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Abstract

Genome-wide association studies (GWAS) have been established as a major tool to identify 

genetic variants associated with complex traits, such as common diseases. However, GWAS may 

suffer from false positives and false negatives due to confounding population structures, including 

known or unknown relatedness. Another important issue is unmeasured environmental risk 

factors. Among many methods for adjusting for population structures, two approaches stand out: 

one is principal component regression (PCR) based on principal component analysis (PCA), which 

is perhaps most popular due to its early appearance, simplicity and general effectiveness; the other 

is based on a linear mixed model (LMM) that has emerged recently as perhaps the most flexible 

and effective, especially for samples with complex structures as in model organisms. As shown 

previously, the PCR approach can be regarded as an approximation to a LMM; such an 

approximation depends on the number of the top principal components (PCs) used, the choice of 

which is often difficult in practice. Hence, in the presence of population structure, the LMM 

appears to outperform the PCR method. However, due to the different treatments of fixed versus 

random effects in the two approaches, we show an advantage of PCR over LMM: in the presence 

of an unknown but spatially confined environmental confounder (e.g. environmental pollution or 

life style), the PCs may be able to implicitly and effectively adjust for the confounder while the 

LMM cannot. Accordingly, to adjust for both population structures and non-genetic confounders, 

we propose a hybrid method combining the use and thus strengths of PCR and LMM. We use real 

genotype data and simulated phenotypes to confirm the above points, and establish the superior 

performance of the hybrid method across all scenarios.
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Introduction

Genome-wide association studies (GWAS) are the current gold standard in identifying 

genetic variants associated with complex traits. In practice, genetic correlations among 
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subjects can arise from population heterogeneity, familial relatedness, or cryptic relatedness, 

all of which are regarded as population structures in a broad sense in this paper. 

Furthermore, due to the observational nature of GWAS, unknown environmental and non-

genetic risk factors may arise as confounders. Failure to account for these correlations and 

confounders can produce both false positives and false negatives in GWAS.

When population structure acts like a confounder in GWAS, it is also called population 

stratification. Population stratification occurs most frequently in the case-control study 

design, where different ancestral populations have varying disease risks and different 

distributions of genetic variants. Many methods have been proposed, such as genomic 

control (GC) [Devlin and Roeder, 2004], structured association [Pritchard et al., 2000] and 

other mixture model-based methods [Zhang et al., 2002; Zhu et al., 2002], and genetic 

matching and stratification [Epstein et al., 2007; Guan et al., 2009]. The most appealing and 

widely used method is perhaps principal component regression (PCR) based on principal 

component analysis (PCA) of a large number of genetic variants across the genome [Price et 

al., 2006; Patterson et al., 2006; Zhao et al., 2007]. It includes a few top principal 

components (PCs) as covariates in a regression model, and has proven competent. The top 

PCs also offer a way to visualize the spatial locations of subjects, though this may be over-

interpreted [Novembre and Stephens, 2008; Wang et al., 2012], and its assumption of linear 

PC effects can be violated, resulting in biased estimation of association [Lin and Zeng, 

2011]. To account for more complex population structures, including familial correlations or 

cryptic relatedness, linear mixed models (LMMs) have emerged recently as most promising 

[Yu et al., 2005; Zhao et al., 2007]. Later it was found that if the identity-by-state (IBS) 

matrix is used, the additional modeling for population structure can be redundant [Malosetti 

et al., 2007; Zhao et al., 2007]. To overcome the computing bottleneck, several fast 

algorithms have been developed for LMM, including efficient mixed-model association 

(EMMA) [Kang et al., 2008] and its expedited version EMMAX [Kang et al., 2010], and 

genome-wide efficient mixed-model association (GEMMA) [Zhou and Stephens, 2012]. 

EMMA and GEMMA offer exact calculations, while EMMAX is an approximate method in 

estimating the variance components by ignoring the effects of the genetic variant of interest. 

Kang et al. (2010), by using the 1966 Northern Finland Birth Cohort (NFBC66) and the 

Wellcome Trust Case Control Consortium (WTCCC), showed that EMMAX can better 

control inflated false positives than PCR in GWAS. On the other hand, Wu et al. (2011) 

reported some simulated data showing that EMMAX could be “anticonservative” while PCR 

seemed to perform best. Wang and Peng (2013) offered some theoretical and numerical 

properties of the two methods.

Given the popularity of PCR and the emerging promise of LMM, in view of these discrepant 

comparisons between the two methods, it is natural to ask which one is preferred in practice. 

To address this important question, we aim to point out their connections and differences. 

Based on singular value decomposition, Hoffman (2013) showed that the PCR method can 

be regarded as an approximation to a LMM; here we use probabilistic PCA [Tipping and 

Bishop, 1999] to confirm this connection. As expected, the degree of the approximation 

depends on the number of the top PCs used, the choice of which however is difficult in 

practice. This connection offers a theoretical explanation on why LMM performed better 

than PCR in several real studies in presence of severe population stratification. This may 
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give an impression that LMM can completely replace PCR, which however is not true. Due 

to the use of the fixed effects in PCR and random effects in LMM, there are other 

implications from model fitting. First, as is well known, when a larger number of PCs are 

used in PCR to better approximate a LMM, due to an increasing number of parameters to be 

estimated, the PCR method will lose power. Second, more importantly and perhaps 

surprisingly, we show that in the presence of unknown environmental (and non-genetic) 

confounders, PCR may outperform LMM. The reason is that, because PCs can represent 

geographical locations of human populations, use of the PCs may be able to adjust for 

environmental confounders that are spatially distributed. Hence, to account for both 

population stratification and unknown environmental confounders, we propose using a 

hybrid method combining PCR and LMM. We use a real genotype dataset to confirm the 

above points.

Methods

Suppose Y = (Y1, …, Yn)T is the quantitative trait vector for n subjects, and 

 is the genotype score vector of a single nucleotide polymorphism 

(SNP) of interest, where  is the minor allele count for the ith subject. We have g = 

(g1, …, gn)T as the normalized genetic scores with , where p0 is 

the minor allele frequency (MAF) of the SNP.

LMM and PCR methods

A linear mixed model (LMM) accounting for population structure is

(1)

where α0 is the intercept, 1 is a vector of all 1’s,  is the so-called polygenic 

effect, K is a similarity matrix measuring the similarity or relatedness between any two 

subjects, and ε ~ N(0, σ2I) is the error term.  is the polygenic variance and σ2 is the 

individual variance. The marginal covariance of Y is . The goal of an 

association analysis is to test the null hypothesis H0: α1 = 0.

The PCR model is

(2)

where γ0 is the intercept, and Z is the matrix with each column as one of a few top PCs 

constructed by PCA from a large number of genetic variants, or more generally, as a few top 

eigen vectors of a similarity matrix measuring similarities among the subjects based on the 

genetic variants (Lee et al., 2009). ε ~ N(0, σ2I) is the error term. The goal of an association 

analysis is to test the null hypothesis H0: γ1 = 0.

Zhang and Pan Page 3

Genet Epidemiol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A connection between PCR and LMM

In the LMM (1), we can regard the polygenic effect u as a collapsed effect of many genetic 

variants, say X* with p genetic variants. X = (Xij) is the matrix after normalizing X*: for each 

SNP j of subject i,  with pj as the MAF of SNP j. Then the 

LMM can be written as

where X.j = (X1j, …, Xnj)T,  and δ ~ N (0, σ2I). Note that in the LMM, K = 

XXT/p, the covariance matrix, can be used to measure the similarities among the n subjects. 

In probabilistic PCA [Tipping and Bishop, 1999], similar to factor analysis, each X.j is 

modeled to be independently and identically distributed as

Since each SNP X.j is already centered at 0, we can simply take ζ0 = 0. With any chosen 

number of columns for W, say q, the maximum likelihood estimator (MLE) of W is

where Uq is a matrix with columns as the top q eigenvectors of the similarity or sample 

covariance matrix K = XXT/p, and Λq is a diagonal matrix with q corresponding eigenvalues 

λj’s of K, and R is an arbitrary orthogonal rotation matrix. Since the scaling of the PCs has 

no effect in regression while for simplicity we can ignore rotation (i.e. choose R = I), we can 

take Ŵ= Uq; in other words,Ŵ contains the top q PCs based on X. Taking ζ = (ζ1, …, ζp) 

and denoting εx as the corresponding matrix for the error term in the probabilistic PCA 

model, we approximate the LMM as

where γ0 = α0, γ2 = ζη and ε = εxη + δ. If q is the number of the top PCs that we use in PCR, 

Ŵ is Z in Equation (2). Hence the above approximate LMM reduces to the PCR model in 

Equation (2). Note however that in the PCR model γ2 is treated as a fixed (i.e. non-random) 

effect, while in the LMM u (or γ2) is random; this difference has important implications in 

later analysis.

The above derivation is for K = XXT/p. For other K, e.g. calculated as the IBS matrix, due to 

its positive semi-definiteness as (a part of) the covariance matrix for the random effect u, we 
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can have a decomposition K = AAT/pA, where A is a n × pA matrix. Denote the jth column of 

A as A.j. Now replace the X.j by A.j and then proceed as before, e.g. by assuming 

 and ζj ~ N (0, I), we can reach the same PCR model as an 

approximation to the LMM, where the PCs are generalized to the eigenvectors of any 

symmetric and positive semi-definite similarity matrix K [Lee et al., 2009; Zhang et al., 

2013]. Hence our above conclusion holds for any positive semi-definite similarity matrix K.

Hoffman (2013) obtained the same connection based on the close relationship between PCA 

and singular value decomposition. Here our derivation is based on the probabilistic PCA 

formulation, which offers a statistical interpretation of the top PCs (or eigen-vectors) as the 

MLEs.

An environmental confounder

In observational studies like GWAS, unobserved environmental and non-genetic factors may 

arise as confounders, which may not be fully captured by the similarity matrix K estimated 

from genetic variants (Mathieson and McVean, 2012). A model with both a sample structure 

u and an environmental confounder μ is

(3)

where μ = (θ1, …θ1, …θk, …θk)T, , θ = (θ1, θ2, ···, θk)T, 

1nj is a vector of all 1’s of length nj, the number of samples in cluster j, and diag{a} is a 

matrix with vector a on the diagonal and all other elements 0. Here we assume that the 

samples are ordered into clusters with each cluster containing the samples sharing the same 

environmental risk; this assumption is not necessary, but only for simplicity and 

concreteness of presentation.

Now suppose θh ~ f (.), h = 1, …, k, where f (.) is the unknown distribution density of θh 

with variance . Then

and . One potential issue with EMMAX or GEMMA is 

their only using K to model the covariance among the samples. Due to the commonality of 

the human genomes, the K matrix has a more “smooth” structure that may not approximate 

well a block diagonal matrix like DDT (or other more general matrix induced by 

environmental confounders). Consequently, with a relatively large σθ, using K alone may 

fail to capture the phenotype covariance structure, leading to a lack of fit of the standard 

LMM (1).

On the other hand, if μ can be well approximated by a linear combination of the top PCs, say 

μ ≈ Zρ, then the PCR model is approximated by
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which can be well fitted by the standard PCR model (2). In practice, this assumption of μ ≈ 

Zρ may be plausible if environmental confounders are spatially distributed, because the top 

PCs of genetic variants can represent geographic coordinates [Wang et al., 2012].

A hybrid model

As discussed, neither the (standard) LMM nor PCR is a complete winner in adjusting for 

both population structure and environmental confounders, but with different advantages. 

Hence we propose a hybrid model including both a few PCs and a random effect:

(4)

where Z is the top q PCs from the similarity matrix K, and , δ ~ N (0, σ2I). The 

PCs aim to capture a major part of population structure and environmental confounders, 

while the random effect account for the remaining and more subtle effects of population 

structure.

Since the PCs are extracted from the similarity matrix K, there may be some concerns on the 

repeated use of K for both the PCs and random effect. As an alternative, we can also use K2 

as the similarity matrix for u, where K2 is a “residual” matrix of K after excluding the 

covariance explained by the top q PCs in Z. That is, by eigen decomposition we have

where Q is the eigenvectors and Λ is the eigenvalues, Q1 is the top q PCs that we include in 

Z, Λ1 is the corresponding eigenvalues of the top PCs. Q2 is the remaining eigenvectors and 

Λ2 is the corresponding eigenvalues. We use  in place of K as an alternative. It 

turns out that the restricted likelihoods of these two hybrid models are exactly the same (see 

the proof in an appendix), so will be their estimation and inference. Therefore, in the hybrid 

model the random effect (either u or u2) is only used to capture the “residual” effects of the 

PCs.

The hybrid model has been used to account for population structure alone [Zhao et al., 

2007], differing from our goal here to adjust for both population structure and environmental 

confounders, which has been largely neglected in the literature. In particular, several new 

studies [Lippert et al., 2013; Yang et al., 2014; Tucker et al., 2014] focused on the 

advantages and disadvantages of the PCR and LMM methods exclusively for population 

structures; in contrast, as a main contribution here, we explicitly separate out the effects of 

population structures (i.e. genetic confounders) and environmental confounders, based on 

which we illuminate the respective advantages (and disadvantages) of the PCR and LMM 

approaches.
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Data

We used the genotype data with a familial structure to illustrate our points. The data was 

drawn from the Type 2 Diabetes Genetic Exploration by Next-generation Sequencing in 

Ethnic Samples (T2D-GENES) Consortium Project 2. It consisted of whole genome 

sequence data of 959 samples from 20 pedigrees from the San Antonio Family Studies 

(SAFS), with each family containing 22 to 86 family members. We first pruned all the 

common variants (CVs) by PLINK [Purcell et al., 2007] with a sliding window of size 50, a 

moving step 5 and r2 ≤ 0.05. We randomly selected 31544 pruned CVs with MAF ≥0.05 

from the autosomes, and use them to estimate the similarity matrix K; both the covariance 

matrix and IBS matrix were calculated, however, due to the increasing popularity of the IBS 

matrix in LMM for its better performance [Kang et al., 2008], we show the results with the 

IBS matrix.

We also used simulated phenotypes in simulations and a quantitative phenotype from the 

T2D-GENES data in example data analysis.

Results

Simulations

We simulated quantitative traits following the sample structure shown in estimated IBS 

matrix from the data, with or without an environmental risk, under both null and alternative 

hypotheses. We compared the LMM, implemented in EMMAX [Kang et al., 2008] and 

GEMMA [Zhou and Stephens, 2012], PCR [Patterson et al., 2006] and the hybrid method, 

with respect to their ability to correct for inflated type I errors as well as their power 

performance. We applied the F-test in EMMAX, and the Wald tests in GEMMA, the PCR 

model and hybrid model respectively. As a benchmark, we also applied the ordinary least 

squares (OLS) (i.e. assuming K = I in the LMM) with the t-test.

In the presence of only population structure

For the purpose of controlling Type I error and the inflation factor λ [Devlin and Roeder, 

2004], we used model (1) with α1 = 0 to simulate Y’s under the null hypothesis; to compare 

the power, we used model (1) with a genetic effect α1 ≠ 0. We set α0 = 5, and the vector u 

was sampled from , ε ~ N(0, σ2I).  was the polygenic variance, and K was the 

IBS matrix estimated from the T2D-GENES data. We randomly selected 11133 pruned CVs 

to be tested. For the PCR and hybrid methods, we included the top 20 PCs unless specified 

otherwise. For all the tests the nominal significance level was 0.05.

Under the null hypothesis (Table 1), as  increased, PCR gradually failed to control the 

Type I error rate and λ while EMMAX and GEMMA behaved well. For example, for 

and σ2 = 10, PCR had a severely inflated Type I error rate of 0.110 (and inflated λ = 1.493 > 

1), while EMMAX and GEMMA had their type I errors around 0.05 (and λ ≈ 1). If we 

gradually increased the number of PCs for the scenario , σ2 = 10, both the Type I 

error and λ were reduced notably; however, even with the top 100 PCs used, the Type I error 

was still around 0.070 and λ around 1.18.
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Figure 1 shows the power comparison with different genetic effect α1. GEMMA usually had 

the highest power, which however was very close to that of PCR and of the hybrid model, 

especially as  increased. The power of the hybrid method was slightly lower than 

EMMAX and GEMMA, and was close to that of PCR with 20 PCs. For example, when 

 with α1 = 1.5, the power was 0.754 for EMMAX, 0.758 for GEMMA, 0.723 for PCR 

with 20 PCs and 0.600 with 100 PCs, and 0.713 for the hybrid method; for , the 

power for the methods was 0.915, 0.915, 0.908, 0.894 and 0.911, respectively.

In the presence of an environmental confounder

We considered a scenario with both population structure and an environmental confounder. 

We assumed that 496 samples in 8 families were from the same spatial area thus sharing the 

same environmental risk while the remaining in another cluster. For illustration, we selected 

10000 SNPs that were significantly associated with the clustering assignment and were to be 

tested in association analysis. We saw that EMMAX and GEMMA had gradually increasing 

Type I errors as the environmental effect |θj| became larger, due to the inadequacy of the 

genetic similarity matrix to capture the environmental confounder. The hybrid method was 

consistently the best performer. For example, when |θj| = 4, while GEMMA had a Type I 

error rate of 0.109 (λ=1.645), PCR of 0.067 (λ=1.151) with 100 PCs, the hybrid method 

with 20 PCs could reduce it to 0.061 (λ=1.158), and further if more PCs were used. Here 

PCR also worked fine with 100 PCs mainly because  was not so big; when we increased 

 to 90, PCR lost its efficacy even with 100 PCs (Type I error =0.081 and λ=1.269) while 

the hybrid method could still control the Type I error rate to be 0.0618 (and λ=1.102) with 

only top 20 PCs.

Example

We conducted an association analysis with the systolic blood pressure (SBP) at the baseline 

as the quantitative phenotype in the T2D-GENES data. The genotype data used were the 

same as before. In particular, we used the IBS matrix as the similarity matrix K; the use of 

the covariance matrix as K performed worse (not shown). All the methods included subject 

gender, smoking status and age as covariates. As shown in Figure 2, no adjustment for 

population structure (i.e. OLS) led to severely inflated false positives with an inflation factor 

λ of 1.14, since it failed to correct for within-family correlations in the data. In contrast, 

PCR with the top 20 PCs could largely control the inflated false positives, while the 

GEMMA implementation of LMM had a slight advantage over PCR with a λ closer to 1; 

furthermore, there were fewer more significant p-values (< 0.001) resulting from the LMM 

than those from PCR. The good performance of LMM also suggested the non-existence or 

negligible effects of environmental confounders (that could not be adjusted by genetic 

similarity matrix K), possibly due to all study subjects were from the San Antonio area and 

thus there was a lack of environmental heterogeneity. It is reassuring to see that the hybrid 

method controlled the false positives as well as LMM, and at the same time, gave a few 

more p-values < 0.001.
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Discussion

As obtained in Hoffman (2013) but based on an alternative derivation, we have confirmed a 

close connection between PCR and LMM in association analysis of structured samples. This 

connection suggests both theoretical and practical advantages of the LMM method over 

PCR in presence of severe population stratification. In particular, the choice of how many 

PCs to use in PCR is difficult; too few PCs may cause inflated Type I errors while too many 

lead to power loss. It appears being increasingly accepted to take the LMM as a general and 

feasible model for population structure, from which the connection between the two 

methods also offers an explanation on why PCR often performs well if the population 

structure is not sufficiently complex or subtle. For example, when we used the European and 

African samples from the 1000 Genomes Project data, PCR with 20 PCs performed as well 

as the LMM method (not shown). A challenge however is how to tell whether a PCR model 

is adequate or not when compared to a LMM. In this regard, it seems that one should always 

use LMM over PCR. Most importantly, we have also pointed out a weakness of the LMM 

method in the presence of unknown environmental confounders that can arise from GWAS. 

Accordingly we have proposed a hybrid method, which performed consistently well across 

all scenarios in our study. In particular, the hybrid method can be easily implemented in any 

existing framework of fitting LMMs, such as in the EMMAX or GEMMA package. 

Therefore, we recommend the use of the hybrid method.

Acknowledgments

The authors are grateful to the editor and a reviewer for helpful comments. This research was supported by NIH 
grants R01GM113250, R01HL116720, R01HL105397 and R01GM081535, and by the Minnesota Supercomputer 
Institute. We thank the NIH db-GaP for providing the access to the T2D-GENES data.

References

Devlin B, Roeder K. Genomic control for association studies. Biometrics. 2004; 55:997–1004. 
[PubMed: 11315092] 

Epstein MP, Allen AS, Satten GA. A Simple and Improved Correction for Population Stratification in 
Case-Control Studies. American Journal of Human Genetics. 2007; 80:921–930. [PubMed: 
17436246] 

Guan W, Liang L, Boehnke M, Abecasis G. Genotype-based matching to correct for population 
stratification in large-scale case-control genetic association studies. Genetic Epidemiology. 2009; 
33:508–517. [PubMed: 19170134] 

Hoffman GE. Correcting for population structure and kinship using the linear mixed model: theory and 
extensions. PLoS ONE. 2013; 8:e75707. [PubMed: 24204578] 

Kang H, Sul J, Zaitlen N, Kong S, Freimer N, Sabatti C, Eskin E. Variance component model to 
account for sample structure in genome-wide association studies. Nature Genetics. 2010; 42:348–
354. [PubMed: 20208533] 

Kang H, Zaitlen N, Wade C, Kirby A, Heckerman D, Daly M, Eskin E. Efficient control of population 
structure in model organism association mapping. Genetics. 2008; 178:1709–1723. [PubMed: 
18385116] 

Lee A, Luca D, Klei L, Devlin B, Roeder K. Discovering genetic ancestry using spectral graph theory. 
Genetic Epidemiology. 2009; 34:51–59. [PubMed: 19455578] 

Lin D, Zeng D. Correcting for population stratification in genome-wide association studies. Journal of 
the American Statistical Association. 2011; 106:997–1008. [PubMed: 22467997] 

Zhang and Pan Page 9

Genet Epidemiol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lippert C, Quon G, Kang EY, Kadie CM, Listgarte J, et al. The benefits of selecting phenotype-
specific variants for applications of mixed models in genomics. Sci Rep. 2013; 3:1815. [PubMed: 
23657357] 

Listgarten J, Kadie C, Schadt EE, Heckerman D. Correction for hidden confounders in the genetic 
analysis of gene expression. Proceedings of the National Academy of Sciences. 2010; 107:16465–
16470.

Malosetti M, van der Linden C, Vosman B, van Eeuwijk F. A mixed-model approach to association 
mapping using pedigree information with an illustration of resistance to Phytophthora infestans in 
potato. Genetics. 2007; 175:879–889. [PubMed: 17151263] 

Mathieson I, McVean G. Differential confounding of rare and common variants in spatially structured 
populations. Nature Genetics. 2012; 44:243–246. [PubMed: 22306651] 

Novembre J, Stephens M. Interpreting principal component analyses of spatial population genetic 
variation. Nature Genetics. 2008; 40:646–649. [PubMed: 18425127] 

Patterson N, Price A, Reich D. Population structure and eigenanalysis. PLoS Genetics. 2006; 2:e190. 
[PubMed: 17194218] 

Price A, Patterson N, Plenge R, Weinblatt M, Shadick N, Reich D. Principal components analysis 
corrects for stratification in genome-wide association studies. Nature Genetics. 2006; 38:904–909. 
[PubMed: 16862161] 

Price A, Zaitlen N, Reich D, Patterson N. New approaches to population stratification in genome-wide 
association studies. Nature Reviews Genetics. 2010; 11:459–463.

Pritchard J, Stephens M, Rosenberg N, Donnelly P. Association mapping in structured populations. 
American Journal of Human Genetics. 2000; 67:170. [PubMed: 10827107] 

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, Bakker 
PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based 
linkage analyses. American Journal of Human Genetics. 2007; 81:559–575. [PubMed: 17701901] 

Tipping ME, Bishop CM. Probabilistic principal component analysis. Journal of the Royal Statistical 
Society Series B (Statistical Methodology). 1999; 61:611–622.

Tucker G, Price AL, Berger BA. Improving the power of GWAS and avoiding confounding from 
population stratification with PC-Select. Genetics. 2014; 197:1045–1049. [PubMed: 24788602] 

Wang C, Zöllner S, Rosenberg NA. A quantitative comparison of the similarity between genes and 
geography in world-wide human populations. PLoS Genetics. 2012; 8:e1002886. [PubMed: 
22927824] 

Wang K, Peng Y. An analytical comparison of the principal component method and the mixed effects 
model for genetic association studies. Human Heredity. 2013; 76:1–9. [PubMed: 23921716] 

Wu C, DeWan A, Hoh J, Wang Z. A comparison of association methods correcting for population 
stratification in case-control studies. Annals of Human Genetics. 2011; 75:418–427. [PubMed: 
21281271] 

Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application 
of mixed-model association methods. Nat Genet. 2014; 46:100–106. [PubMed: 24473328] 

Yu J, Pressoir G, Briggs W, Bi I, Yamasaki M, Doebley J, McMullen M, Gaut B, Nielsen D, Holland 
J, et al. A unified mixed-model method for association mapping that accounts for multiple levels 
of relatedness. Nature Genetics. 2005; 38:203–208. [PubMed: 16380716] 

Zhang S, Kidd KK, Zhao H. Detecting genetic association in case-control studies using similarity-
based association tests. Statistica Sinica. 2002; 12:337–359.

Zhang Y, Shen X, Pan W. Adjusting for Population Stratification in a Fine Scale with Principal 
Components and Sequencing Data. Genetic Epidemiology. 2013; 37:787–801. [PubMed: 
24123217] 

Zhao K, Aranzana M, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram 
P, et al. An Arabidopsis example of association mapping in structured samples. PLoS Genetics. 
2007; 3:e4. [PubMed: 17238287] 

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nature 
Genetics. 2012; 44:821–824. [PubMed: 22706312] 

Zhu X, Zhang S, Zhao H, Cooper RS. Association mapping, using a mixture model for complex traits. 
Genet Epidemiology. 2002; 23:181–196. [PubMed: 12214310] 

Zhang and Pan Page 10

Genet Epidemiol. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix: Proof of the equivalence between the two hybrid models

In the hybrid model (4), the random effect is assumed as . An alternative 

model is

(5)

where  and others are the same as in model (4). Note that  is the 

“residual” similarity matrix after excluding the covariance explained by the top k PCs. Both 

K and K2 are assumed known and we only need to estimate , σ2 and the fixed effects.

The restricted maximum likelihood (REML) estimation and inference of β proceed using the 

likelihood on a linear transformation Y* = AY such that Y* does not depend on the fixed 

effects. One way to achieve this is, suppose X = (Z, g) = (Q1, g), then A = I − Px = I − 

X(XTX)−1XT which is the projection matrix onto the orthogonal column space of X. After the 

projection, Model (4) becomes

(6)

and Model (5) becomes

(7)

The only difference between equation (6) and (7) is (I − Px)u and (I − Px)u2. And we have

Recall that I − Px is the projection onto the orthogonal space of X, so we have (I − Px)Q1 = (I 

− Px)X(I, 0)T = 0, and

leading to

Thus the two models (6) and (7) are equivalent, implying that the REML estimation and 

inference for the original two hybrid models are equivalent too.
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Figure 1. 
Power of the association tests based on a simulated trait and the T2D-GENES genotype data.
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Figure 2. 
Q-Q plots of the p-values in the association tests for the SBP in the T2D-GENES data.
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