF tau (SD), pg/mL 236 (70) 665 (338)a

Mean PiB MCBP (SD) NA 0.78 (0.23)b

Abbreviations: Ab 5 b-amyloid; AD 5 Alzheimer disease; CDR 5 Clinical Dementia Rating;
CN 5 cognitively normal; MCBP 5 mean cortical binding potential; MMSE 5 Mini-Mental
State Examination; NA 5 not applicable; PiB 5 Pittsburgh compound B.
CDR score of 0 indicates no dementia and 1 mild dementia. MMSE scores range from
30 (best) to 0 (worst).
a Data available from 13 participants.
bData available from 7 participants.
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and averaged across all AD signature regions to form a composite

score. In addition, hippocampal volumes were measured using

FreeSurfer’s subcortical stream.20 The details of FreeSurfer’s sub-

cortical stream have been previously documented.20 Briefly, the

hippocampus was segmented using automated procedures that

examined variations in voxel intensities and spatial relationships

to classify subcortical regions.20 Hippocampal volume was calcu-

lated for each participant as the product of the voxel volume and

the number of voxels. Hippocampal volumes were then averaged

across hemispheres and adjusted for intracranial volume. For each

of the samples scanned with 3T Trio (n 5 155) or 1.5T Vision

(n 5 33) scanner, individual composite scores of AD signature

cortical thickness and adjusted hippocampal volumes were trans-

formed to z scores using corresponding mean and SD derived

from this sample.

Statistical analysis. The present statistical approach was

informed by existing studies, which have found that (1) the

relationship between CSF Ab42 and brain atrophy differs in

Ab42-positive vs Ab42-negative individuals (i.e., an interaction

between the continuous and categorical measures of CSF

Ab42),21,22 (2) the interaction between CSF Ab42 and CSF

phosphorylated tau181 is related to brain atrophy,23 and (3) Ab

mediates the effect of tau on neurodegeneration (autopsy data).24

Thus, we analyzed the associations of AD-associated atrophy with

CSF biomarkers using equation 1, which includes the interactions

between the continuous and categorical measures of CSF Ab42,

between the continuous and categorical measures of CSF

tau, between CSF Ab42 (categorical) and CSF tau (categorical),

and between CSF Ab42 (categorical) and CSF tau (continuous):

AD � associated atrophy5b0 1b1ðCSF Ab42Þ
1b2ðAb statusÞ
1b3ðAb status3CSF Ab42Þ
1b4ðCSF tauÞ1b5ðtau statusÞ
1b6ðtau status3CSF tauÞ
1b7ðtau status3Ab statusÞ
1b8ðCSF tau3Ab statusÞ
1bcovariatesðAge; Sex;APOE4Þ1 e

Equation 1

Here, AD-associated atrophy denotes the z scores of AD sig-

nature cortical thickness or hippocampal volume. CSF_Ab42 and
CSF_tau denote the continuous measures of CSF Ab42 and CSF

tau, respectively. Ab_status and tau_status were categorical-

defined as positive if CSF Ab42 #500 pg/mL and CSF tau

$500 pg/mL, respectively, and negative if CSF Ab42 .500

pg/mL and CSF tau ,500 pg/mL, respectively.17 Age, sex, and

APOE genotype (the presence vs absence of e4 allele) were used as
covariates. The interactions were first tested and reported if con-

firmed. After any detected interaction involving Ab_status or
tau_status, relationships between AD-associated atrophy and

Figure 1 Topography of AD signature

Surface maps of cortical thickness were compared between cognitively normal (CN) individ-
uals (n 5 100) who were negative for CSF Ab42 (.500 pg/mL) and CSF tau (,500 pg/mL)
and individuals with Alzheimer disease (AD) (n 5 20) who were positive for either CSF Ab42

(#500 pg/mL) or amyloid imaging with Pittsburgh compound B (mean cortical binding poten-
tial $0.18) using a general linear model. A group difference map (AD , CN) was thresholded
at a vertex-level p , 0.001 and cluster size .100 mm2 after adjustment for age, sex,
presence of APOE e4 allele, and scanner type (3T Trio vs 1.5T Vision). The map is displayed
on the semi-inflated cortical surface of the FreeSurfer average brain with light gray regions
representing gyri and dark gray regions representing sulci.

Table 2 Demographic characteristics of
cognitively normal participants

No. 188

Mean age (SD), y 73 (6)

Age range, y 65–92

Sex, % male 41

Mean education (SD), y 16 (3)

APOE genotype, % e41 36

Mean MMSE score (SD) 29 (1)

Mean cognitive composite z score (SD)

Episodic memory 0.14 (0.97)

Executive function 0.16 (0.60)

Visuospatial 0.25 (0.76)

Semantic 0.09 (0.70)

CSF biomarker

Mean Ab42 (SD), pg/mL 565 (269)

Mean tau (SD), pg/mL 376 (206)

Abbreviations: Ab 5 b-amyloid; MMSE 5 Mini-Mental State
Examination.
Raw scores of neuropsychological tests were standardized
to z scores using a sample of individuals (age 5 74.5 6 8.6
years; education 5 14.8 6 3.2 years, n 5 310) from the
Knight Alzheimer’s Disease Research Center who were
enrolled as Clinical Dementia Rating (CDR) 0 and never pro-
gressed to CDR .0 on subsequent annual follow-up. For
each cognitive domain, composite z score was obtained
by averaging the z scores across individual tests included
in this domain. MMSE scores range from 30 (best) to 0
(worst).
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CSF biomarker were assessed separately within individuals

who were positive or negative for the involved biomarker using

equation 2:

AD2 associated atrophy5b0 1b1ðCSV Ab42Þ
1b2ðCSF tauÞ
1bcovariatesðAge; Sex;APOE4Þ1 e

Equation 2

Multiple regression models were used to assess whether cog-

nitive measures were associated with AD signature cortical thick-

ness, hippocampal volume, CSF Ab42, and CSF tau in CN

individuals. Specifically, composite scores of each cognitive mea-

sure (i.e., episodic memory, executive function, visuospatial, and

semantic) were used as dependent variables separately. For each

model, AD signature cortical thickness, hippocampal volume,

CSF Ab42, and CSF tau were analyzed individually to determine

which of them explained a significant portion of the variance (i.e.,

R2). Furthermore, the 4 independent variables were examined

recursively to determine which one explained a significant addi-

tional portion of the variance (i.e., increase in R2 or ΔR2) after

accounting for the other 3. All models included age, sex, educa-

tion, and APOE genotype (the presence vs absence of e4 allele) as
covariates. Analyses were implemented using SPSS (version 21.0;

IBM Corp., Armonk, NY) with a statistical threshold for

significance of p , 0.05, corrected for multiple comparisons

for equation 1.

RESULTS Associations of AD signature cortical thickness

with CSF Ab42 and CSF tau in CN individuals. Analyses
of cohort 2 using equation 1 found interactions
between CSF Ab42 (continuous) and Ab status
(categorical) (p 5 0.02), and between CSF tau
(continuous) and tau status (categorical) (p 5

0.01), but not between Ab status and tau status
(p 5 0.84), and not between CSF tau and Ab status
(p5 0.53) regarding AD signature cortical thickness
(figure e-1A). Since observed interactions suggested
that the relationship between AD signature and CSF
Ab42 (continuous) was different regarding Ab sta-
tus and that the relationship between AD signature
and CSF tau (continuous) was distinct regarding tau
status, AD signature–CSF biomarker relationships
were analyzed separately within biomarker-negative
or -positive group using equation 2. Within the
CSF Ab42-positive (#500 pg/mL, n 5 104) and
CSF Ab42-negative (.500 pg/mL, n5 84) groups,
the relationship between CSF Ab42 and AD
signature cortical thickness was not found (both
p $ 0.13) after adjusting for age, sex, APOE
e4, and CSF tau. An inverse relationship was
observed between CSF tau and AD signature
cortical thickness in the CSF tau-positive group
($500 pg/mL, n 5 46) (partial h2 5 0.15, p 5

0.01), but no relationship was seen in the CSF
tau-negative group (,500 pg/mL, n 5 142) (p 5

0.84) after adjusting for age, sex, APOE e4, and CSF
Ab42 (table e-1).

Associations of hippocampal volume with CSF Ab42 and

CSF tau in CN individuals. Analyses of cohort 2 using

equation 1 revealed an interaction between CSF
Ab42 and Ab status (p 5 0.01), but not between
Ab status and tau status and not between Ab status
and CSF tau (both p $ 0.71) regarding the hippo-
campal volume. Neither main effects of CSF tau or
tau status nor the interaction between them was
observed (all p $ 0.30) for the hippocampal volume
(figure e-1B). Since hippocampal volume was differ-
entially associated with CSF Ab42 (continuous) ac-
cording to Ab status, as indicated by the presence of
CSF Ab42–Ab status interaction, we analyzed the
hippocampal–CSF Ab42 association separately
within the CSF Ab42-negative or -positive group
using equation 2. A positive relationship was seen
between CSF Ab42 and hippocampal volume in
the CSF Ab42-positive group (#500 pg/mL)
(partial h2 5 0.07, p 5 0.009), but not in the
CSF Ab42-negative group (.500 pg/mL) (p 5

0.79) after adjusting for age, sex, APOE e4, and
CSF tau (table e-2). Results are presented in
appendix e-3 regarding evaluation of the choice of
CSF biomarker cutoffs for studied relationships.

Associations of cognitive performance with AD signature

cortical thickness, hippocampal volume, CSF Ab42, and

CSF tau in CN individuals. AD signature cortical thick-
ness, hippocampal volume, CSF Ab42, and CSF tau
were first analyzed individually regarding each cogni-
tive composite (episodic memory, executive function,
visuospatial, and semantic) after controlling for age,
sex, education, and APOE e4. Hippocampal volume
or CSF Ab42 explained a portion of the variance in
episodic memory (R2 5 0.02, p 5 0.03, and R2 5

0.03, p 5 0.02, respectively). After accounting for
each other, AD signature cortical thickness, and
CSF tau, CSF Ab42 explained an additional portion
of the variance in episodic memory (ΔR2 5 0.02, p5
0.03) while hippocampal volume was not noteworthy
(ΔR2 5 0.02, p 5 0.07). Episodic memory had no
relationship with AD signature cortical thickness or
CSF tau (both p$ 0.58). AD signature cortical thick-
ness explained some of the variance in visuospatial
performance (R2 5 0.02, p 5 0.03) and continued
to account for the same amount of variance after con-
trolling for hippocampal volume, CSF Ab42, and
CSF tau. Visuospatial performance had no association
with hippocampal volume, CSF Ab42, or CSF tau
(all p $ 0.25). Neither executive nor semantic com-
posite scores had any notable relationship with AD
signature cortical thickness, hippocampal volume,
CSF Ab42, or CSF tau (all p $ 0.10).

DISCUSSION Our work demonstrates that increased
CSF tau was related to AD signature cortical thinning
but not reduced hippocampal volume in CN individ-
uals with higher CSF tau levels. In contrast, decreased

Neurology 84 March 24, 2015 1257

ª 2015 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.



CSF Ab42 was associated with reduced hippocampal
volume but not AD signature cortical thinning in CN
individuals with lower CSF Ab42 levels. In particular,
the effect of increased CSF tau or decreased CSF
Ab42 was not attributed to age, sex, and APOE gen-
otype. In addition, AD signature cortical thinning
was associated with lower visuospatial performance.
Reduced CSF Ab42 was related to poorer perfor-
mance on episodic memory.

AD-like brain atrophy parallels amyloidosis in pre-
clinical AD.2–4 However, the pathophysiologic corre-
lates of Ab-independent atrophy remain unclear. Our
work shows that AD-like neurodegeneration (i.e., AD
signature cortical thinning) has a direct relationship
with abnormal biomarker of tau pathology. More-
over, the topography of AD signature largely parallels
the initiation (entorhinal) and early progression (pos-
terior cingulate and temporal neocortex) of neurofi-
brillary tangles.25 This topographic correspondence
suggests that the observed CSF tau–cortical atrophy
association may reflect tangle-related neurodegenera-
tion in the brain. This finding also indicates that the
refined AD signature can detect early neurodegenera-
tion in preclinical AD.

Studies of autopsy24 and transgenic mice26 postu-
late that Ab mediates the effect of tau on neurode-
generation, with tau-related neurodegeneration more
prevalent in individuals with higher Ab burden than
in those with lower Ab burden. We assessed this the-
ory within the entire cohort but found no significant
difference in the association of CSF tau and AD sig-
nature cortical thickness with respect to Ab status
(i.e., CSF Ab42-positive vs CSF Ab42-negative). A
secondary analysis within the CSF tau-positive group
showed that a significant association of CSF tau with
AD signature cortical thickness was seen in CSF
Ab42-positive but not CSF Ab42-negative individu-
als (data not shown). However, the difference in the
CSF tau–AD signature association remained nonsig-
nificant regarding Ab status within the CSF tau-
positive group. The present observation may provide
some preliminary evidence in support of the view that
cortical neurodegeneration results from the synergis-
tic effect of Ab and tau.23,24,27 Further work assessing
this view with more sensitive and specific measure of
tau pathology (e.g., tau imaging tracer) is needed.

Longitudinal studies have observed an accelerating
decline in visuospatial ability in CN individuals who
subsequently developed AD dementia compared with
those who remained cognitively unimpaired.28 The
present result suggests a pathophysiologic correlate
for the previous observation by showing that visuo-
spatial decline is explained by subtle cortical neuro-
degeneration that at least is partly linked to tau
pathology. In addition, we observed that lower
performance on episodic memory is related to Ab

deposition or hippocampal atrophy, the former con-
sistent with several recent reports29,30 but not others.3

Notably, after accounting for each other, the effect
of Ab on memory remained significant while the rela-
tionship with hippocampal atrophy was marginal.
This result suggests that the impact of Ab on memory
may be independent of its effects on neurodegenera-
tion in CN individuals. The mechanisms underlying
observed Ab-related lower memory performance
remain to be explored.

Overall, our data suggest that Ab and tau are pref-
erentially associated with spatially distinct neurode-
generation during the preclinical phase of AD.
Specifically, Ab deposition alone may be sufficient
for the atrophy in the hippocampus but not AD sig-
nature regions, which instead is related to tau pathol-
ogy, or likely the mediation of Ab on tau. These
results not only agree with the emerging view of exis-
tence of “Ab-dependent” and “Ab-independent”
pathways to preclinical AD,2–4,31–33 but also stress that
the spatial distribution of the different pathways
needs to be considered. In addition, our work dem-
onstrates that memory and nonmemory domains may
be differentially affected by Ab and neurodegenera-
tion. This result explains several recent observa-
tions27,34 that the joint presence of amyloidosis and
neurodegeneration may be required for the emer-
gence of clinical symptoms of AD.

Our work has limitations. We observed the associ-
ation between higher CSF tau and AD signature
cortical thinning after adjusting for age (and other
confounders). However, age adjustment may be
unable to completely remove the aging effect that is
associated with tau pathology and cortical atrophy.
Longitudinal studies are needed to estimate the extent
to which observed CSF tau-related AD signature atro-
phy is specific to AD.
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