
RESEARCH ARTICLE

Genome Wide Analysis of Flowering Time
Trait in Multiple Environments via High-
Throughput Genotyping Technique in
Brassica napus L.
Lun Li1,2☯, Yan Long3,4☯, Libin Zhang1,2☯, Jessica Dalton-Morgan5, Jacqueline Batley5,
Longjiang Yu1, Jinling Meng3, Maoteng Li1*

1 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China,
2 Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and
Technology, Wuhan, China, 3 National Key Lab of Crop Genetic Improvement, Huazhong Agricultural
University, Wuhan, China, 4 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences,
Beijing, China, 5 School of Agriculture & Food Sciences, The University of Queensland, Brisbane, Australia

☯ These authors contributed equally to this work.
* limaoteng426@hust.edu.cn

Abstract
The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide

markers and the detection of underlying genetic factors is important not only for oilseed pro-

ducers around the world but also for the other crop industry in the rotation system in China.

In previous studies the low density and mixture of biomarkers used obstructed genomic se-

lection in B. napus and comprehensive mapping of FT related loci. In this study, a high-den-

sity genome-wide SNP set was genotyped from a double-haploid population of B. napus.
We first performed genomic prediction of FT traits in B. napus using SNPs across the ge-

nome under ten environments of three geographic regions via eight existing genomic pre-

dictive models. The results showed that all the models achieved comparably high

accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a

large-scale mapping of FT related loci among three regions, and found 437 associated

SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes

tagged by the associated SNPs were enriched in biological processes involved in the forma-

tion of flowers. Epistasis analysis showed that significant interactions were found between

detected loci, even among some known FT related genes. All the results showed that our

large scale and high-density genotype data are of great practical and scientific values for B.
napus. To our best knowledge, this is the first evaluation of genomic selection models in B.
napus based on a high-density SNP dataset and large-scale mapping of FT loci.

PLOS ONE | DOI:10.1371/journal.pone.0119425 March 19, 2015 1 / 18

OPEN ACCESS

Citation: Li L, Long Y, Zhang L, Dalton-Morgan J,
Batley J, Yu L, et al. (2015) Genome Wide Analysis of
Flowering Time Trait in Multiple Environments via
High-Throughput Genotyping Technique in Brassica
napus L.. PLoS ONE 10(3): e0119425. doi:10.1371/
journal.pone.0119425

Academic Editor: Paul Hohenlohe, University of
Idaho, UNITED STATES

Received: August 14, 2014

Accepted: January 13, 2015

Published: March 19, 2015

Copyright: © 2015 Li et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The work was supported by National Key
Technology R&D Program (2010BAD01B03), the
National Natural Science Foundation of China
(31171582, 31071447) and the New Century Talents
Support Program of the Ministry of Education of
China (NCET110172). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0119425&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction
Rapeseed (Brassica napus), as one of the leading sources of livestock feed, vegetable oil and bio-
fuel, is the second most prominent oil seed crop in the world, supplying approximately 62.4
million tonnes of oilseed production per year. China is the top rapeseed oil producer in the
world, yielding about 4.8 milion tonnes of oil each year (2009–2011, http://faostat.fao.org/).
Rapeseed was planted mainly as a rotational crop with rice, maize, cotton or some vegetables in
China [1]. The characteristic of flowering time (FT) of rapeseed is not only crucial for its own
reproduction and crop yields, but also sequentially influencing the sowing time of the other
crops in the crop rotation system. Therefore it’s necessary to predict the phenotypic traits for
untested samples and to deploy the breeding lines with maximal benefit under given geograph-
ic conditions in China.

Recent efforts have been made in mapping genomic locations related with agronomic traits
(including FT) in B. napus [2–8], which allows the breeders for the potential of marker-assisted
selection (MAS) in crop breeding. Various marker systems (such as STS, SSR, etc.) were em-
ployed in most of these studies, which hindered the comparison of the marker locations that
were detected in different studies [4]. Furthermore, in some work, only the markers within can-
didate genes were analyzed [2, 5], which led to the neglect of novel functional variants. There-
fore, a comprehensive and unbiased scan of the genome is imperative.

Single nucleotide polymorphisms (SNPs) are the simplest and most prevalent type of mark-
ers across the genome. To date, with the availability of the abundance of SNPs, high-through-
put technologies of simultaneously genotyping high-density have been applied to plants to
unravel the genetic effects of agronomical traits and significant findings were observed, such as
in Arabidopsis thaliana [9, 10], rice [11], maize [12] and barley [13]. However, most of these
QTL mapping studies (including genome-wide association studies) used univariate ap-
proaches, which test the association of each single genotyped marker and phenotypes and se-
lection of the markers exceeding significance levels. These univariate approaches tend to detect
the common variants with large effects, filtering out the small effects due to the multiple test
corrections. However, most agronomic traits are affected by a large number of variants with
modest effects [14]. Moreover, the identified QTLs are reported to have low reproducibility
across environments. Besides, most of the models are contingent on the additive effects, omit-
ting epistasis effects. Therefore, the pre-identified set of identified markers has limited capacity
in predicting phenotypic traits. Hence, MAS without mapping QTLs in advance is of
great necessity.

To remedy the drawbacks of the conventional MAS, genomic selection (GS) was proposed
by Meuwissen et al. to predict phenotypic values based on all available markers across the en-
tire genome [15], which achieves higher accuracy by considering small effects. Since this semi-
nal paper, a number of predictive models have been developed, including statistical models and
machine learning methods[16]. According to the type of regression functions, existing statisti-
cal methods for GS mainly fall into two categories: linear and non-linear semi-parametric. For
the linear model, the phenotypic data is predicted as the summation of marker effects derived
from a parametric linear regression. Because the markers incorporated in the regression out-
number the sample size enormously, a shrinkage estimation procedure is needed, depending
on the types of which the linear model can be further classified into penalized methods, such as
the most frequently-used ridge regression best linear unbiased prediction (RR-BLUP), and the
Bayesian ones, including Bayesian LASSO, BayesA and BayesB. In contrast to linear models,
non-linear semi-parametric models, such as reproducing kernel Hilbert spaces (RKHS)[17],
are capable of capturing non-additive effects. A number of sophisticated machine learning
tools such as random forest (RF)[18] and supporting vector regression (SVR)[19] have been
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applied in genome-based phenotype prediction [20–22], for their ability to recognize non-line-
ar pattern between markers and phenotypes for robust and higher performance. GS has been
applied to a variety of species, including livestock, human [23–28] and plant species [29–38],
and the predictability of various models on complex traits have been addressed in maize [37,
39, 40], wheat [41, 42], sugarcane[35], dairy and beef bulls [21, 43, 44], rice [45], Arabidopsis
thaliana [46], pine [47] and mice [48]. However, to our best knowledge, diverse GS algorithms
have never been evaluated in B. napus.

In this study, we employed an unbiased and high-density genotyping platform on a relative-
ly large dataset (including 1674 SNPs genotyped from 190 DH lines of cross of Tapidor×Nin-
gyou7). Various types of GS models (linear models with penalized or Bayesian shrinkage
paradigm, one semiparametric model and three machine learning methods) were applied to
our data to evaluate the practicability of genome prediction of FT in B. napus, and assessment
of their predictive ability. RF and Multivariate Adaptive Regression Spline Models (MARS)[49]
were subsequently applied to the estimated breeding values of FT to unravel the genetic basis
(including epistasis) of FT. RF is robust to outliers and can handle interactions, and the SNPs
mapped by RF are good candidates for epistasis detection [50]. To demonstrate the validity of
the detected SNPs, SNPs that were mapped to previously discovered QTLs, along with the
genes tagged by the associated SNPs, were searched and compared with curated FT genes. Fi-
nally, to comprehensively understand FT related biological processes and functions, a function
analysis was performed on the candidate genes. To our best knowledge, this is the first large-
scale mapping of FT related loci via high-throughput technology, and first evaluation of GS
models in B. napus. These findings would facilitate the development of breeding lines with su-
perior flowering time in Chinese ecological conditions.

Materials and Methods

Genotypic and phenotypic data collection
The TN DHmapping population generated from a cross of Tapidor×Ningyou7 [51] was used
for genotype detection. One hundred and ninety DH lines were genotyped on an Illumina cus-
tomized Infinium platform which includes 5306 probes. No specific permits were required for
the described field studies. No specific permissions were required for these locations/activities,
the location is not privately-owned or protected in any way, the field studies did not involve en-
dangered or protected species. A total of 1674 polymorphic SNPs were clustered using Geno-
mestudio software. The genotype of each SNP was scored according to inhertitence from each
parent (‘A’ represents ‘Tapidor’ and ‘B’ is denoted for ‘Ningyou7’). Before genomic selection
analysis, all the samples and SNPs were subjected to a series of quality control procedures. First
of all, samples with at least 20% of SNP uncharacterized were eliminated from the datasets, re-
sulting in 182 lines left. Secondly, SNPs that could not be established in more than 10% of sam-
ples were discarded. Finally, SNPs with rare alleles (minor allele frequency< 0.05) were
excluded from the study, leaving 1,248 SNPs for the subsequent analysis. The phenotypic data
of FT in the TN DH population was collected from 10 natural environments, at 3 different re-
gions, Wuhan (E114°19´/N 30°5´, South), in Hubei province for 4 years, Dali (E109°3´/N
34°5´, North), in Shanxi province for 4 years (year 2002–2003, 2003–2004, 2004–2005, and
2005–2006), and Hangzhou, in Zhejiang province (E120°12´/ N30°16´, East) for 2 years (year
2006–2007), over a period of 4 years as described by Long et al. [3]. The linkage disequilibrium
(r2) between SNPs was calculated and visualized via the R package ‘LDheatmap’.
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Genomic selection models
Eight genomic prediction models of diverse types were used and compared in B. napus, includ-
ing two frequentist based methods: ridge regression best linear unbiased prediction (RR-
BLUP)[34] and reproducing kernel Hilbert spaces (RKHS)[17]; three Bayesian methods:
Bayesian LASSO [52], BayesA and BayesB [15]; and two machine learning methods: random
forest (RF) [18] and supporting vector regression (SVR) [19]. The details of the models have
been reviewed in [16]. Briefly, based on how the relationship between markers and phenotype
is modeled, the statistical models can be categorized as linear and non-linear model.

For linear models, the phenotypic value of the ith line of the population in a single environ-
ment is the regression of markers across the genome below:

yi ¼ mþ
Xp

j¼1

bjxij þ �i; ð1Þ

where yi is the phenotype, μ is the intercept, xij is the genotype of the j
th maker of the ith line

(coded as −1 and 1 for genotype inherit from Tapidor or Ningyou7 respectively), βj is the re-
gression coefficient of marker j and εi is the error term. To estimate the parameters, the most
popular way is to minimize the residual sum of squares:

RSS ¼
Xn

i¼1

ðyi � m�
Xp

j¼1

bjxijÞ2

For GS, the markers (p) usually largely outnumber the lines (n), which would bring in the
curse of dimension. In RR-BLUP, an L2-norm regularization term is introduced as a tradeoff
between the complexity of the model and the fitness to the training data. The loss function is

denoted as:L ¼ RSSþ l
Xp

j¼1

b2

j , where λ is the regularization parameter. RR-BLUP shrinks all

the markers to the same extent, regardless of the effect size of the markers. In contrast, the
Bayesian methods perform differential shrinkage over markers. These Bayesian shrinkage esti-
mations methods differed in the prior distribution put on the markers. Bayesian LASSO[52]
(BL) assigns a double exponential (DE) distribution conditioned on λ to all marker effects. BL
is the original LASSO in Bayesian context, using an L1-norm penalty, and the loss function

is:L ¼ RSSþ l
Xp

j¼1

jbjj. Unlike RR-BLUP, BL puts large shrinkage on small effects, and small

shrinkage on large effects. BayesA assumes the marker effects are sampled from a scaled t-dis-
tribution; and BayesB utilizes a mixture prior density, assuming a proportion (π) of markers
have zero effects, while the rest of the markers follow the prior distribution used in BayesA. For
BayesA and BL, all the markers are assumed to have some effects, a few with large effects and
many with small effects; while for BayesB, many makers are presumed to have zero effects and
a few markers have large effects.

Unlike multiple linear regression models, semi-parametric and non-parametric models are
capable of accommodating non-additive genetic effects on phenotypes, such as epistasis inter-
actions. RKHS[17] models non-linear relationships between markers and phenotype in a high-

dimension feature space. Here we used a Gaussian kernel:Kij ¼ exp � Dij

y

� �2
� �

, where Dij is the

Euclidean distance between line i and j, and θ controls the decay rates.
SVR can be viewed as a specific learning process of RKHS. In this study, the ‘ε-insensitive’

SVR was used, which only considers absolute values of residuals larger than ε.

Genomic Analysis of Flowering Time Trait in B. napus

PLOSONE | DOI:10.1371/journal.pone.0119425 March 19, 2015 4 / 18



RF[18] is an ensemble of classification or regression decision trees, built on randomization
of the sample in the training set and each splitting node on the trees is selected from a random
subset of variables. In this way, all markers and all possible interactions are taken into account,
which hold the promise of capture a large number of genetic interactions [53].

All the analysis was performed in R statistical computing environment. RR-BLUP and
RKHS were implemented in the ‘rrBLUP’ package [54]. ‘BGLR’ package was used to perform
all three the Bayesian models[55]. RF was carried out via the ‘randomForest’ packages[56]. The
supporting vector regression (SVR) was implemented in the ‘e1071’ package[57]. Two kernels
were tested (Gaussian and linear). A grid search was used for tuning the parameters. Due to the
computational intensity of SVR a tuning process was used.

Predicting breeding values
To verify the feasibility of our chip data in genomic selection of candidates in B. napus, we first
applied the two most frequently used methods RR-BLUP and RKHS to the FT trait in B. napus,
collected from ten environments. For both models, genetic factors and errors were taken as
random effects, and year-site combination as covariates. After that, Genome Breeding values
under each environment were predicted and compared via all the statistical and machine-
learning models mentioned above.

The performances of predictive models were evaluated using a 10-fold cross-validation
(CV) scheme. Namely, the lines were divided into 10 disjoint subsets of equal sizes, and each
subset was sequentially taken as a testing-set while the remaining ones were used to train the
predictive model using different methods. This CV process was repeated ten times and the
mean Pearson correlation between the observed and predicted trait value were calculated as the
accuracy. For each run of CV, the same training and test set were used for all the models to
guarantee a fair comparison.

The overall genomic estimated breeding values (GEBVs) were predicted using RKHS with
the genetic effect and error as random effects and site-year combination as a covariate imple-
mented in the R package ‘rrBLUP’. The site-specific (north, south and east) breeding values
were also measured respectively, with year as a covariate included.

Selection of Associated SNPs
Unlike conventional QTL approaches, RF scores the importance of SNPs, considering multi-
loci and the interactions among them, so it’s capable of discovering SNPs with small effects
and with strong epistasis effects. For each RF model, at each split one third of the SNPs were
tried and 1000 trees were grown. The SNPs were ranked in descending order, based on average
importance scores obtained from 20 runs. The SNPs highly related with FT genetic effects were
selected in a recursive inclusion process. First, the top 5% of important SNPs were used, and
another 5% SNPs were added in the model iteratively. For each model, mean square error
(MSE) was recorded. This process was repeated 20 times, and the set of SNPs with minimal
MSE was selected [58]. As seen in a previous study [59], random forest tends to overweigh cor-
related predictor variables, which is common for genotyping data. To avoid the bias towards
clustered SNPs, a pruned set of SNPs (r2 < 0.7) was investigated.

The directions of SNPs on flowering time were then examined. The average flowering time
(in days) of lines with either genotype (A or B) at every single identified SNP were calculated
respectively and compared in each environment. The allelic direction of a SNP is considered
consistent when the genotype representing early blossom is the same in the environments that
it is significant.
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Epistasis effects mapping
Similar to the procedure used in [50], the SNPs identified based on RF were then input into a
Multivariate Adaptive Regression Spline (MARS) Model to identify epistasis effects. MARS has
been proven powerful in detecting SNP-SNP interactions[49], but its efficacy could be limited
by a large number of irrelavent SNPs. And RF is a useful tool in selection of associated SNPs,
taking the interactions among SNPs into account. Therefore, the integration of these two meth-
ods would provide more advantages[50]. We used the ‘earth’ package to apply MARS. Ten
runs of 10-fold cross-validation were used to determine the interactions.

Annotation of SNPs
Due to the lack of available annotations for the B. napus genome, we adopted the function in-
formation of the homologues from well-annotated genomes like Arabidopsis thaliana to better
understand the associated SNPs. First of all, BLASTX analysis of the probes of the SNPs against
RefSeq proteins of Arabidopsis thaliana was performed, and only the hits with expected values
< 1×10−6 were retained. Among 1, 248 SNPs used in this study, 566 SNPs could be annotated
in this manner. A large number of SNPs are located in the intergenic regions, so their function-
al information would not be identified by BLASTX against coding genes. Due to linkage dis-
equilibrium, one SNP tags multiple genes in a region and therefore the flanking genes of a
significant SNP may also be the candidates associated with FT. To further pinpoint the candi-
date genes, we mapped the probes to the Brassica rapa genome using bowtie2 [60], which is an
efficient and widely used aligner to map sequencing reads to the reference genome, and has no
upper limit in read length. The probes were inputted into bowtie2 as reads. The B. rapa genome
sequence was downloaded from Brassica database (BRAD, http://brassicadb.org/brad/). The
results showed that 70.97% of the 682 probes left map at least once on the B. rapa genome and
279 SNPs have genes in vicinity (1 kb). The corresponding orthologs were searched among
RefSeq proteins Arabidopsis thaliana via BLASTP (expect values< 1×10−6). Finally, the genes
represented by the rest of the 403 SNPs were searched by BLASTX to the NCBI non-redundant
protein sequences (nr), and hits with expected values< 1×10−6 were retained. In this stage 40
SNPs were annotated.

Known flowering time genes/proteins
The list of curated flowering time related proteins was gathered from multiple sources. We first
searched the NCBI protein database with ‘flowering time’ as query. The flower gene in B. rapa
was downloaded at http://brassicadb.org/brad/flowerGene.php. Genes of ‘Flowering time path-
way’ were downloaded from the wikiPathways website at www.wikipathways.org (Pathway:
WP2312).

Function analysis
DAVID (http://david.abcc.ncifcrf.gov/home.jsp) was used for functional enrichment analysis.
The functional clusters of significant Gene Ontology terms among candidate genes were sur-
veyed via DAVID Functional Annotation Clustering Tools[61]. And GO terms at level 5 were
used to find more specific functional annotations of candidate genes.

Mapping detected SNPs to previously detected QTLs
Primers were designed to some SNPs, based on the resource sequences. PCR amplification was
done in the TN DHmapping population, and the SNP markers re-mapped in the TNDH link-
age map. QTL mapping analysis of FT traits was performed to see whether the SNP markers
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were located in the QTL confidence interval. The parameters were the same as in previously de-
scribed papers [3].

Results

Evaluation of breeding values in B. napus
To verify that our genotype data is sufficient for genomic prediction of the FT trait in B. napus
and to evaluate the genomic prediction models two conventional genomic prediction models
RR-BLUP and RKHS were first applied to SNP chip and FT trait data collected across ten envi-
ronments. The former method only considers additive genetic effects and the latter one is capa-
ble of capturing non-additive effects. In both models, the genetic effects and errors were taken
as random effects with the site-year combinations as covariates. Ten runs of 10-fold cross-vali-
dation scheme were utilized to evaluate the overall performance (see methods). The accuracy is
calculated as the mean Pearson correlation coefficients between the predicted trait values and
average FT across all the environments. Relatively high accuracies were achieved for both
methods (0.737 and 0.760 respectively), and the better performance of RKHS indicated that
non-additive effects exist.

We further made a comprehensive evaluation of eight genomic prediction models, includ-
ing five statistical algorithms (including RR-BLUP, RKHS and Bayesian methods) and two
powerful machine-learning methods. To simplify the comparison, all the GS models were test-
ed in each of the environments via 10-fold cross-validation, and the mean Pearson correlation
coefficients of predicted and observed FT were calculated as prediction accuracy. All of the
methods achieved relatively high and comparable accuracies (0.297~0.751) (Table 1). The two
frequencist methods (RR-BLUP and RKHS) performed nearly equivalently, with accuracies as
0.638 and 0.639 respectively. Among linear models, the models with Bayesian shrinkage esti-
mation (average accuracies of 0.639, 0.645 and 0.644 respectively for BL, BayesA and BayesB)
were slightly better than the penalized RR-BLUP. For machine learning methods, SVR with
Gaussian kernel was somewhat superior, with an average accuracy of 0.651 and performing the
best in three environments; while SVR with linear kernel was relatively inferior (0.593). It's also

Table 1. The performance of various genome-based trait prediction methods applied to flowering time in multiple environments.

Environments RR-BLUP RKHS Bayesian LASSO BayesA BayesB Random Forest SVM (linear kernel) SVM(Gaussian kernel)

E7 0.708 0.704 0.694 0.690 0.692 0.630 0.653 0.702

N3 0.660 0.645 0.661 0.675 0.669 0.596 0.681 0.671

N4 0.620 0.595 0.631 0.641 0.652 0.614 0.586 0.644

N6 0.623 0.634 0.641 0.623 0.624 0.618 0.551 0.628

N7 0.711 0.716 0.704 0.705 0.713 0.674 0.686 0.700

S3 0.622 0.639 0.620 0.639 0.638 0.609 0.537 0.634

S4 0.750 0.748 0.748 0.749 0.749 0.714 0.715 0.751

S5 0.398 0.402 0.403 0.408 0.400 0.443 0.297 0.428

S6 0.667 0.680 0.675 0.683 0.669 0.622 0.610 0.686

S7 0.620 0.624 0.617 0.632 0.633 0.586 0.614 0.662

Average 0.638 0.639 0.639 0.645 0.644 0.611 0.593 0.651

The best prediction model for each environment in the data set is in bold. The performance was evaluated via 10 runs of 10-fold cross-validation and the

prediction accuracy was the mean Pearson correlation coefficients of predicted and observed FT.

Finally, for further association study, genomic estimated breeding values (GEBVs) were predicted for each geographic region using RKHS with year as a

covariate, respectively. RKHS implemented in the R package ‘rrBLUP’ is capable of handling multiple environments.

doi:10.1371/journal.pone.0119425.t001
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worth noting that the performances varied in different environments and the environments in-
fluence the GS model similarly. Namely, all the methods achieved their best accuracies in S4
(0.714~0.751) and the worst accuracies in S5 (0.297~ 0.443), and the performance in other en-
vironments altered accordingly (Fig. 1). Our results showed that no GS models fitted all the en-
vironments and each model generated the best accuracy in at least one environment, whilst
SVR with Gaussian kernel was advantageous in three environments. It’s interesting to see that
the inferior model SVR with linear was the optimal method in S4.

SNPs associated with Flowering time
SNPs that contribute to the GEBVs of FT trait in B. napus were detected by random forest,
which is capable of capturing interactions and scoring the importance of the SNPs and has
been used in feature selections. To reduce spurious associations due to accidental factors, the
associations of SNPs with estimated breeding values (EBVs) derived from each geographic site
trait values were tested respectively, instead of FT trait values of each site-year combination.
The observed strong correlations among SNPs (Fig. 2) would result in preference over correlat-
ed SNPs. Thus, to eliminate this bias, a set of pruned SNPs was studied. In total, 437 SNPs
represented by 47 tag SNPs in the pruned SNP set were detected across three geographic sites
(S1 Table), and the number of associated SNPs varied in different sites, for example, 184 SNPs
in north, 279 in south and 344 in east, surrogated by 24, 32 and 32 tag SNPs respectively
(S2 Table).

A large number of SNPs detected in one site were found to be significant in another site. As
shown in S1 Fig., about 29.5% of the detected SNPs were found to be replicable across all sites,

Fig 1. The comparison of the accuracies achieved by eight exiting genome selectionmodels in each
of the environment. Each node indicates mean accuracies of 10 runs of 10-fold cross-validation, and the
ranges stand for ± standard deviation. The prediction accuracy was calculated as the Pearson correlation
coefficient of predicted and observed FT.

doi:10.1371/journal.pone.0119425.g001
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while 44.6% of SNPs were identified in only in one geographic condition, which indicated that
the environmental conditions could influence FT traits. Among the shared SNPs, UQna-
pus0669 was the most prominent one, ranking the first in all three sites. Searching the genes
bearing or surrounding UQnapus0669 and SNPs in its proxy found two curated FT genes.
UQnapus0669 was located in a gene region with similar sequence with CAM4 ‘calmodullin 4’,
involved in the flowering time pathway (wikiPathway: WP2312) and UQnapus0104 repre-
sented by UQnapus0669 resided in a homologue of another known FT gene, AP1 ‘Floral home-
otic protein’. Some other FT genes were also found tagged by the detected SNPs (Table 2). For
instance, PHYE ‘phytochrome E’ (a homolog of ‘phytochrome B’ in Aquilegia formosa),
AT1G68920 ‘transcription factor bHLH49’ (a homolog of established FT gene CIB5) and GRF8
‘14-3-3-like protein GF14 kappa’ (participating in flowering time pathway) were tagged by
three site sharing SNPs (UQnapus4804, UQnapus1445 and UQnapus5584 respectively). It’s in-
teresting to see that two known FT genes, AGL24 ‘MADS-box protein’ and AT2G01820 ‘recep-
tor-like kinase TMK3’ (a homolog of flowering time protein CAM31941 in Lolium perenne)
were only tagged by two eastern site-specific SNPs.

Fig 2. Pairwise linkage disequilibrium (r2) of genomicmarkers in each chromosome.

doi:10.1371/journal.pone.0119425.g002
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Besides association analysis, the 1674 polymorphic SNP markers were combined with some
common SSR markers to construct a linkage map (S3 Table), and FT associated SNPs were in-
cluded in the linkage map. It was found that 31 significant SNPs were mapped in the linkage
map. Further QTL mapping showed that there were 19 flowering time related QTL detected.
Among the QTLs, 6 QTLs were detected for North environment, 12 QTLs were detected for
South environment, and 1 for East environment. Comparison of the FT associated SNPs with
mapping QTLs, found that 23 SNPs could be detected in both QTL mapping and our method
(Fig. 3), which meant that these SNPs were real genetic loci controlling flowering time.

We then examined whether the genotypes of the associated SNPs show the same allelic di-
rection across environments, i.e. lines that flower earlier have the same allele at a specific SNP
under all the environmental conditions. Among 437 identified SNPs, 72.5% (317 SNPs) have
the consistent early blossom genotypes. For instance, samples that had inherited the allele from
‘Tapidor’ at UQnapus0052 tend to blossom earlier than the ones with allele from ‘Ningyou7’ in
all ten environments (Fig. 4A), which is opposed to UQnapus0097 (Fig. 4B). For the majority
(259) of the consistent SNPs, the allele ‘B’ from Ningyou7 is associated with early flowering.

Functional enrichment analysis for candidate genes
To further dissect the function of the significant SNPs, we obtained the genes bearing or near
the associated SNPs by searching for the probes’ homolog or the genes within a 1 Kb window
around the mapped probe on B. rapa genome as candidate genes (see material and methods).
In total, 285 candidate genes were observed. The functional enrichment analysis on the candi-
date genes was performed via DAVID functional annotation clustering tool[61]. Three

Table 2. Associated SNPs tagging known FT genes.

SNP Chromosome Coordinate Homologs Comments

UQnapus0104 C5 7700765 ref|NP_177074.1| Floral homeotic protein APETALA 1
[Arabidopsis thaliana]

AP1, Known FT gene, contain MADS-box,
shared in all sites

UQnapus0669 unassigned C
genome

270314394 ref|NP_176814.1| calmodulin 4 [Arabidopsis thaliana] CAM4, involved in flowering time pathway,
(WikiPathways: WP2312), shared in all sites

UQnapus4804 A1 7194790 ref|NP_193547.4| phytochrome E [Arabidopsis
thaliana]

PHYE, a homolog of a flowering time gene
‘phytochrome B’ in Aquilegia formosa,
shared in all sites

UQnapus1109 A1 4708098 ref|NP_195034.2| AGC (cAMP-dependent, cGMP-
dependent and protein kinase C) kinase family protein
[Arabidopsis thaliana]

AT4G33080, homolog of flowering locus
‘AT2G20470-like kinase’ in Capsella bursa-
pastoris

UQnapus1445 A2 17249324 ref|NP_177058.1| transcription factor bHLH49
[Arabidopsis thaliana]

AT1G68920, also a homolog of known FT
gene CIB5 in Arabidopsis thaliana, shared in
all sites

UQnapus5584 A3 29135636 ref|NP_001190621.1| 14-3-3-like protein GF14 kappa
[Arabidopsis thaliana]

GRF8, involved in flowering time pathway,
(WikiPathways: WP2312), shared in all sites

UQnapus0974 unassigned C
genome

349256190 ref|NP_568567.1| Dof zinc finger protein DOF5.2
[Arabidopsis thaliana]

CDF2, involved in flowering time pathway,
(WikiPathways: WP2312)

UQnapus4390 C7 18411249 ref|NP_194185.1| MADS-box protein AGL24
[Arabidopsis thaliana]

AGL24, involved in floral whorl
development, only in east

UQnapus0057 A3 20996981 - Located near Bra000393, a homolog of
AGL20, which is a flower gene

UQnapus0054 A1 2984710 - Located near Bra029305, a homolog of LFY,
which is a flower gene

UQnapus5172 A6 22522149 ref|NP_178291.1| receptor-like kinase TMK3
[Arabidopsis thaliana]

AT2G01820, a homolog of flowering time
protein CAM31941 in Lolium perenne, only
detected in east

doi:10.1371/journal.pone.0119425.t002
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functional groups were found significant with enrichment scores> 1.3 (equivalent to p-value
0.05) (Fig. 4C, for more details see S4 Table). The result shows that, the genes are mainly in-
volved in signal transduction, such as hormone-mediated signaling (GO:0009755, fold-enrich-
ment of 2.27, and Fisher’s exact test P = 1.45×10−2); tissue developments, especially flower
development (GO:0009908, fold-enrichment of 3.16, P = 7.45×10−3); and regulation of expres-
sion (such as GO:0045449~regulation of transcription, fold-enrichment of 1.41 and P =
2.79×10−2); and these three functional clusters comprise about 5.6%, 3.5% and 21.8% of the
candidate genes respectively. To further characterize the functional differences between the
SNPs detected common to all geographic sites and specific to only one or two regions, we fur-
ther checked the function annotation of genes tagged by SNPs detected in all three regions and
the ones only reproducible in one or two regions respectively by using DAVID Functional

Fig 3. SNPs located in previously found QTLs. Five linkage groups were showed with the lines, and the black short lines represented the QTLs. The blue
triangles showed the SNPs located in the confidence interval of QTLs.

doi:10.1371/journal.pone.0119425.g003
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Annotation Table Tool, and again performed function enrichment analysis on these two sets of
genes (S5 Table). For region-common genes, three of them (AP1 tagged by UQnapus0104,
AT5G10510 represented by UQnapus1789, AT4G29010 tagged by UQnapus5033) were anno-
tated with GO term GO:0009908~flower development. The top two groups, involved in
mRNA processing and regulation of transcriptions, however neither of these functional clusters
were found significant (enrichment score> 1.3). As for region-specific candidate genes, genes
of leaf morphogenesis and phyllome development are enriched (with enrichment score of
1.45).

Epistasis effects on FT
The epistasis interactions between SNPs associated with flowering time were detected for each
geographic site by MARS[50]. To facilitate computation, only tag markers in the pruned set
that were identified in the previous session were analyzed and only 2-order interactions were
examined. In total, 9, 17 and 16 pairs of SNPs were detected with epistasis effects on FT in
north, south and east environment, respectively, and SNPs tagging known FT genes were de-
tected interacting with each other (S6 Table). Contrary to the extensive overlap among the
markers detected in each site, none of SNP pairs were shared in all of the sites, and only one
pair ‘UQnapus0669 × UQnapus1545’ was replicated in two sites (north and south). As shown
in the previous section, UQnapus0669 is the most significant marker for all three sites repre-
senting two known FT genes, while UQnapus1545 and its representing the markers were

Fig 4. Illustration of genotype effects of associated SNPs on FT and functional clusters of genes tagged by detected SNPs. (a) Samples with allele
‘A’ at UQnapus0052 tend to blossom earlier than the ones with allele ‘B’ (with t test P-value from 3.47 ×10−9 to 3.95 ×10−1). (b)while at UQnapus0097, lines
with allele ‘B’ are more likely to flower sooner (with t test P-value from 1.23 ×10−7 to 1.44 ×10−1). (c) Functional clusters with enrichment score> 1.3
(corresponding to p value of 0.05)

doi:10.1371/journal.pone.0119425.g004
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tagging SKIP1 ‘F-box protein SKIP1’ and AT1G53100 ‘core-2/I-branching beta-1,6-N-acetyl-
glucosaminyltransferase-like protein’. UQnapus0669 was revealed to interact with SNPs that
were also in/near known FT genes. For instance, the interaction of UQnapus0669 and UQna-
pus3878 was found in the north, the latter of which represented Dof zinc finger protein
DOF5.2; UQnapus0669 also interacted with UQnapus5033, a proxy for PHYE ‘phytochrome
E’; the epistasis effects of UQnapus0669 and UQnapus4810 was identified in the east, repre-
senting AGL24 ‘MADS-box protein’. Two other pairs of known FT genes showed epistasis ef-
fects in east, such as AT1G68920 ‘transcription factor bHLH49’ and PHYE ‘phytochrome E’,
tagged by UQnapus1450 and UQnapus5033, and LFY and GRF8 ‘14-3-3-like protein GF14
kappa’, represented by UQnapus0238 and UQnapus1789.

Discussion
We assessed the predictability of various types of GS models, including statistical models (line-
ar models with penalized or Bayesian estimation), semi-parametric model and machine learn-
ing methods. Our results showed that no apparent divergence of accuracies was observed
among these GS models, which agreed with previous studies [21, 35, 46]; while the SVR with
Gaussian kernel performed better to some extent, confirming the previous conclusions [21,
22]. Among the linear models, the models with Bayesian shrinkage estimation (BL, BayesA and
BayesB) were better than penalized regression RR-BLUP, accordant with [62]. RR-BLUP
shrinks all the marker effects homogeneously; while the Bayesian methods allow different levels
of shrinkage over marker effects by allowing variance of its own, which is more realistic. Al-
though BL was supposed to outperform RR-BLUP, for our results, no increase of accuracy was
observed in our results, probably due to the large LD span in the B. napus genome. Semi-
parametric model RKHS were presumed to perform better by taking cryptic non-additive ge-
netic effects in consideration; however, in our results RKHS did not outperform linear models.
The possible reason is that the marker density is relatively low, despite of high accuracies
achieved. With a higher density panel, the semi-parametric methods are more accurate [31].
SVR with Gaussian kernel seemed more appealing with the highest average accuracy, as in
[21].

Previous studies showed genetics and environment interaction took up a large proportion
of phenotypic variation [3]. And the large influence was observed on the predictability of GS
models, and the patterns of accuracies were similar for different models. None of the models
perform the best across all the environments, except the SVR with Gaussian kernel was some-
what superior (performing the best in multiple environments). It’s interesting to see that RF
has the best predictability in S4. It’s probably because the extreme climate condition leads to a
large number and even high order of marker interactions, which can be captured by RF.

To enhance the GS accuracies, a higher marker density would be used. Although it would
bring troubles to linear models, due to the colinearity among markers, it would be beneficial
for non-linear models [37]. Another possible improvement would be using whole genome se-
quence data. Recent studies showed that whole genome sequence data holds the promise to im-
prove the genomic prediction [63, 64], for including causal variants. As shown in the results,
the performance of GS models varied across the environments, therefore borrowing informa-
tion from similar environment is another potential improvement [37].

QTL mapping based on the EBVs derived from the replicates would remove some spurious
signals due to accidental factors. As showed in the results, there were a large proportion of
overlaps among three sites, while among the SNPs detected in each environment by univariate
method only ten were common for all ten environments (data not shown). Compared with 46
SNP loci detected by our method, the efficiency of QTLs mapping was lower[3]. Some known
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FT genes were tagged by our detected SNPs, demonstrating the practicability of SNP genotyp-
ing data in QTL mapping. In fact, we used three mapped SNPs to do confirmation work by
transferring them to common markers. The result showed that the transferred SNP markers,
UQnapus5530, UQnapus1399 in A2 linkage group and UQnapus5751 in A10 linkage group
could be re-mapped in the linkage map and located in the QTL confident interval (S2 Fig.).
That mean the SNPs screened by our method were real ones. Due to the lack of thorough anno-
tation of B. napus, we selected the FT candidate genes by mapping the probes to well-annotated
genomes such as A. thaliana and B. rapa. And among these candidate genes, some genes are es-
tablished FT genes (such as AP1, CAM4 and GRF8) and the others are the homologs of re-
ported FT genes in other species (like PHYE, AT2G01820 and AT4G33080), and the results
implicated these genes’ involvement in flowering process. It’s intriguing to see that now all the
curated FT genes (or homologs) are reproducible under all environmental conditions, such as
LFY and CDF2. Especially, AGL24 and AT2G01820 are solely detected in east site, indicating
flowering is susceptible to geographic and climate conditions. And according to functional
analysis, three functional clusters were found significantly enriched among candidate genes.
Although, a number of candidate genes would be missed since only small surrounding regions
of SNPs were considered, the well-established FT related biological processes (such as flower
development and meristem development) were reproduced, indicating our method works for
the unannotated genome. And among these functional groups, transcription regulation took
up a largest amount of detected candidate genes (28.1%), showing the association of essential
function for maintenance with flowering. Moreover, the overrepresented signaling transduc-
tion annotation among candidate genes implies flowering is influenced by multiple factors. We
tried to address different characteristics between region-common and region-specific SNPs. Al-
though no significant functional clusters were found among region-common genes, the top
two groups, involved in mRNA processing and regulation of transcriptions, somewhat suggest
that the common genes mainly exert essential function for maintenance. On the contrary, re-
gion-specific candidate genes are enriched for genes of phyllome development significantly
and flower development marginally, implying that the blossom process is more likely affected
by environment. Almost no overlap was found among epistasis interactions among three re-
gions, indicating epistasis effects are more prone to be impacted by environments.
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