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Abstract

Many infectious diseases arise from co-infections or re-infections with more than one geno-
type of the same pathogen. These mixed infections could alter host fithess, the severity of
symptoms, success in pathogen transmission and the epidemiology of the disease. Trypa-
nosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability
often correlated with its genetic diversity. Here, we developed an experimental approach in
order to evaluate biological interaction between three T. cruzi isolates belonging to different
Discrete Typing Units (DTUs Tclll, TcV and TcVI). These isolates were obtained from a re-
stricted geographical area in the Chaco Region. Different mixed infections involving combi-
nations of two isolates (Tclll + TcV, Tclll + TcVI and TcV + TcVI) were studied in a mouse
model. The parameters evaluated were number of parasites circulating in peripheral blood,
histopathology and genetic characterization of each DTU in different tissues by DNA hybrid-
ization probes. We found a predominance of TcVI isolate in blood and tissues respect to
Tclll and TcV; and a decrease of the inflammatory response in heart when the damage of
mice infected with TcVI and Tclll + TcVI mixture were compared. In addition, simultaneous
presence of two isolates in the same tissue was not detected. Our results show that biologi-
cal interactions between isolates with different biological behaviors lead to changes in their
biological properties. The occurrence of interactions among different genotypes of T. cruzi
observed in our mouse model suggests that these phenomena could also occur in natural
cycles in the Chaco Region.

PLOS ONE | DOI:10.1371/journal.pone.0119866 March 19, 2015

1/13


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119866&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.agencia.mincyt.gob.ar
http://www.agencia.mincyt.gob.ar

@' PLOS ‘ ONE

T. cruzi: Biological Interactions in a Mouse Model

Background

Advances in molecular typing techniques show that many infectious diseases may arise from
co-infections or re-infections with more than one genotype of the same pathogen. In these mixed in-
fections the co-infecting parasites may be interacting among each other within the same host deter-
mining host fitness, severity of disease symptoms, parasite transmission successful rate and
epidemiology of the disease [1]. Various mechanisms can cause interactions between parasite species
or among different genotypes of the same species within an individual host. For example, parasites
can infect the same target site within a host and directly interact among each other by interference
competition, or indirectly by resources competition or via the host immune system [2].

In general, biological interactions between protozoan parasites have been divided into two
main groups: those who involved parasites belonging to the same species and the ones that
occur between closely to distantly related different species [3]. In this sense, several research
studies have reported mixed infections in Leishmania spp [4,5,6], Plasmodium spp [7,8,9], Try-
panosoma brucei and Trypanosoma congolense [10,11,12].

Trypanosoma cruzi is the etiologic agent of Chagas disease, an illness that affects several million
people in Latin America and still remains an important public health problem in certain endemic
areas of Argentina. This parasite shows a high genetic variability which has been the basis to clas-
sify it into six Discrete Typing Units (DTUs), Tcl to TcVI [13]. In addition to this genetic diversi-
ty, in vitro and in vivo T. cruzi infection models showed a high biological variability among
different genotypes of T. cruzi [14,15,16,17,18,19]. Although it is supposed that genetic and bio-
logical diversities of the parasite are essential to determine the clinical course of Chagas disease,
specific associations between particular clinical manifestations and a determined lineage have not
been clearly demonstrated [20]. Furthermore, the host genetics and its ability to establish an im-
mune response to control the infection are very important in the outcome of the disease [21].

The consequences of mixed infections by different T. cruzi DTUs have been studied in animal
models using different laboratory strains. It has been demonstrated in vivo that the tissue tropism of
one T. cruzi genotype could change in the presence of another genotype of a different DTU [22,23].
Even more, the histopathological damage and the intensity of the inflammatory process resulting of
these co-infections also present remarkable variations [24,25]. Other studies involving T. cruzi
mixed infections showed that the parasite load in peripheral blood could be altered either increasing
or decreasing according to the co-infecting strains [26,27,28]. Even the outcome of specific chemo-
therapy has been proven to be altered by these events of concomitant infection by T. cruzi [26,29].

In several geographical areas of the Southern Cone of America, the occurrence of natural mixed
infections by different genotypes of T. cruzi have been widely reported in humans [20,30,31,32,33],
in wild and domestic animals [34,35] and in the vector Triatoma infestans [34,36].

In a previous work we described the different biological properties displayed by three select-
ed isolates obtained from the Chaco region of Argentina and belonging to DTUs TcIII, TcV
and TcVI [17]. These isolates have the particularity of circulating sympatrically in a restricted
geographical area; therefore, here we describe the biological outcome resulting of in vivo exper-
imental dual-mixed infections with these T. cruzi strains. Our working hypothesis is the exis-
tence of biological interactions among different T. cruzi isolates in the vertebrate host.

Methods
Ethics statement

All animal protocols adhered to the National Institutes of Health (NIH) “Guide for the care
and use of laboratory animals” and were approved by the Animal Ethics Committee of the
School of Health Sciences, National University of Salta (Nu 014-2011) [37].
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Trypanosoma cruzi isolates

Different Trypanosoma cruzi isolates were examined in the present work. These isolates were
obtained from Las Leonas settlement (W 61° 39 8.7”, S 27° 01’ 49”), located in the South-west
of Chaco Province, Argentina. The protocol of obtaining samples was approved by the Bioeth-
ics Committee of the Faculty of Health Sciences of the National University of Salta, Argentina
(Resolution N°052-10). The inhabitants signed an informed consent form before sampling at
each house. This study did not involve endangered or protected species.

Parasites were recovered from the feces of either, naturally infected Triatoma infestans or
insects used for xenodiagnosis of mammalian hosts. The isolates were identified as DTUs TcIII
(LLO51-P24), TcV (LL014-1) and TcVI (LL040-1) by Multilocus Sequence Typing (MLST)
technique, using a typing scheme proposed by Lauthier and cols, [38]. These parasites were
maintained in a vector transmission model developed by Ragone and cols, (2012). Hereafter,
each isolates will be named according to the corresponding DTU.

Experimental infection in mice

Six groups of 4 male C57BL/6] mice (one month old) were inoculated by intraperitoneal (i.p.)
route with parasites recovered from the feces of infected insects and each infected group was
followed during 30 days after infection. Prior infection, the feces were visualized microscopical-
ly, in order to distinguish epimastigotes, metacyclic and intermediate forms (parasites whose
morphology is intermediate between epimastigotes and tripomastigotes); according to Kollien
and cols. [39]. The final inoculation dose was adjusted according to the amount of metacyclic
and intermediate forms. For single infections with TcIII, TcV or TcV1, 10 parasites were inoc-
ulated per mouse. Instead, 5x10° parasites from each isolate were inoculated for dual mixed in-
fections (TcIII + TcV, TclIl + TcVI and TcV + TcVI). We decided to maintain constant the
final dose used in both, single and dual-mixed infections, in order to avoid possible differences
due to the final number of inoculated parasites. For this reason, we examined in previous assays
if the two doses, 10* and 5x10° parasite/mouse of each isolate show differences in the biological
parameters to be studied. No statistical differences were observed between these doses (data
not shown). Control groups inoculated with Phosphate Buffer Saline (PBS) were included in
the experiment. Animal care guidelines adopted by the Health Sciences Faculty, National Uni-
versity of Salta, Argentina, were strictly followed.

Biological parameters evaluated

Parasitemia. Fresh blood from inoculated animals was collected in heparinized glass capil-
lary pipettes by sectioning the tail tip under slight anesthesia. Ten microliters (ul) of blood
were placed between slide and cover slip and the number of parasites per 100 fields was re-
corded microscopically (400X) at different time points.

Histopathology. Animals were sacrificed at 30 days post infection (dpi) by exposure to
halothane, and cardiac and skeletal muscle samples were collected. Tissue samples were divided
into two parts; one was stored at -80°C for DNA extractions and the other part was fixed in
10% formalin and processed using routine histological techniques. Serial histological sections
(3 to 5 pm thick), were stained with hematoxylin-eosin and observed under microscope (50,
200 and 400X). Quantification of the inflammatory response (IR) was assessed taking into ac-
count the presence and intensity of inflammatory foci. Criteria were set according to the size
and number of foci in order to quantify the inflammatory process in different organs. Thus, IR
was blindly quantified as null, mild, moderate and severe as reported in Ragone and cols. [17].
In some cases intermediate values for the inflammatory response were admitted: mild to mod-
erate and moderate to severe.
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Detection of T. cruzi DNA in blood and tissue samples

Peripheral blood was obtained at 30 dpi from each animal (350 ul) and mixed with 700 pl of
guanidine buffer. DNA extractions were performed from 100l of the mixture blood-guani-
dine buffer by using the phenol-chloroform method. DNA extractions from a skeletal and car-
diac muscle sample (obtained at 30 dpi) were performed using a kit (PureLink Genomic DNA
Kit, Invitrogen). Subsequently, PCR amplification of 330 bp corresponding to minicircle hy-
pervariable regions (mHVR) was performed using primers 121 (5-AATAATGTACGGG(T/
G)GAGATGCATGA-3’) and 122 (5-GGTTCGATTGGGGTTGGTGTAATATA-3’) [40].
Amplification was performed in a MJR PTC-100 thermocycler (M] Research, Watertown,
MA, USA). The reaction products were visualized in a 2% agarose gel stained with

ethidium bromide.

Identification of T. cruzi Discrete Typing Units in biological samples

Detection of each isolate was carried out by hybridization with specific nHVR-kDNA non-ra-
dioactive probes in blood and tissues samples taken at 30 dpi. The probes were constructed
using DNA from isolates LL051-P24 (TcIII), LL0O55R3cl2 (TcV) and CL-Brener (TcVI). The
primers for probe construction were CV1 (5-GATTGGGGTTGGAGTACTAT-3") and CV2
(5°-TTGAACGGCCCTCCGAAAAC-3’) which produced a 290-bp fragment. Restriction sites
for Sau96I and Scal which allow elimination of the minicircle constant region of these PCR
fragments were included in the sequence of these primers [41]. PCR fragments were further
digested with the restriction endonucleases obtaining a 250-bp final product. The specificity
of each generated DNA probe was evaluated in our laboratory by Southern blot analysis
against different 330-bp mHVR PCR products of several T. cruzi isolates belonging to the dif-
ferent DTUs [42]. Briefly, Southern blot analysis was performed using 10 pl of each 121-122
PCR product. Samples were subjected to electrophoresis, transferred to Hybond N + nylon
membranes (Roche Diagnostics) and cross-linked with UV light to fix the DNA. The mem-
branes were pre-hybridized for at least 30 minute at 42°C and individually hybridized with the
generated probes. Labeling of the probe and DNA hybridization were performed according to
the protocol supplied with the PCR-DIG DNA-labeling and detection kit (Roche Applied Sci-
ence, USA).

For assessing the limit of detection of the technique, T. cruzi DNA of the different isolates
involved in the study was analyzed individually and combined. The limit of the technique in
detecting single infections was 0.1 fg/pl for TcIIl and TcV DTUs, and 0.5 fg/ul for TcVI DTU.
Whereas that in the mixed infections we evaluated different proportions of one isolate com-
bined with other isolate, from 0.1 fg/pl to 0.9 fg/ul. As a result of this experiment, the detection
limit for TcV was 0.1 fg/pl in the TcIIl + TcV and TcV + TcVI mixtures; while the detection
limit for TcIII was 0.5 fg/pl in TcIIl + TcV and TcIII+TcVI. Finally the detection limit for
TcVI in the mixtures TcV+TcVI and TcIlI+TcVI was 0.5 fg/pl.

Statistical analysis

Differences in the number of parasites in peripheral blood and inflammatory response among
groups were evaluated using one-way variance analysis (ANOVA). To analyze inflammatory
response, numeric values for the different levels were assigned: null: 0, mild: 1, mild to moder-
ate: 2, moderate: 3, moderate to severe: 4, and severe: 5. Statistical analysis was performed
using the software GraphPad Prism V5.00.
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Results

Predominance of the more virulent isolate in peripheral blood and DTU
detection by mHVR-kDNA hybridization

As in a previous study Ragone and cols. [17] in this work a marked difference was well estab-
lished respecting the parasitemia between the three different isolates. The TcV isolate presented
non-detectable parasitemia in fresh blood mounts. However, PCR assays corroborated infec-
tion by this isolate. On the other hand, circulating parasites in peripheral blood were detected
in mice inoculated with TcIII and TcVI, being the parasitemia of TcVI significantly higher
than the one obtained by TcIII (p = 0,013). When co-infection models (TcIII + TcVI, TcIII +
TcV and TcV + TcVI) were considered, the pattern of parasitemia was the one corresponding
to the more virulent DTU in all cases (Figs. 1A-C). In the co-infection involving TcIII + TcVI
and TcV + TcV], the parasitemia was the one described for TcVI alone. In addition, in the mix-
ture TcIII + TcV, a behavior equal to TcIII was observed. As expected, there were
non-significant differences between TcVI vs. Tclll + TcVIand TcVI vs. TcV + TcV; neither
between TcIII vs. TcIII + TcV. No statistical comparison between TcV vs. TcIIl + TcV or TcV
+ TcVI was carried out since no circulating parasites were detected for TcV isolate.

Finally, in blood samples collected at 30 days post-infection we applied specific mHVR-
kDNA hybridizations to determine the circulating DTU in single and dual infections. TcVI
was identified in all the infection formulas involved (TcIII + TcVI and TcV + TcVI mixtures)
(Fig. 2B), while TcIII was only detected in the mixture TcIII + TcV (Fig. 3B). Even though no
visible parasites were detected for TcV, positive PCR could be obtained (Fig. 4); however, no
hybridization signal for TcV was detected in the mixture TcV + TcVI. In addition, for the
blend TcV + TclII, only T¢cIII could be detected (Fig. 3B). Table 1 shows the number of mice
with positive signal for each specific probe.

Histopathological damage and its association with the different infecting
DTUs

When single infections were considered, different patterns of tissue damage were observed.
TcVIisolate induced significantly more histological lesions in skeletal muscle (p = 0.0026) and
heart (p<0.0001) than TcIII and TcV. In addition, TcIII produced significantly more damage
in heart than TcV (p<0.0001). Briefly, TcVI induced severe damage in heart and moderate
damage in skeletal muscle; additionally amastigote nests and fiber homogenizations were
found in both tissues in animals infected with this isolate. On the other hand, TcIII induced
mild-moderate lesions in heart and skeletal muscle and no amastigote nests or cellular alter-
ation were found; while TcV induced only mild lesions in the analyzed tissues.

However, in our co-infecting models a moderate damage in heart and skeletal muscle was
found in the mixtures TcIII + TcVI and TcV + TcVI, while in mice infected with TcIII + TcV,
mild histological lesions were observed in both tissues. In addition, amastigote nests were
found in heart and skeletal muscle of animals infected with TcVI + (TcIIl or TcV).

In cardiac muscle, no differences were detected between the damage induced by TcIII or by
TcIII + TcVI co-infection; however, the intensity of the lesions induced by this mixture were
significantly milder respect to the damage induced by TcVI (p = 0,0003) (Fig. 5A). Instead, the
histological lesions in heart of animals infected with TcV + TcVI were statistically different
from the ones detected in animals infected with TcV alone (p = 0.002) but not to the produced
by TcVI (Fig. 5B). The same results were observed when the damage in heart of mice infected
with TcIII + TcV was compared to the one of mice infected with TcIII; in this case, no
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parasitemia of TcV isolate was sub-patent.

doi:10.1371/journal.pone.0119866.9001

statistical differences between single and mixed infections were detected; however, the lesions
induce by the mixture were significantly different than the induce by TcV alone (p = 0,001)
(Fig. 5C).

In skeletal muscle, the intensity of the lesions found in mice infected with TcIII + TcVI and
TcV + TcVI mixtures was intermediate respect to each single infection; however, no statistical
differences were detected (Fig. 5A and 5B). In TcIII + TcV co-infection the damage in skeletal
muscle was equal to the one detected in single infections with TcIII or TcV (Fig. 5C).

Heart and muscle tissues were analyzed by PCR and posterior DTU specific hybridization
assays. T. cruzi DNA was detected in both, skeletal and cardiac muscle, in all experimental
groups. In addition, we found the presence of the isolates TcVI or T¢Il in the mixed infections
(Fig. 2C and D and Fig. 3C and D). Again, although TcV probe worked correctly (Fig. 4), no
hybridization against positive PCR samples of animals infected with TcV + TcIII or TcV +
TcVI mixtures was observed. DTU detection by hybridization tests is summarized in Table 1.

Discussion

Here, we developed an experimental approach in order to evaluate if mixed infections involv-
ing T. cruzi isolates, belonging to different DTUs and collected from a restricted area in the
Chaco Region of Argentina, display evidence of biological interaction in a mouse model. In
this work we analyzed the parasitemia and histological damage in heart and skeletal muscle of
C57BL/6] mice infected with a combination of the different isolates analyzed. The intrinsic
properties of the isolates under study were as follow: TcVI isolate induces high parasitemia, se-
vere histological damage in heart and moderate lesions in skeletal muscle. On the other hand,
the TcIII isolate induces less parasitemia than TcVI, and mild-moderate histological damage in
heart and skeletal muscle. Finally TcV isolate induces sub-patent parasitemia and mild lesions
in the analyzed tissues. When TcVI was combined, either with TcIII or TcV, only the parasite-
mia pattern of TcVI was observed, suggesting that TcVI isolate predominates over TcIII and
TcV isolates. This result was supported by the fact that only DNA of TcVI was detected in the
co-infection models involving this isolate and TcIII or TcV. Similar results were obtained for
the mixture TcIII + TcV, where the observed parasitemia pattern corresponded to the TcIII
pattern and only DNA of TcIII was detected by the probes. This result could be due to several
factors: the survival of one isolate in peripheral blood could be related to different mechanisms
associated with its ability to escape from the host immune system [28], or due to a selective
process within the host cells in favor of a given DTU [43]. On the other hand, in a previous
work we reported that the isolates TcIII and TcVI induce a higher serological response than
TcV [17]; in consequence we believe that in a mixed infection event between TcV + (TcIII or
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Fig 2. Southern blot analyses using the TcVI (CL-Brener) probe. Each panel shows the electrophoretic
pattern of minicircle regions and kDNA transferred to a nylon membrane. Panel A, lanes Tclll, TcV, TeVI,
TcV* and TcVI* correspond to DNA of parasite culture from LL0O51-P24 (DTU Tclll), LLO55R3cI2 (DTU TcV),
CL-Brener (DTU TeVI), LLO14-1 (DTU TcV*) and LL040—-1 (DTU TcVI*) respectively; lane 1—4: blood (B),
skeletal muscle (SM) and heart (H) samples of mouse infected with TcVI isolate. The asterisk as superscript
of the DTU indicates DNA sample from culture of the same inoculated isolate. Panel B, C and D: blood,
skeletal muscle and cardiac muscle, respectively, of animals infected with TcV + TcVI (Lane 5-8) and Tclll +
TcVI (Lane 9-11).

doi:10.1371/journal.pone.0119866.9002

TcVI), the isolate TcV may be susceptible to the immunological response induced by TcIII or
TcVI. Therefore, TcV availability in the host would be reduced, or even eliminated from the
host, and not detected at least by the technique herein applied.

When cardiac muscle samples of mice infected with the mixtures TcIII + TcVIand TcV +
TcVI were analyzed; only presence of TcVI isolate was confirmed by hybridizations assays.
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Fig 3. Southern blot analyses using the Tclll (LL051-P24) probe. Each panel shows the electrophoretic
pattern of minicircle regions and kDNA transferred to a nylon membrane. Panel A: lane Tclll, TcV, TeVI, TeV*
and TcVI* correspond to DNA of parasite culture from LL0O51-P24 (DTU Tclll), LLO55R3cI2 (DTU TcV), CL-
Brener (DTU TcVI), LLO14—1 (DTU TcV*) and LLO40—1 (DTU TcVI*) respectively; and lane 1—4: blood (B)
and skeletal muscle (SM) samples of mouse infected with Tclll isolate. The asterisk as superscript of the DTU
indicates DNA sample from culture of the same inoculated isolate. Panel B, C and D: blood, skeletal muscle
and cardiac muscle, respectively, of animals infected with Tclll + TcV (Lane 5-8) and Tclll + TcVI (Lane
9-11).

doi:10.1371/journal.pone.0119866.9003

However, cardiac lesions induced by TcIII + TcVI mixture were the same that the induced by
TcIIl isolate alone, suggesting that the presence of TcIII, perhaps in an early infection, modifies
the alterations that TcVI alone could cause in the co-infected mice, in spite of the TcIII isolate
is not detected in this mixture. On the other hand, skeletal muscle samples of animals co-
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Fig 4. Southern blot analyses using the TcV (LL055R3cI2) probe. Electrophoretic pattern of minicircle
regions and kDNA transferred to a nylon membrane. Lane Tclll, TcV, TcVI, TcV* and TcVI* correspond to
DNA of parasite culture from LL051-P24 (DTU Tclll), LLO55R3cI2 (DTU TcV), CL-Brener (DTU TcVI), LLO14—
1 (DTU TcV) and LL040-1 (DTU TcVI), respectively; and lane: 1-6 blood (B) skeletal muscle (SM) and
cardiac muscle (H) of mouse infected with TcV isolate.

doi:10.1371/journal.pone.0119866.9004

infected with TcVI + (TcV or TclII) showed intermediate values of damage compared to single
infections, indicating that the combination of two isolates could modify the expected lesions in
this tissue. These results could be due to the ability of each isolate to infect cells since it is
known that T. cruzi is capable of infecting a wide variety of host cells, but the persistence of this
parasite in cardiac and skeletal muscles depends on its ability to enter in the host cell and in the
interaction with this [44]. On the other hand, it has been reported that the co-infections be-
tween different strains of T. cruzi trigger both protective inflammatory immunity and regulato-
ry immune mechanisms that attenuate the damage in heart in a mouse model [25].

Based on these observations we evidence biological interaction in our murine co-infection
model. However, it is important to note that the prevalence of either one isolate or the another
could vary according to the infection period in which blood samples are taken [25,28,45] as
well as the analyzed tissue [22].

Table 1. mHVR-kDNA hybridization results for the detection of individual DTUs in mixed infections.

MIXTURES SAMPLES Probe Tclll Probe TcV Probe TcVI
Telll + TeV Blood 3/4 0/4 -
Skeletal muscle 1/4 0/4 -
Heart 4/4 0/4 -
Telll + TeVi Blood 0/3* - 3/3
Skeletal muscle 0/3* - 2/3*
Heart 0/2* - 1/2*
TcV + TeVi Blood - 0/4 4/4
Skeletal muscle - 0/4 3/4
Heart - 0/4 4/4
The values correspond to mice with positive hybridization for a specific probe in relation to the total of mice inoculated with the mixture.
* indicate one or two sample lost.
doi:10.1371/journal.pone.0119866.t001
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Fig 5. Histological damage in mice infected with single and mixed infections. Inflammatory response observed in skeletal muscle and heart samples of
experimental groups inoculated with: (A) Tclll, TcVI or Tclll + TeVI, (B) TcV, TcVlor TeV + TeVland (C) Telll, TeV or Telll + TeV. Different letters above error
bars indicate statistical difference (p<0.05).

doi:10.1371/journal.pone.0119866.9005

In spite of several studies demonstrating the presence of biological interactions within mam-
malian hosts [23,25,27,28,46], these works analyzed strains of T. cruzi from very different geo-
graphical regions. In the present work, the three T. cruzi isolates studied were obtained in the
same temporal period, in the same geographical area and simultaneously introduced into the
animal model.

Is important to note that the DTUs studied in this work have epidemiological relevance,
since the TcV and TcVI are more prevalent in domestic cycles [34,42,47,48], whereas the TcIII
DTU was found in domestic animals [34]. It is clear that the extrapolation of co-infection results
obtained from animal models to the natural occurrence of the phenomena in other hosts should
be carefully considered. We emphasize the predominance of TcVI in the mixture TcV + TcVI
since this mixture was found in human blood samples in endemics areas of Argentina [42,49].

Many studies have shown that the biological differences between closely related DTUs are
smaller than the biological differences among genetically divergent DTUs [14,15,19,27]. How-
ever, an interesting question that emerges from this work is why two genetically close strains of
T. cruzi, as TcV and TcVI, exhibit opposite biological properties. Even the biological interac-
tion between them could lead to the predominance of one isolate (TcVI) over the other (TcV),
at least during the acute phase and in our specific experimental model. In this sense we believe
that the interaction with the host immune response, as well as the mechanisms related to the
regulation of the acute inflammatory response and the proteomic expression of different DTUs
could also be contributing to the pathology of each isolate and its interactions.

Conclusions

The results presented in this work show that biological interactions among different genotypes
of T. cruzi from the Chaco Region do occur in our experimental model. Consequently, our re-
sults demonstrate that the biological interaction between T. cruzi strains in a mammal host is
phenomenon that could be occurring in natural cycles. However, to examine this hypothesis
field studies involving natural hosts should be performed.
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