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Abstract

Background

Research suggests that altered interregional connectivity in specific networks, such as the

default mode network (DMN), is associated with cognitive and psychotic symptoms in

schizophrenia. In addition, frontal and limbic connectivity alterations have been associated

with trauma, drug use and urban upbringing, though these environmental exposures have

never been examined in relation to DMN functional connectivity in psychotic disorder.

Methods

Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder,

83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Poste-

rior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional

connectivity within the DMN. DMN functional connectivity was examined in relation to group

(familial risk), group × environmental exposure (to cannabis, developmental trauma and

urbanicity) and symptomatology.

Results

There was a significant association between group and PCC connectivity with the inferior

parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Com-

pared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu

and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to

that of controls and patients. No significant associations were found between DMN connec-

tivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant
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interactions between group and environmental exposures in the model of PCC

functional connectivity.

Discussion

Increased functional connectivity in individuals with (increased risk for) psychotic disorder

may reflect trait-related network alterations. The within-network “connectivity at rest” inter-

mediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms.

The association between familial risk and DMN connectivity was not conditional on

environmental exposure.

Introduction
The disconnection hypothesis postulates that both cognitive and pathophysiological alterations
contribute to dysfunctional integration of a distributed network of brain regions in schizophre-
nia [1,2]. Dysfunctional integration is often addressed with the concept of functional connec-
tivity, which refers to the temporal correlation between two (or more) spatially distinct brain
regions [3]. Functional connectivity can be examined in diverse networks. The default mode
network (DMN) is active during rest and deactivated when goal-directed behavior is required
and is thought to play a role in appraising external and internal stimuli, self-referential and re-
flective processes. Regions representing the DMN consist of the medial prefrontal cortex
(MPFC), the posterior cingulate cortex (PCC) extending into the precuneus (PCu), the lateral
parietal cortices, lateral temporal cortex, hippocampus (HC) and parahippocampal gyrus
(PHG) [4,5]. Structural and functional alterations in these regions have been associated with
schizophrenia [6]. In addition, the DMN has been implicated in self-referential processing
[7,8], perspective-taking, self-other judgments [9,10], processing of agency [11] and memory
functions [12], all of which appear to be altered in individuals with psychotic disorder. Misin-
terpretations in some of these processes may contribute to the formation of positive symptoms
[8,13].

Studies on DMN connectivity in schizophrenia have shown conflicting results as to the di-
rection of associations. Both decreased, increased and mixed patterns of functional connectivi-
ty [14–20], or no significant alterations in patients with schizophrenia [21] have been reported.
Similarly, in individuals at higher than average risk for psychotic disorder (first-degree rela-
tives) both increased (in the MPFC, bilateral inferior temporal gyrus (ITG), PCu) [22–24], and
reduced functional connectivity (in prefrontal areas, PCC, PCu, ITG) [20,25,26] as well as an
absence of significant differences with respect to controls [16,21] have been reported. Taken to-
gether, most studies have shown increased connectivity in patients with schizophrenia and
first-degree relatives, though the larger studies (n = 258 and n = 799) suggest that patients have
reduced DMN connectivity and that relatives have reduced [20] or no differences [16] in DMN
connectivity with respect to controls.

(Subclinical) psychotic experiences [27] may arise from impaired monitoring or attribution
of agency, which has been associated with posterior lateral parts of the DMN [11]. DMN rest-
ing-state studies using seed-based correlation analysis found that increased connectivity be-
tween the PCC and respectively the MPFC, other PCC regions, and temporal lobe areas
including language areas [22,28] as well as decreased connectivity between the PCC and the
temporal gyrus was associated with positive symptoms [28]. Moreover, two resting-state stud-
ies using independent component analysis (ICA) found that increased medial and superior
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frontal gyrus connectivity and decreased hippocampal and inferior parietal cortex connectivity
was associated with positive symptoms [1,29]. Areas of the DMN have also been implicated in
cognitive functions such as social cognition [7] and working memory (WM) capacities [12,30],
and alterations therein have been associated with (the vulnerability for) schizophrenia [7,31–
33]. As DMN activity is suppressed during cognitive tasks, altered connectivity in rest may lead
to compromised suppression and decreased cognitive performance [1]. Indeed, studies have
shown that DMN hyperconnectivity in patients with schizophrenia and their first-degree rela-
tives was associated with reduced WM performance [22]. The relation between social cognition
(e.g., Theory of Mind) and DMN resting-state functional connectivity in psychotic disorder
has not been examined thus far.

Altered DMN connectivity may not only be conditional on genetic risk for psychotic disor-
der, but also on established environmental risk factors for schizophrenia such as cannabis use
[34], childhood trauma [35] and developmental urbanicity [36]. To date, no resting-state func-
tional connectivity studies have examined gene-environment interaction (G×E) in psychotic
disorder. Nevertheless, resting-state fMRI studies have shown that altered stress-anticipation
in individuals with a history of childhood poverty [37] and posttraumatic stress disorder
(based on early life stress) [38] was associated with reduced DMN connectivity (PCC, PCu,
PFC), whereas a task-based fMRI study in individuals showed a positive association between
urban upbringing and perigenual anterior cingulate cortex (pACC) activity [39]. In addition,
chronic cannabis use has been associated with altered resting-state PCC connectivity, but only
in subjects without psychopathology [40].

The current study tested three hypotheses. First, it was hypothesized that individuals with
(increased risk for) psychotic disorder would reveal aberrant connectivity (decreased and in-
creased) within the DMN compared to healthy controls. Second, altered DMN connectivity, es-
pecially between the PCC and MPFC, in individuals with (increased risk for) psychotic
disorder was expected to be associated with positive symptoms (i.e., hallucinations and delu-
sions) and decreased (social) cognitive functioning. Third, it was examined whether DMN
functional connectivity reflects a cerebral phenotype that is the outcome of G×E interaction in
psychotic disorder.

Methods

Participants
Data pertain to baseline measurements of a longitudinal MRI study in Maastricht, the Nether-
lands. For recruitment and inclusion criteria of patients, their siblings and healthy controls, see
[41].

The original sample comprised 89 patients with psychotic disorder, 97 siblings of patients
with psychotic disorder and 88 controls. Forty-six participants were excluded from the analyses
based on: high schizotypy (n = 3), movement (n = 8) or scanner artifacts (n = 14), smoking
cannabis prior to scanning (n = 1) and experimental issues (n = 20). This resulted in a final
sample comprising 73 patients with psychotic disorder, 83 siblings of patients with psychotic
disorder and 72 controls. The sample comprised 46 families: 25 families with one patient and
one sibling, three families with one patient and two siblings. One family with two patients, six
families with two siblings, and two families with one patient and three siblings. In the control
group, there were nine families with two siblings. In addition, 41 independent patients, 34 inde-
pendent siblings, and 54 independent controls were included.

Diagnosis was based on the Diagnostic and Statistical Manual of Mental Disorder-IV
(DSM-IV) criteria [42], assessed with the Comprehensive Assessment of Symptoms and Histo-
ry (CASH) interview [43]. Patients were diagnosed with: schizophrenia (n = 47), schizoaffective
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disorder (n = 9), schizophreniform disorder (n = 4), brief psychotic disorder (n = 2), and psy-
chotic disorder not otherwise specified (n = 11). The CASH was also used to confirm the ab-
sence of a diagnosis of nonaffective psychosis in the siblings and absence of a lifetime diagnosis
of any psychotic disorder or current affective disorder in the healthy controls. The occurrence
of any psychotic disorder in first-degree family members also constituted an exclusion criterion
for the controls. Schizotypy was assessed with the Structured Interview for Schizotypy-revised
(SIS-r) [44]. Ten controls and 16 siblings were diagnosed (lifetime) with major depressive dis-
order, but none of them presented in a current depressive state.

Before MRI acquisition, participants were screened for the following exclusion criteria: 1)
brain injury with unconsciousness of greater than 1 hour, 2) meningitis or other neurological
diseases that might have affected brain structure or function, 3) cardiac arrhythmia requiring
medical treatment, and 4) severe claustrophobia. In addition, participants with metal corpora
aliena were excluded from the study, as were women with intrauterine device status and
(suspected) pregnancy.

Ethics statement
The standing ethics committee of Maastricht University approved the study, and all the partici-
pants gave written informed consent in accordance with the committee’s guidelines and with
the Declaration of Helsinki [38]. All participants understood the information given to them
and could make an informed decision, which was verified by an experienced psychologist.
Therefore, all participants included in the study were able to give informed consent without the
use of a legal representative or guardian.

Behavioral Measures
Psychotic symptom assessment was carried out using the Positive and Negative Syndrome
Scale (PANSS) [45]. The five factor model by van der Gaag (2006) was used, dividing the
PANSS in positive symptoms, negative symptoms, disorganization symptoms, excitement, and
emotional distress [46].

Theory of Mind (ToM) was assessed using the raw scores of the hinting task. This is a sim-
ple ToM test in which the participants must infer the intention behind indirect speech. The
task has a maximum score of 20 [47].

WM was assessed using the raw scores of the arithmetic test of the Wechsler Adult Intelli-
gence Scale-III (WAIS-III) [48]. This test consists of 20 timed arithmetic problems that address
verbal comprehension and arithmetic skills.

Educational level was defined as highest accomplished level of education. Handedness was
assessed using the Annett Handedness Scale [49].

Antipsychotic (AP) medication use was determined by patient report and verified with the
treating consultant psychiatrist. Best estimate lifetime (cumulative) AP use was determined by
multiplying the number of days of AP use with the corresponding haloperidol equivalents and
summing these scores for all periods of AP use (including the exposure period between baseline
assessment for the G.R.O.U.P. study and the moment of baseline MRI scanning), using the
converting formulas for AP dose equivalents described in Andreasen and colleagues [50].

Substance use
Substance use was measured with the Composite International Diagnostic Interview (CIDI)
sections B, J and L [51]. Use of cannabis and other drugs was based on the lifetime number of
instances of drug use. CIDI frequency data on lifetime cannabis use were available for 220 par-
ticipants (4% missing data). In addition, cannabis was tested in urine (18% missing data). The
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two measures were combined into one variable, which was coded as follows: never used canna-
bis = 0, ever used cannabis = 1 (0% missing data). Data on other drug use were available for
223 participants (2% missing data). Data on cigarette smoking and alcohol use were available
for 212 participants (7% missing data) and 206 participants (9% missing data), respectively.

Childhood trauma
Childhood trauma was assessed with the Dutch version of the Childhood Trauma Question-
naire Short Form (CTQ). The short CTQ consists of 25 items rated on a 5-point Likert scale (1
= never true to 5 = very often true) inquiring about traumatic experiences in childhood. Five
types of childhood maltreatment were assessed: emotional, physical and sexual abuse and emo-
tional and physical neglect, with five questions covering each type of trauma [52]. A general
measure of childhood trauma was created by calculating the mean of the 25 items. The CTQ
data were missing for two participants (1% missing data).

Level of developmental urbanicity
A historical population density record for each municipality was generated from 1930 onwards
using the Dutch Central Bureau of Statistics (CBS) and equivalent Belgium database [53]. It
was determined where the subject lived at birth, between ages 0–4 years; between 5–9 years;
10–14 years; 15–19 years; 20–39 years; 40–59 years; and 60+ up to the actual age. For each of
these records, the average population density was computed (by square kilometer, excluding
water) of the municipality. Average population density was categorized in accordance with the
Dutch CBS urbanicity rating (1=<500/km2; 2 = 500–1000/km2; 3 = 1000–1500/km2; 4 = 1500–
2500/km2; 5 = 2500+/km2). The periods 0–4 years, 5–9 years and 10–14 years were merged to
average urbanicity exposure between 0–14 years. The latter was used as the primary variable re-
flecting developmental urbanicity exposure in the analyses. This variable was collapsed a priori
into 5 intervals (1 to 1.49 = 1; 1.5 to 2.49 = 2; 2.5 to 3.49 = 3; 3.5 to 4.49 = 4; 4.5 to 5 = 5) to re-
flect the same categories as used by the Dutch CBS [53]. Data on developmental urbanicity
were available for all participants (0% missing data).

MRI acquisition
Functional and anatomical MRI images were acquired using a 3T Siemens scanner. The func-
tional resting-state data were acquired using an Echo-Planar Imaging (EPI) sequence: number
of volumes: 200; TE: 30 ms; TR: 1500 ms; voxel size: 3.5x3.5x4.0 mm3; flip angle 90°; total ac-
quisition time: 5 min. During the scan, participants were instructed to lie with their eyes closed,
think of nothing in particular, and not fall asleep. In addition, anatomical MRI scans had the
following acquisition parameters: (1) Modified Driven Equilibrium Fourier Transform
(MDEFT) sequence: number of slices: 176; voxel size: 1 mm isotropic; TE: 2.4 ms; TR: 7.92 ms;
inversion time: 910 ms; flip angle: 15°; total acquisition time: 12 min 51 s; (2) Magnetization
Prepared Rapid Acquisition Gradient-Echo (MPRAGE; Alzheimer’s Disease Neuroimaging
Initiative) sequence: number of slices: 192; voxel size: 1 mm isotropic; TE: 2.6 ms; TR: 2250 ms;
inversion time: 900 ms; flip angle 9°, total acquisition time: 7 min 23 s. For both anatomical
scans the matrix size was 256x256 and field of view was 256x256 mm2. Two sequences were
used because of a scanner update during data collection. The MPRAGE and MDEFT are very
similar, but to prevent any systematic bias, the total proportion of MPRAGE scans (44%) was
balanced between the groups.
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Data preprocessing and analysis
Imaging data were preprocessed to account for head motion, as described by Patel et al. (2014)
[54] and Jo et al. (2013) [55] using Analysis of Functional NeuroImages (AFNI, version
2011_12_21_1014) [56] as well as the Oxford Centre for Functional MRI of the Brain Software
Library (FSL, version 5.0.4) [57,58]. The first four volumes of each resting-state data set were
removed to eliminate the non-equilibrium effects of magnetization. Preprocessing steps includ-
ed slice-time correction, motion correction, despiking of the functional data (removing artifac-
tual outliers in voxelwise time series), temporal bandpass filtering (0.02–0.1 Hz), co-
registration to structural scan, spatial normalization to standard space and spatial smoothing
(6-mm full width at half maximum Gaussian kernel). Several sources of spurious variance (nui-
sance variables) were removed from the data through linear regression: six motion correction
parameters and their first temporal derivatives, and cerebrospinal fluid (CSF) signal from ven-
tricular regions of interest.

Functional connectivity analysis. BrainVoyager QX [59] and routines in Matlab (The
Mathworks, Natick, MA, U.S.A.) were used (NeuroElf toolbox [www.neuroelf.net] and custom
routines) to estimate functional connectivity for each participant using seed-based correlation
analysis. First, whole brain signal intensity averaged across all brain voxels and white matter
signal (derived from extracting the BOLD time course signal from a manually defined white
matter ROI) were removed from the resting-state data via linear regression. Then, a correlation
map was computed using an initiating seed region with a 6-mm radius in the posterior cingu-
late (PCC, MNI coordinate: 1, -55, 17) based on a previously described method [60]. In the cur-
rent analysis the PCC was chosen as seed in a seed-based correlation analysis because of its
central role in functions of the DMN (e.g. self-referential mental thoughts, WM). Furthermore,
it is suggested that the PCC is the only region in the DMN that directly interacts with all other
regions within this network [61] and has the highest metabolic activity compared to all other
regions during rest [5,62].

Pearson’s correlation coefficients were computed between the time courses of the PCC seed
and all other brain voxels and normalized using the Fisher’s r-to-z transformation. Visualiza-
tion of group effects was restricted to those voxels that empirically were associated with the
DMN in all participants. For this purpose, we created a DMNmask by thresholding a one-sam-
ple t-test map of the PCC connectivity across all participants, using a false-discovery rate FDR
of q = 0.05 [63]. We then performed an ANCOVA with group as between-subject factor, con-
trolling for the subject-level confounders sex, age, handedness and level of education. Signifi-
cant group effects were visualized using a statistical (p = 0.05, uncorrected) and cluster-size
threshold (52 voxels (i.e., 1404 mm3)). The cluster-size threshold was estimated using a simula-
tion procedure that incorporates the spatial smoothness of the statistical map (1,000 Monte
Carlo simulations [59,64]). The simulated maps were thresholded at the same voxel threshold
as the statistical map and surviving clusters were tabulated. The minimum cluster size was se-
lected by taking a false positive rate of 5%.

Group differences in DMN connectivity. As selection of regions with a significant be-
tween-subject (group) effect was performed using a voxel-level ANCOVA, which assumes in-
dependency of groups. Post-hoc analyses on mean individual functional connectivity
coefficients of the voxel clusters were performed using multiple linear regression analyses in
STATA (corrected for the same confounders) [65]. This was done using the REGRESS com-
mand in STATA with regional functional connectivity measures as dependent variables and
group as independent variable. Group was entered as dummy variables (controls = 0, siblings =
1, patients = 2). Because of the non-independency of the groups (familial relationships) analy-
ses were repeated with a multilevel random regression model using the XTREG command in
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STATA. In addition, the voxel-level ANCOVA and subsequent post-hoc tests were performed
with full correction for the subject-level confounders tobacco, alcohol, cannabis and other
drugs, as DMN connectivity may be influenced by these substances [66–70]. Lastly, since aber-
rant (increased and decreased) DMN connectivity has also been found in patients with major
depression [71], a priori planned sensitivity analyses were carried out excluding all individuals
with a history of affective disorder.

Associations between DMN connectivity and psychopathology ratings. The associations
between DMN functional connectivity (independent variable) and (subclinical) positive symp-
toms / (social) cognitive performance (dependent variable) were examined with multiple linear
regression analyses on the ANCOVA selected regions with a significant between-subject
(group) effect. In patients, the association between DMN functional connectivity and symp-
toms was corrected for age, sex, lifetime AP medication and illness duration (analyses of
PANSS positive symptoms). In siblings and controls, the subclinical symptom analyses were
corrected for group, age and sex and the (social) cognition analyses were additionally corrected
for handedness and level of education. Associations with (social) cognitive performance were
investigated in the combined group (of patients, siblings and controls) and corrected for group,
age, sex, handedness and level of education.

In order to examine whether the association between DMN functional connectivity and
subclinical positive symptoms / (social) cognitive performance would be conditional on group,
interactions were tested between group and DMN connectivity, in the ANCOVA selected re-
gions. In case of significant interactions, stratified effect sizes for DMN connectivity were cal-
culated for each group by using the STATAMARGINS routine. Analyses with subclinical
positive symptoms were corrected for age and sex, whereas (social) cognitive performance was
corrected for age, sex, handedness and level of education.

Associations between environmental exposure and DMN connectivity. Main effects of
the three a priori hypothesized environmental exposures (cannabis, childhood trauma and de-
velopmental urbanicity) on functional connectivity were examined with multiple linear regres-
sion analyses using the ANCOVA selected regions with a significant between-subject (group)
effect. The environmental exposures were entered as linear variables and as dummy variables
(never or ever used cannabis; the childhood trauma score divided by its tertiles (low, medium,
high trauma scores); five levels of population density).

In order to study whether altered DMN functional connectivity was the outcome of differ-
ential sensitivity to these environmental exposures, two-way interactions between group and
environmental exposure (GxE) were examined and evaluated by Wald test [72]. In case of sig-
nificant interactions, stratified effect sizes for all levels of environmental exposure per group
were calculated by linear combination of effects from the model containing the interactions
using the STATAMARGINS routine. Analyses were adjusted for the a priori hypothesized
confounders age, sex, handedness and level of education.

In addition, associations between AP medication and functional connectivity were analyzed
in patients only, with AP medication as independent variable and age, sex and illness duration
as confounders.

To control for type I error, significant p-values were subjected to correction for multiple
testing using the Simes method [73]. The Simes method avoids overcorrection associated with
the Bonferroni correction in case the statistical tests are not independent, as was the case in the
present study.
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Results

Participant characteristics
There were more men than women in the patient group, whereas the opposite held for the con-
trol group. Patients had lower educational level than controls and siblings. Patients smoked
more cigarettes and used more cannabis and other drugs (lifetime) than siblings and controls.
Siblings used more alcohol than patients and controls. Patients, being in stable remission, had
relatively low PANSS scores, and performed worse on WM and ToM indices compared to sib-
lings and controls. Childhood trauma was more frequently experienced in patients than in sib-
lings and controls, with no differences between the latter two. The three groups did not differ
in developmental level of urban upbringing (Table 1). Out of 73 patients, 64 used AP medica-
tion at the time of scanning (second generation: n = 60; first generation: n = 4). The mean cur-
rent dosage of AP medication in terms of standard haloperidol equivalents was 5.3 mg (SD =
4.8 mg). Furthermore, twelve patients used antidepressants, three used benzodiazepines, five
used anticonvulsants and one used lithium. Two siblings and two controls used antidepres-
sants, and one control used benzodiazepines.

Group differences in DMN connectivity
In all three groups, the PCC connectivity map showed significant positive correlations with
other DMN regions, including medial frontal, lateral prefrontal, parietal and temporal areas (i.
e., the hippocampal complex). The voxel-level ANCOVA revealed a between-subject (group)
effect in three DMN regions: the left inferior parietal lobule (IPL), the left precuneus (PCu) and
the right medial prefrontal cortex (MPFC) (Fig. 1, Table 2). Post-hoc analyses revealed that pa-
tients and siblings had increased connectivity between the PCC seed and left IPL, left PCu and
right MPFC (Fig. 2, Table 3). No significant differences were observed between patients and
siblings. Multilevel random regression analyses with XTREG did not influence the results. All
significant findings were upheld after Simes correction (pSimes: p<0.033) (Table 3). Repeating
the voxel-level ANCOVA and post-hoc analyses with additional confounders (tobacco, alco-
hol, cannabis and other drugs) did not affect the pattern of results, as did the exclusion of sib-
lings and controls with a history of affective disorder (S1 and S2 Table).

Association between DMN connectivity and positive symptoms
There was no significant association between PANSS positive symptoms and DMN connectivi-
ty in the patients (left IPL: B = 1.37, P = 0.630; left PCu: B = -0.83, P = 0.829 and right MPFC: B
= 0.54, P = 0.889). Repeating the analyses in patients with the 50% highest positive symptom
scores (mean score = 12.24, SD = 4.36, range: 8 to 24) did not change the results. In the com-
bined sibling and control group, SIS-r positive subscale scores and DMN functional connectivi-
ty were not significantly associated (left IPL: B = -0.02, P = 0.926; left PCu: B = 0.11, P = 0.637
and right MPFC: B = 0.02, P = 0.946). In addition, no significant group×DMN connectivity in-
teractions in the model of subclinical positive symptoms were found (left IPL (F = 0.69, P =
0.408), left PCu (F = 0.01, P = 0.909) and right MPFC (F = 0.15, P = 0.699)).

Association between DMN connectivity and cognitive symptoms
In the total group, there was a significant association between WM performance and PCC con-
nectivity with the left PCu (B = -3.63, P = 0.033), but not with the left IPL (B = -1.22, P = 0.309)
and right MPFC (B = -0.67, P = 0.677). As the distribution of WM scores in the patient group
was not Gaussian, a log transformation was performed which did not affect the results. The sig-
nificant finding for WM in the whole group was not upheld after Simes correction (pSimes:
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p<0.006). There were no significant group×DMN connectivity interactions in the model of
WM (left IPL (F = 0.39, P = 0.679), left PCu (F = 1.72, P = 0.181) and right MFPC (F = 0.16, P
= 0.849)). Similarly, with regard to ToM, no significant associations with DMN connectivity
were found in whole group analyses (i.e., PCC connectivity with the left PCu (B = -0.69, P =
0.264), left IPL (B = -1.08, P = 0.217), and right MPFC (B = 0.63, P = 0.445)), neither were their
significant group×DMN connectivity interactions (left IPL (F = 0.01, P = 0.994), left PCu (F =
0.41, P = 0.665) and right MPFC (F = 0.51, P = 0.600)).

Table 1. Participant characteristics.

Patients (n = 73) Siblings (n = 83) Controls (n = 72)
mean (SD) mean (SD) mean (SD)

Age at scan 27.8 (6.6) 29.6 (9.1) 30.0 (10.8)

Sex n(%) male 49 (65%) 45 (54%) 26 (36%)

Handedness 72.1 (63.9) 80.1 (53.8) 73.5 (61.2)

Level of education 4.2 (2.0) 5.2 (1.9) 5.4 (1.8)

Cannabis use1 51.7 (47.6) 18.1 (36.0) 8.4 (22.8)

Cigarettes use2 11.4 (11.0) 2.6 (6.2) 1.9 (6.1)

Alcohol use3 6.7 (13.0) 10.1 (17.7) 5.1 (7.2)

Other drug use4 44.4 (87.5) 6.4 (33.0) 2.4 (12.8)

PANSS positive 9.7 (4.1) 7.4 (1.5) 7.3 (1.2)

PANSS negative 11.9 (6.0) 8.5 (2.2) 8.2 (1.0)

PANSS disorganization 12.0 (3.3) 10.4 (1.0) 10.2 (1.2)

PANSS excitement 9.9 (2.9) 8.6 (1.4) 8.3 (1.1)

PANSS emotional distress 12.7 (5.1) 9.9 (2.7) 9.3 (2.1)

SIS-r positive subscale 0.6 (0.4) 0.5 (0.5)

Hinting task (social cognition) 18.0 (2.9) 19.2 (1.3) 19.3 (1.1)

WAIS-III Arithmetic (WM) 12.5 (4.2) 15.5 (3.7) 15.5 (4.1)

CTQ total 7.3 (2.9) 5.8 (1.6) 5.6 (1.8)

Level of developmental urbanicity 2.3 (1.3) 2.3 (1.4) 2.6 (1.5)

Age of onset (yrs) 21.4 (6.8)

Illness duration (yrs) 6.4 (3.7)

Lifetime exposure to AP5 7022.9 (6711.3)

Abbreviations: SD = standard deviation, PANSS = Positive and Negative Syndrome Scale; SIS-r = Structured Interview for Schizotypy-revised; WAIS =

Wechsler Adult Intelligence Scale; WM = Working Memory; CTQ = Childhood Trauma Questionnaire; AP = Anti-Psychotics.

(1) Lifetime number of instances of cannabis use

(2) Number of daily consumptions over the last 12 months

(3) Number of weekly consumptions over the last 12 months

(4) Lifetime number of times of hard drug use

(5) Lifetime number of days of AP use

doi:10.1371/journal.pone.0120030.t001

Fig 1. Areas showing significant between-subject (group) effect in PCC connectivity. Results from voxel-level ANCOVA analysis.

doi:10.1371/journal.pone.0120030.g001
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Exploratory analyses on DMN connectivity and other PANSS symptom
dimensions
Exploratory post-hoc multiple linear regression analyses were performed with the remaining 4
symptom clusters (i.e., negative symptoms, disorganization, excitement and emotional distress)
(corrected for group, age and sex). In the total group, no associations were found between the
remaining symptom clusters and DMN connectivity. In patients, a positive association was
found between emotional distress and PCC connectivity with the left IPL (B = 8.41, P = 0.016)
and right MPFC (B = 10.44, P = 0.029).

Environmental exposure and DMN functional connectivity: main and
interaction effects
Childhood trauma, cannabis use, and developmental urbanicity were not significantly associat-
ed with DMN functional connectivity in the whole group. There were no significant G×E inter-
actions in the model of DMN functional connectivity (Table 4).

Table 2. Regions of the default mode network with a significant between-subject (group) effect.

Anatomical region Hemisphere Peak coordinates (MNI) Cluster size (voxels)

x y z

Inferior parietal lobule L -48 -64 43 82

Precuneus L -15 -59 33 63

Medial prefrontal cortex R 9 56 31 89

Results from voxel-level ANCOVA analysis. Voxel size equals 3x3x3 mm3. Results represent regions with significant group differences using a statistical

threshold p = 0.05 (uncorrected) and cluster threshold (52 voxels). Abbreviations: R, right; L, left.

doi:10.1371/journal.pone.0120030.t002

Fig 2. Mean functional connectivity with 95% confidence interval for each region of the DMN that
showed significant differences between the groups. There was significantly higher PCC connectivity with
the left IPL, left PCu and right MPFC in siblings and patients than in controls, with no significant differences
between patients and siblings.

doi:10.1371/journal.pone.0120030.g002
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Main effect of AP medication on functional connectivity
There was no significant association between lifetime AP use and functional connectivity be-
tween the PCC seed and left IPL (B = 0.00, P = 0.434), left PCu (B = -0.00, P = 0.370) or right
MPFC (B = 0.00, P = 0.820).

Discussion
The objective of the current study was to examine functional connectivity within the DMN in
patients with (increased risk for) psychotic disorder. The main finding was that patients and
siblings had a similar pattern of increased connectivity between the PCC seed and other regions
of the DMN (i.e., left IPL, left PCu and right MPFC) compared to controls. DMN connectivity
was not associated with (subclinical) psychotic or cognitive symptoms. The association be-
tween familial risk and DMN connectivity was not conditional on environmental exposure.

Table 3. Associations between familial risk of psychotic disorder (group) and functional connectivity.

Regions of
Interest

Functional Connectivity N = 228 Group differences in functional
connectivitymultiple linear regression

analyses

Group differences in functional
connectivitymultilevel random regression

analyses

Patients Siblings Controls P vs. C S vs. C P vs. S P vs. C S vs. C P vs. S

mean
(SD)

mean
(SD)

mean
(SD)

B p B p B p B p B p B p

Left inferior
parietal lobule

0.22 (0.21) 0.22 (0.22) 0.13 (0.21) 0.13 0.001* 0.10 0.004* 0.03 0.385 0.13 0.000* 0.10 0.003* 0.03 0.377

Left
precuneus

0.32 (0.16) 0.29 (0.16) 0.23 (0.13) 0.10 0.000* 0.07 0.007* 0.03 0.161 0.10 0.000* 0.07 0.003* 0.03 0.180

Right medial
prefrontal
cortex

0.23 (0.15) 0.26 (0.17) 0.17 (0.14) 0.08 0.004* 0.09 0.000* -0.01 0.593 0.08 0.003* 0.09 0.000* -0.01 0.586

The Bs represent the regression coefficients from multiple linear regression and multilevel random regression analyses in STATA corrected for age, sex,

handedness and level of education. Abbreviations: P = patients; S = siblings, C = controls; SD = standard deviation; the asterisks

(*) represent areas which are significant after Simes correction (PSimes<0.033).

doi:10.1371/journal.pone.0120030.t003

Table 4. Interactions between environmental risk and group for the regions that are functionally
connected to the PCC seed.

Environmental risk x group interactions

Childhood
trauma

Cannabis use Developmental
urbanicity

F P F p F p

Left inferior parietal lobule 0.65 0.525 1.28 0.280 0.80 0.450

Left precuneus 0.25 0.780 0.21 0.812 0.21 0.814

Right medial prefrontal cortex 0.06 0.945 1.19 0.307 1.54 0.218

The F and P-values represent the results of the Wald test. No interactions were significant after Simes

correction (PSimes<0.006).

doi:10.1371/journal.pone.0120030.t004
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DMN connectivity in patients with psychotic disorder
This study adds to the notion of altered interregional functional connectivity in psychotic dis-
order. Research to date has produced conflicting results as to whether connectivity within the
DMN is increased or decreased in schizophrenia. For example, Liu and colleagues have found
increased DMN connectivity between the MPFC and parietal regions and between the PCC
and temporal regions in schizophrenia during resting-state [24]. Increased DMN connectivity
has been described in most of the studies on schizophrenia [19,22,74,75] using either seed-
based correlation analysis or ICA. In contrast, a handful of studies have reported decreased
DMN connectivity [16,19,76], for example between the PCC and the lateral parietal/medial
PFC and PCu [28]. Possible explanations for these inconsistencies may be that the DMN does
not comprise a single network, but instead may include several networks, some of which may
be altered in schizophrenia [8,77]. The interaction between different networks may lead to a
dynamic pattern of dysconnectivity and could contribute to the discrepancy in findings. In ad-
dition, conflicting observations across resting-state fMRI studies may also be attributed to sev-
eral other factors, including differences in patient population, sample size, cohort
characteristics, confounding factors (e.g., psychotropic medication), and analytical procedures.
Interestingly, the studies reporting decreased DMN connectivity predominantly used ICA
analysis [16,19,76], whereas studies demonstrating increased DMN connectivity have used
both ICA and seed-based methods [15,19,75]. The two largest studies, one using ICA analysis
(n = 258 [16]) and the other seed-based analysis (n = 103 [60]) displayed respectively decreased
and increased DMN connectivity. Of note, although univariate (e.g., seed-based correlation)
and multivariate (e.g., ICA) statistical analyses may be of influence on the connectivity mea-
surements, a direct comparison of both methods yielded equal results [78,79].

The present study used a relatively large sample size. Nevertheless, the statistical effects
were comparatively small, which in combination with adequate statistical power suggests that
true DMN effect sizes in psychotic disorder may be less strong than previously stated in smaller
studies. However, it has to be noted that a recent study by Khadka et al. (2013) examined the
posterior DMN (i.e., cingulate gyrus and PCu) with ICA in a comparably large sample (n =
258) as the current sample and found decreased DMN connectivity. In conclusion, the current
evidence indicates that functional integration across regions of the DMN is altered in psychotic
disorder although methodological differences across studies preclude definite conclusions.
Therefore, using more standardized methods across symptom-based and/or intermediate phe-
notypes may help to improve the level of evidence.

Regions of the DMN are involved in mental functions such as the responsiveness to salient
environmental events, awareness of the environment (IPL), self-referential or introspectively
oriented mental activity, decision making (MPFC), self-processing, consciousness and memory
processes (PCu) [5,80]. An overactive DMN as found in the current study could mediate dis-
torted boundaries between imagination and perceptions from the external world, and between
self and others. Thus, the DMNmay underlie formation of psychotic symptoms and social and
neurocognitive dysfunction [62,81] (see below).

DMN connectivity and familial risk for psychotic disorder
The siblings in this study exhibited increased DMN connectivity in similar parts of the DMN
network as the patients. Siblings showed intermediate PCC connectivity with the left IPL and
left PCu compared to patients and controls, whereas PCC connectivity with the MPFC was
slightly higher compared to that of patients. This overlap suggests that DMN connectivity is as-
sociated with familial (and possibly genetic) factors. Thus, increased connectivity between the
PCC and the left IPL, left PCu and right MPFC may represent trait-related intrinsic network
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alterations. The current findings replicate other seed-based studies that demonstrated a similar
increased DMN functional connectivity ‘intermediate phenotype’ for psychotic disorder [22–
24] Contrary to our findings, in two studies there was no evidence for altered connectivity
within the DMN of first-degree relatives [16,21], and in one study there was evidence for a de-
creased DMN functional connectivity ‘intermediate phenotype’ [16]. Resting-state fMRI stud-
ies in individuals at ultra-high risk for psychosis [82] and first-episode schizophrenia [75,83]
also revealed increased DMN functional connectivity, especially in frontal and parietal regions.
Reported findings, in combination with the present results, suggest that DMN abnormalities in
patients with psychotic disorder are associated with pre-existing vulnerability and persist over
the course of the illness.

Clinical correlates of altered DMN functional connectivity
There was no significant association between DMN connectivity and positive symptoms in the
patients. These results are in line with a recent large study in which correlations with PANSS
positive scores did not survive Bonferroni correction [20] and contradictory to previous rest-
ing-state fMRI studies that suggest that severity of positive symptoms is associated with either
increased [1,22,28] or decreased [28,29] DMN connectivity, depending on the location in the
brain (i.e., frontal, parietal or temporal). A possible explanation for the absence of an associa-
tion between positive symptoms and DMN functional connectivity in the current study is that
most patients were in clinical remission, as reflected by relatively low PANSS scores with
little variance.

In addition to an absence of associations with positive symptoms, there was also no signifi-
cant association between WM and DMN connectivity in the present study. An explanation for
the absence of an association between DMN connectivity and WM in patients with psychotic
disorder may be that the more severe cognitive impairments in schizophrenia are the result of
impaired between-network interactions, rather than altered within-network connectivity [21].
To further clarify the “connectivity at rest” (endo)phenotype and its differential relationships
with cognitive functioning in patients and siblings, studies on network interactions
are warranted.

Increased DMN connectivity was not associated with altered social cognition in individuals
with (risk for) psychotic disorder. To our knowledge, only four fMRI studies have investigated
the association between social cognition and resting-state DMN connectivity in individuals (at
risk of) mental disorder, focusing on psychotic disorder and autism spectrum disorder (ASD).
A study in unaffected first-degree relatives of individuals with schizophrenia and healthy con-
trols found that for all participants connectivity between temporal regions and frontal-tempo-
ral regions predicted social functioning, empathy and perspective-taking [33]. Studies in ASD
showed that social cognitive deficits in ASD were associated with decreased DMN connectivity
between the PCC and superior frontal gyrus and between the precuneus and MPFC/anterior
cingulate cortex. In addition, social cognitive deficits were associated with increased connectiv-
ity between the PCC and the temporal lobe [84–86].

Exploratory post-hoc symptom analyses showed that (altered) DMN connectivity may be
associated with emotional distress in patients with psychotic disorder. A task-based fMRI
study investigating neural circuits underling emotional distress in healthy individuals found an
association between this mental state and brain activation in several regions, including the
MPFC and PCC [87]. However, to our knowledge no resting-state fMRI studies have been con-
ducted in patients with psychotic disorder examining the association between emotional dis-
tress and DMN functional connectivity. Therefore, future studies are warranted to further
investigate this issue.
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Association with environmental exposure
The present study did not provide evidence for a differential impact of environmental expo-
sures on DMN functional connectivity in individuals with (risk) for psychotic disorder. Both
familial liability and exposure to environmental risk factors have previously been associated
with functional DMN alterations [17,37–40]. However, the studies providing evidence for an
association between DMN alterations and environmental factors were conducted in trauma-
tized and healthy populations, whereas no such studies have been carried out in psychotic dis-
order, let alone studies on GxE. It may be that DMN functional connectivity is not a sensitive
enough outcome measure to investigate specific G×E interactions. For example, there is evi-
dence to suggest that these environmental risk factors act through a final common pathway of
dopamine (DA) dysregulation in regions of the mesolimbic circuit [88]. Therefore, the func-
tional connectivity in mesocorticolimbic circuits [89] may be a good candidate for future rest-
ing-state fMRI research examining this type of interactions.

Methodological considerations
Advantages of the current study were the large sample size, the use of a representative popula-
tion of patients with psychotic disorder (and siblings), and the correction for several potential
confounding factors. Cannabis and other drugs, as well as alcohol and tobacco may have an ef-
fect on brain connectivity [66–70], but previous studies (e.g.,[21,26]) have not always corrected
for these confounders and sample sizes were generally much smaller, likely contributing to the
variance in study results.

Most of the patients in this study were receiving second generation AP medication at the
time of scanning. The effect of AP medication on intrinsic networks is still unclear, although
some studies suggest that AP medication normalizes aberrant connectivity [90,91]. However,
in the current study there was no main effect of AP on DMN functional connectivity. Further-
more, both medicated patients and non-medicated siblings showed similar patterns of altered
connectivity as compared to controls, which argues against this interpretation.

In seed-based analysis, variations in the seed positioning could have impacted the pattern of
functional connectivity observed [92]. Nonetheless, the present study has face validity as previ-
ous resting-state fMRI studies of smaller sample sizes, and analysed with both seed-based and
ICA techniques, have shown increased connectivity in similar regions of the DMN.

The physiological state (i.e., emotional state and arousal level) of the participants was not
measured which could lead to altered functional connectivity. That is, studies have shown that
a reduced arousal level was associated with reduced functional connectivity during rest [93]. In
future studies, it would be valuable to include self-report questionnaires, administered after
scanning, on for example wakefulness during the scan session.

The present study comprised cross-sectional data-analyses, precluding any causal and
sequential inferences.
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