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Abstract

Purpose: Transverse relaxation analysis with several signal models has been used extensively to 

determine tissue and material properties. However, the derivation of corresponding parameter 

values is notoriously unreliable. We evaluate improvements in the quality of parameter estimation 

using Bayesian analysis and incorporating Rician noise, as appropriate for magnitude MR images.

Theory and Methods: Monoexponential, stretched exponential, and biexponential signal 

models were analyzed using nonlinear least squares (NLLS) and Bayesian approaches. 

Simulations, and phantom and human brain data, were analyzed using three different approaches 

to account for noise. Parameter estimation bias, reflecting accuracy, and dispersion, reflecting 

precision, were derived for a range of signal-to-noise ratios (SNR) and relaxation parameters.

Results: All methods performed well at high SNR. At lower SNR, the Bayesian approach 

yielded parameter estimates of considerably greater precision, as well as greater accuracy, than did 

NLLS. Incorporation of Rician noise greatly improved accuracy and, to a somewhat lesser extent, 

precision, in derived transverse relaxation parameters. Analyses of data obtained from solution 

phantoms and from brain were consistent with simulations.

Conclusion: Overall, estimation of parameters characterizing several different transverse 

relaxation models was markedly improved through use of Bayesian analysis and through 

incorporation of Rician noise.
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INTRODUCTION

Relatively little work has been undertaken to evaluate the Bayesian probability approach to 

parameter estimation from noisy MR images. In particular, the performance of Bayesian as 

compared to nonlinear least squares (NLLS) analysis in the quantification of transverse 

decay, as described by monoexponential and alternative models, has not been reported. 

However, these models are of increasing interest in both preclinical and clinical studies in 
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order to characterize tissue ultrastructure, identify tissue compartments, and differentiate 

between normal and pathologic tissues.

Multiexponential transverse relaxation analysis (METRA) (1-7) is one approach to this type 

of characterization, in which extraction of transverse relaxation times and component 

amplitudes from relaxation data is achieved through use of the inverse Laplace transform 

(ILT). This is typically implemented through the NLLS or the nonnegative least square 

algorithms. However, the ill-posed nature of the ILT makes the inversion very sensitive to 

noise (8-9), rendering parameter estimation difficult, especially in the clinical setting.

It has been demonstrated that explicitly incorporating the Rician noise model appropriate to 

magnitude magnetic resonance (MR) images (10-11) greatly improves accuracy and 

precision in derived parameter estimates (12-14), including for biexponential signals (15). 

Despite this, bias and dispersion resulting from application of NLLS increase substantially 

with decreasing SNR or with increasing disparity between component sizes (15-16).

Parameter estimation using Bayesian probability theory has long been recognized as having 

several advantages over NLLS minimization (17-18), including the fact that it does not 

require initial estimates. In addition, the estimate of a given parameter is derived through 

integration, or marginalization, over the probability distribution functions (PDFs) of the 

remaining parameters. The resulting PDF of the parameter of interest, the so-called posterior 

PDF, is therefore not influenced by local minima of a global fitting function defined by 

multiple parameters as is the case for NLLS (19). The posterior PDF completely defines the 

uncertainty in the derived parameter estimate (20). Among other benefits, this permits 

assessment of MR parameter uncertainty within a single voxel (21).

While laying a foundation for Bayesian analyses of MR data, these previous results were 

restricted to NMR spectroscopic data or to monoexponential transverse decay over a 

restricted parameter range. In the present work, our goal is to provide a much more 

comprehensive evaluation of the quality of parameter estimation from transverse relaxation 

imaging data through use of Bayesian analysis as compared to NLLS. Analyses were 

performed using the appropriate Rician noise model, as that has been clearly demonstrated 

to provide improved estimates as compared to the Gaussian noise approximation (12-15, 

21). Three distinct signal relaxation models were studied, the monoexponential, stretched 

exponential, and biexponential, over a large range of parameters and SNR values. All three 

of these models are used in the analysis of complex systems.

We first review the theory of noise distribution in MR images. We then describe in detail the 

six different voxel-by-voxel fitting methods we compared, three based on NLLS 

minimization and three based on Bayesian analysis. Next, extensive Monte Carlo (MC) 

simulations are presented which give the relative bias and dispersion in the estimation of 

transverse relaxation parameters using the six methods. Finally, we present data obtained 

from phantoms at 7 Tesla (T) and from human brain at 3T.
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THEORY

MRI Signal Distribution

The PDF of magnitude imaging data S = {Sn} measured at echo times TEn = n * TE defined 

by echo time TE and echo number n, with Gaussian-distributed noise of equal variance, σ2, 

in the real and imaginary channels, is given by the Rician distribution (10):

[1]

where A(θ;TEn), is the magnitude of the underlying noise-free signal as a function of TEn 

and signal parameters θ, Ik is the modified k-order Bessel function of the first kind and u is 

the Heaviside step function. The first moment, or expectation value, of the Rician PDF is 

given by (22-23)

[2]

where φn = A2(θ;TEn)/2σ2.

From Eq. 1, the likelihood function for the transverse decay data within a voxel is (24)

[3]

At high SNR, SnA(θ;TEn) » σ2 so that I0(A(θ;TEn)Sn/σ2) approaches 

. In this limit, the Rician PDF 

approximates the Gaussian distribution with mean A(θ;TEn) and variance σ2 (11, 25):

[4]

with first moment, or expectation value, given by

[5]

From Eq. 4, the Gaussian likelihood function of the imaging data S is
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[6]

NLLS and Bayesian Parameter Estimation Approaches

NLLS parameter estimation is generally rapid and accurate for low dimensional problems, 

that is, those for which the number of parameters to be estimated is small. However, in 

higher dimensions, NLLS estimation is greatly complicated by the presence of local minima; 

this difficulty increases with model complexity, with an increasing number of free 

parameters to be determined, and with decreasing SNR (19).

Bayesian analysis is an alternative approach that can be particularly robust for parameter 

estimation in the presence of noise (17, 20-21, 26-34). In this framework, parameter 

probability distributions are calculated from the observed data and prior knowledge. 

Bayesian parameter estimation is based on the posterior probability density of parameters, θ, 

given the observed data, S, and the standard deviation of the noise, σ. The formal statement 

of Bayes theorem in this context is (35-36):

[7]

where P(θ) represents an a priori parameter distribution based on pre-existing knowledge, 

L(S|θ,σ) is the likelihood function of S given θ and σ, and P(S) is a normalization constant, 

which corresponds to our use of normalized probability distributions.

The successive marginalization over all parameters results in a considerable computational 

burden, but permits the calculation of a posterior PDF for each individual parameter. An 

estimate  can be derived from the PDF of θi in several ways. It can be taken as the mean of 

the PDF P(θi|S,σ), as is widely used in statistical inference, or as its median value. In this 

paper, we define  as the maximum posterior probability (MAP), as is common in Bayesian 

image analysis (37):

[8]

METHODS

Transverse Relaxation Signal Models

Monoexponential Signal—The monoexponential model implicitly assumes a single pool 

of water protons, leading to transverse decay of the form:
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[10]

Thus, this model is characterized by the parameter pair θ = (A0 T2), with A0 representing the 

signal amplitude for TE = 0, incorporating T1-weighting, proton density, coil sensitivity and 

other machine factors. T2 represents the spin-spin relaxation time.

Stretched Exponential Signal—Biological tissues are characterized by a complex 

physicochemical structure (1-7, 38-41) so that the monoexponential function (Eq. 10), while 

often a useful approximation, would not be expected to account for important features of 

transverse relaxation (42). Therefore, alternative relaxation models that permit a more 

detailed description of the relationship between relaxation or diffusion processes and 

internal material structure have become of interest (43-47).

The stretched exponential decay model is given by

[11]

with parameters θ = (A0 g=a T2; α ∈ (0,1] defines the deviation from monoexponential 

decay. This arises in several settings, including as an approximation to a continuous 

distribution of decay constants and in systems with memory as represented by fractional 

order processes (47).

Biexponential Signal—Restricting METRA to biexponential signals has been found to 

be a good approximation to transverse relaxation in a number of studies and is particularly 

appropriate in settings of only moderate SNR, such as is achievable clinically (48-51). For 

the case of two distinct proton pools that are not exchanging, the signal decay function is

[12]

with parameters θ = (A0fsT2,sT2,l), where fs is the fraction of the short T2 component, and 

T2,s and T2,l are the spin-spin relaxation times of the short-T2 and long-T2 components, 

respectively. It is well-known that derivation of accurate parameter values can be highly 

problematic (15-16) even for this simple biexponential signal model.

Parameter Estimation Methods

For each of the above three signal models, six methods of parameter estimation were 

implemented. They are defined by use of NLLS versus Bayesian analysis, and by signal 

models using Gaussian noise, Gaussian noise plus an offset, and Rician noise. More 

precisely, the first method, denoted NLLSG, uses the Gaussian estimator in Eq. 5, and 

consists of NLLS minimization of Sn − EGauss[Sn], that is, Sn − A(θ;TEn), with A(θ;TEn) 

defined by Eqs. 10-12. The second method evaluated, NLLSG,O, uses the Gaussian estimator 
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plus an offset ε, and consists of NLLS minimization of Sn − (A(θ;TEn) + ε). This is the 

simplest method used to account for noise in magnitude reconstruction (52-54) (Fig. 1). The 

third method, NLLSR, makes full use of the expectation value of the Rician distribution 

given by Eq. 2, and involves NLLS minimization of Sn − ERice[Sn]. The fourth method, 

MAPG, is a Bayesian analysis using the Gaussian likelihood function, LGauss(S|θ,σ), given 

by Eq. 6. The fifth parameter estimation method, MAPG,O, is a Bayesian analysis using the 

Gaussian likelihood function, LGauss(S|θ,σ), given by Eq. 6, but incorporating an offset, so 

that (A(θ;TEn) is replaced by (A(θ;TEn). The sixth method evaluated, MAPR, is a Bayesian 

analysis using the Rician likelihood function, LRice(S|θ,σ), given by Eq. 3. The 

marginalization process required in the Bayesian-based methods is described in the 

Appendix. All numerical calculations were performed using Matlab (MathWorks, Natick, 

MA, USA), with NLLS fits performed with the Levenberg-Marquardt algorithm.

Estimations of Standard Deviation, Variance and Offset of the Noise

We take the standard deviation, σ, variance, σ2, and offset, ε, of the noise as known 

parameters. These were input values in our simulation studies, while in phantom and in vivo 

studies they were estimated from background regions in which A(θ;TEn) = 0 so that Eq. 1 

reduces to the Rayleigh distribution (11, 55-56):

[13]

The first and the second moments of PRayleigh(Sn|σ) are (57-58)

[14]

and

[15]

from which unbiased estimates of σ, σ2 and ε may be obtained through 

(57-58), where K is the total number of voxels taken as background. Note that to improve 

the quality of these estimates, the signal-free regions were formed from the background 

intensity in all of the echo images.

Bias and Dispersion Calculations

For each method, the relative bias, a measure of accuracy, was defined from the difference 

between the true value, θi, and the mean of the estimated value, , by 

. In simulations, M is the total number of noise realizations, 

while in phantom studies it is the total number of voxels for which parameter maps were 
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generated. In simulations, true parameter values were known, while in phantom studies they 

were obtained from a monoexponential fit (12) of high SNR data acquired from each 

phantom compartment separately (see below). Note that the phantom studies were limited to 

the monoexponential and biexponential models. Relative dispersion, a measure of precision, 

was similarly defined by 

Relative bias and dispersion were calculated after removal of voxels with extreme outliers 

(VEO) using Tukey’s method (59) to correspond to actual practice (12, 15).

In contrast to simulations and phantom studies, exact parameter values for the brain were 

unknown so that relative bias and dispersion cannot be evaluated. Instead, relative error 

maps for each estimated parameter were calculated using MAPR analysis of high SNR 

imaging data as the reference, although we note that maps were essentially identical for all 

analysis methods using the high SNR data. For each estimated parameter, errors in the 

values obtained at lower SNR were calculated from the difference between the estimated 

value, , and its reference value, , according to .

In simulations, SNR was defined as A(θ;TEn)/σ, where TE1 is the shortest echo time at 

which data were generated. In phantom and in vivo studies, it was defined as 

 (60), where S̄(TE1) represents the mean signal calculated from a large 

region of the MR image obtained at TE1.

Numerical Simulation Studies

MC simulations were performed using monoexponential (Eq. 10), stretched exponential (Eq. 

11), and biexponential (Eq. 12) signal models for a wide range of underlying parameters and 

as a function of SNR, achieved through addition of Rician noise (Fig. 1). For all simulations, 

a total of 32 data points were generated with TEn increasing uniformly from 8 to 256 ms. 

The required starting values needed in the NLLS analyses were set to their true values. For 

each signal model and for each set of parameters, relative bias and dispersion were 

calculated over 1000 noise realizations for each estimated parameter using the six analysis 

methods.

MC Simulations 1: Effect of SNR—MC simulations were performed to examine the 

effect of SNR on the relative bias and dispersion in derived parameters. The underlying true 

model parameters were chosen to reflect values obtained from the in vivo study of human 

brain (below).

For the monoexponential (Eq. 10), T2 = 70 ms was used, with Rician noise added to achieve 

SNR ranging from 10 to 60 in increments of 10. For the stretched exponential (Eq. 11), T2 = 

60 ms and α = 0.8 were used, with SNR values ranging from 10 to 100 in increments of 10. 

For the biexponential analysis (Eq. 12), the underlying parameters were fs = 0.25, T2,s = 20 

ms and T2,l = 90 ms, with an SNR range of 30 to 120, again in increments of 10. The 

different SNR ranges were selected to account for the difference in complexity of these three 

signal models. For example, the SNR requirement for the monoexponential is less stringent 
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than for the other two models, so lower values of SNR were appropriate for the analysis. 

The parameter estimates begin to break down severely at the lower limit of SNR, and 

became relatively stable at the higher value, in each case.

MC Simulations 2: Effect of Underlying Parameters—MC simulations were also 

used to explore the effect of underlying true parameter values on the relative bias and 

dispersion in derived parameters. The wide range of underlying parameters investigated is 

summarized in Fig. 3-5. Again, appropriate values of SNR were selected, with SNR of 10 

and 50 for the monoexponential, 10 and 70 for the stretched exponential, and 30 and 100 for 

the biexponential.

Phantom Studies

Phantom studies were designed to validate the monoexponential and biexponential MC 

simulations. Three rectangular tubes (5 × 3 cm) filled with deionized water were doped with 

different concentrations of CuSO4. The tubes were then placed together in the MRI system, 

and images were acquired using a 3D CPMG sequence (61-62) on a 7T small animal MRI 

scanner (Bruker Biospin GmbH, Rheinstetten, Germany) equipped with a linearly polarized 

birdcage coil. 35 T2-weighted images with TEn increasing linearly from 5.1 to 180 ms were 

acquired. Other imaging parameters included TR = 1000 ms, field of view (FOV) = 70 × 40 

× 40 mm3, and matrix = 140 × 80 × 20. Images were obtained with different numbers of 

signal averages, ranging from 1 to 8. Linear combinations of complex imaging data from 

each pair of phantoms were created and added with consistent phases to obtain Rician-

distributed magnitude images with different compartment fractions (15). Relative bias and 

dispersion were calculated for each estimated parameter using the six analysis methods. 

Fiducial T2 values were obtained from high SNR data acquired from each tube 

independently and fit to a monoexponential; they were 14 ± 2 ms, 58 ± 1 ms and 112 ± 3 ms 

from tubes 1, 2 and 3, respectively. These were used as initial estimates for the NLLS 

analysis.

Phantom Study 1: Effect of SNR—Images acquired from tube 2, with T2 = 58 ms, were 

fit to a monoexponential using the six investigated methods. Data from the separate 

measurements on tube 1, with T2 = 14 ms, and tube 3, with T2 =112 ms, were constructed as 

described above in order to synthesize two-component images with fs = 0.33 and with a 

range of SNR's. Each voxel from these composite images was fit to a biexponential function.

Phantom Study 2: Effect of Underlying Parameters—T2 weighted images were fit 

to a monoexponential independently for each of the three imaged tubes. For the 

biexponential, different composite images were created with several fs values and ratios 

T2,l/T2,s (see Fig. 8). Fits were performed at two different SNR's, as indicated in Fig. 8.

In vivo Study

T2-weighted images of the brain of a 40 year-old male volunteer were acquired with a 3T 

whole-body MRI system (Achieva, Philips Medical Systems) equipped with a quadrature 

head coil. 32 axial MR images were obtained using a 3D CPMG sequence with TEn 

increasing linearly from 8 to 256 ms, TR = 700 ms, FOV = 240 × 240 × 15 mm3 and matrix 
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= 320 × 240 × 5. Images were obtained for different numbers of signal averages to vary 

SNR. Data were fit to monoexponential, stretched exponential and biexponential functions 

using the six methods investigated. Relative error maps were then calculated as described 

above in the "Bias and Dispersion Calculations" section. Parameter values obtained at the 

highest SNR were used as starting values for the NLLS-based methods.

RESULTS

Numerical Simulation Studies

Results of the MC simulations were obtained after removal of VEO. The number of 

removed VEO was almost identical among the six methods, and was less than 1% at the 

larger, though still moderate, SNR for each. Even at the lower SNR, corresponding to truly 

modest image quality, VEO represented only a relatively small fraction of the total voxels. 

Less than 2% of the voxels were excluded for the monoexponential, less than 5% for the 

stretched exponential, and less than 8% for the biexponential.

Fig. 2 shows the relative bias, as a measure of accuracy, and the relative dispersion, as a 

measure of precision, in parameter estimates for the monoexponential, with T2 as the fit 

parameter of interest (Fig. 2a), the stretched exponential, with T2 and α as fit parameters of 

interest (Fig. 2b) and the biexponential, with T2,s, T2,l, and fs as fit parameters of interest 

(Fig. 2c). For the monoexponential signal model, all six methods showed bias and dispersion 

less than 10% in the estimation of T2 for SNR > 30 (Fig. 2a). However, bias and dispersion 

increased rapidly with decreasing SNR, particularly with NLLSG, NLLSG,O, MAPG and 

MAPG,O. At SNR = 10, NLLSR and MAPR showed bias and dispersion less than 10%. 

Although NLLSG,O and MAPG,O were the most precise, showing the smallest dispersion, 

they were the least accurate, that is, showed the greatest bias, over the entire range of SNR. 

Overall, all methods showed comparable dispersion, but the methods using the proper noise 

model, NLLSR and MAPR, demonstrated substantially lower bias. It is also of note that the 

Bayesian analysis always performed equivalently to or better than the corresponding NLLS 

analysis.

Results for the stretched exponential signal model are shown in Fig. 2b. For SNR > 20 all 

six methods showed a bias and dispersion of less than 15% in the estimation of T2. 

Achieving these bounds for estimation of α required SNR > 30 for NLLSG and NLLSG,O. 

Even at lower SNR's, NLLSR and MAPR remained highly accurate, that is, nearly bias-free, 

while bias became substantial for all other analyses. In addition, Fig. 2b shows that at the 

lower values of SNR, the dispersion in the estimates of T2 and α obtained using the NLLS-

based analyses was substantially higher than that obtained using the corresponding 

Bayesian-based methods.

Analysis of the biexponential signal model (Fig. 2c) indicates that bias becomes negligible 

as SNR increases for NLLSG, NLLSR, MAPG and MAPR in the estimation of all 

parameters. In contrast, dispersion remains substantial, particularly for fs and T2,s. In 

general, at lower SNR's, MAPR was found to provide the least biased parameter estimates. 

Similar performance was obtained using NLLSR for the estimation of T2,s and T2,l. In 

addition, the dispersion in parameters estimated using NLLS-based methods was 
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substantially higher than that obtained using Bayesian-based methods. Finally, bias and 

dispersion for T2,l were substantially lower than for T2,s, presumably due to the greater SNR 

and superior signal sampling for that component of the combined signal. NLLSG,O was 

found to perform well for T2,l estimation even at low SNR.

Figures 3-5 show relative bias and dispersion in the estimation of parameters for the 

monoexponential (Fig. 3), stretched exponential (Fig. 4) and biexponential (Fig. 5) signal 

models, for a range of underlying parameters and for two representative SNR's. Figure 3 

shows that at high SNR, all methods performed well, with low bias and dispersion in the 

estimation of T2. Differences in performance become apparent at lower SNR, for which the 

inclusion of the Rician noise model is of greater potential importance. We found that 

NLLSR and MAPR provided estimates with the least bias, that is, the greatest accuracy, 

while MAPG,O and MAPR provided estimates with the least dispersion, that is, the greatest 

precision, although NLLSR also provided precise estimates in several cases. Both bias and 

dispersion were found to decrease with increasing T2, reflecting the higher SNR throughout 

the duration of the simulated data acquisition. Results for the stretched exponential signal 

model are shown in Fig. 4. At high SNR, all investigated methods provide low bias and 

dispersion in parameter estimation for the combinations of T2 and α shown. However, at low 

SNR, MAPR was the least biased for the estimation of both T2 and α, with NLLSR also 

performing well. This highlights the importance of appropriate noise modeling, regardless of 

the analytic method used for parameter estimation. Overall, the NLLS-based methods 

showed higher dispersion than the Bayesian-based methods. The bias and dispersion in 

estimates of T2 and α decrease with increasing T2, again reflecting improved SNR and signal 

sampling throughout the signal decay. Figure 5 summarizes the results for the biexponential 

signal model. As shown, the bias and dispersion in the estimation of fs, T2,s and T2,l increase 

with a decreasing ratio T2,l/T2,s or with increasing disparity between component sizes. In 

general, for low SNR, MAPR was found to be the least biased for the estimation of fs, T2,s 

and T2,l, with NLLSR also performing well in estimating T2,s and T2,l. Overall, Fig. 5 

indicates that the dispersion in the estimation of fs, T2,s and T2,l obtained using the NLLS-

based methods was higher than with the Bayesian-based methods.

Phantom Studies

As for the MC simulations, results of the phantom measurements were obtained after 

removal of VEO. Figure 6 shows the relative bias and dispersion, as a function of SNR, in 

parameter estimates determined from phantom measurements using single-phantom 

monoexponential (Fig 6a) and dual-phantom biexponential (Fig. 6b) data. At high SNR, all 

methods demonstrated low bias and dispersion. For the monoexponential case, at low to 

moderate SNR, the bias was substantially lower with NLLSR and MAPR than it was using 

the other methods for the estimation of T2 (Fig. 6a). The dispersion in the estimation of T2 

was comparable among all methods. Similarly, for the biexponential analysis, bias in the 

estimates of T2,s and T2,l was minimized through use of NLLSR and MAPR (Fig. 6b). For fs, 

MAPR was found to demonstrate the least bias, although all of the Bayesian-based methods 

performed well with the exception of MAPG,O in the estimation of T2,l. This is likely 

attributable to the limited echo acquisition window, resulting in incomplete sampling of the 

decay of the T2,l component. This effect is also seen in the poor performance of NLLSG,O. 
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In addition, the dispersion in estimates of all derived parameters obtained using the NLLS-

based methods was substantially greater as compared to Bayesian-based estimates.

The effect of the underlying parameters T2, fs, T2,sand T2,l on the relative bias and dispersion 

in parameter estimates is summarized in Figs. 7-8. As shown, bias resulting from NLLSR 

and MAPR was the lowest, while dispersion using Bayesian-based methods was overall 

lower than using NLLS-based methods. In general, both bias and dispersion decreased with 

increasing T2 (Fig. 7). For the biexponential case, bias and dispersion both increase with a 

decreasing ratio T2,l/T2,s and with an increasing disparity between component sizes (Fig. 8).

In vivo Study

Figure 9 shows parameter maps derived from high SNR (~ 200) data (left hand column) 

using the six investigated methods, and corresponding parameter maps obtained at moderate 

SNR (~ 50), for monoexponential (Fig. 9a), stretched exponential (Fig. 9b) and 

biexponential (Fig. 9c) signal models. Figure 9 shows substantial random variation of 

estimated values in several image regions. To examine this in more detail, relative error 

maps, calculated as described in the Methods and describing the deviation of estimated 

parameter values from those obtained from the high SNR fiducial images, were created (Fig. 

10). The mean and standard deviation of the relative errors are reported at the bottom of 

each error map. At the moderate SNR, all methods performed well for the estimation of T2 

in monoexponential decay, although MAPR and NLLSR were the best. These two methods 

also showed the best performance for the estimation of T2 and α in the stretched exponential 

signal model. For biexponential analysis, the SNR was insufficient to provide a high-quality 

estimate of fs using any of the analysis approaches, although MAPR performed the best. T2,s 

and T2,l were estimated more accurately, although only T2,l could be estimated to within ~ 

15%, as achieved by MAPR.

DISCUSSION

Parameter Estimation Methods

Bayesian Probability vs NLLS Approaches—The elegant work of Neil and Bretthorst 

(17) evaluated estimates of diffusion parameters for a two-compartment model at two values 

of SNR, using both simulations and spectroscopic NMR data exhibiting Gaussian noise. 

Substantial advantages were found for Bayesian analysis as compared to NLLS in terms of 

both accuracy and precision. Our work builds on this and extends it in several ways, using 

simulations, and phantom and human brain imaging experiments. First, we evaluate three 

distinct and widely-used signal models for transverse decay, the monoexponential, stretched 

exponential and biexponential. In addition, for each of these models, we evaluate the 

performance of three approaches to incorporating noise, namely, the assumption of Gaussian 

noise, the assumption of Gaussian noise that asymptotes to a non-zero value, and the 

assumption of Rician noise, as is most appropriate for magnitude MR images. Further, we 

evaluated the accuracy and precision with which parameters of interest can be estimated for 

wide ranges of SNR and underlying parameters.
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Overall, we found improved accuracy and precision using the Bayesian-based methods as 

compared to the NLLS-based methods (Figs. 2-8). This may be attributable to the fact that in 

Bayesian analysis, a given parameter is estimated independently of the others through 

marginalization, serving to reduce interdependence of parameter estimates by integrating 

over all values of the marginal parameters. This is in contrast to NLLS where unknown 

parameter estimates are highly correlated through the use of simultaneous estimation. This 

correlation has been previously demonstrated through Cramer-Rao lower bound 

calculations, MC simulations, and phantom measurements (8, 15-16). In addition, the NLLS 

algorithm may fail to find global minima due to the presence of local minima. Although 

such local minima are absent for the monoexponential, they are present for the bi- and 

stretched-exponential cases. This problem becomes more acute with the flattening of the 

surface of the least squares residuals seen with increasing model complexity (Supporting 

Figure S1). In fact, the performance of the Bayesian and NLLS methods were very similar 

for the monoexponential analysis, with the small differences being potentially attributable to 

the marginalization over A0.

Finally, we found that in spite of its additional model complexity, potentially leading to 

substantial analytic difficulties, the performance of MAPR provides notable improvement in 

accuracy and precision compared to NLLSR.

Rician vs Gaussian noise models—Our analyses show substantial improvements in 

accuracy and precision when Rician noise model is incorporated into the analysis of 

magnitude imaging data, with estimates performed through either NLLS or Bayesian 

analyses. Similar results have been previously reported for the estimation of T1, T2 and T2
* 

using NLLS (12-13, 15), and for the estimation of T2 using Bayesian analysis (21).

It is common practice to assume Gaussian-distributed noise in conventional magnitude MR 

images with high SNR (42, 63-66). Our results (Figs. 2-8) serve to validate this and 

demonstrate that high-quality parameter estimates may be obtained with the Gaussian 

approximation. However, we found that with more modest SNR, there is a substantial loss of 

performance. Attempting to compensate for the asymptotic positivity of the noise by using 

Gaussian noise with offset model was found to be of benefit when fitting data with small T2, 

for which the signal is dominated by noise in the later echoes.

Unknown vs estimated noise parameters—All calculations were performed 

assuming known values for σ, σ2 and, ε, such as would be based on separate measurements 

in order to reduce the dimensionality of parameter space. As expected, MC simulations 

(data not shown) indicate that this strategy resulted in increased accuracy, presumably 

through reducing the number of local minima and the interdependence of parameter 

estimates. A modest increase in precision was also found. In addition, computational times 

were considerably reduced, particularly for the Bayesian-based methods since 

marginalization over σ was not needed.

The quality of parameter estimates of course depends upon the quality of the estimates of 

. Simulation analysis (Supporting Table S1) indicates that, as expected, 

moderate errors in the estimation of noise parameters, such as would be the case for 
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estimation from large background regions of the image, have a negligible impact on 

parameter estimates. This was found to be the case for all fitting methods and for all three 

signal models. Clearly, the presence of non-random artifacts such as streaking or ghosting 

requires more sophisticated estimates of noise (67-68). In any event, in actual application, 

the strategy of independent noise estimation is to be preferred over incorporation of yet 

another parameter into the Bayesian or NLLS analysis.

Results of NLLS and Bayesian Probability Approaches

Performance of the NLLS-based methods—All three NLLS-based methods were 

found to be sensitive to initial estimates, highlighting the necessity of establishing a 

reproducible algorithm for selection of these estimates, especially in the low SNR regime. In 

contrast, at high SNR, convergence to global minima was attained even for relatively poor 

initial estimates (data not shown). However, in spite using true parameter values as starting 

points, we found a loss of performance as the total number of unknown parameters 

increased, such as in comparing the monoexponential to the biexponential. This is likely 

attributable to the increase in the number of local minima and to the flattening of the surface 

of least squares residuals as the number of parameters increases (Supporting Figure S1).

In some cases, we found that NLLSR compared favorably to MAPR. However, our approach 

implemented an unrealistically favorable NLLSR analysis by providing true values as 

starting parameters, while in actual experiments these values are of course not known. It is 

well-known that inaccurate initial guesses render the NLLS algorithm highly susceptible to 

finding local rather than global minima (69), so that this procedure in effect penalizes the 

Bayesian analysis as compared to NLLS.

Performance of the Bayesian-based methods—One drawback of the Bayesian 

approaches is the computational time required to compute the integrals needed for the 

marginalization. In our direct implementation, computational time increased considerably 

with increasing dimensionality of the parameter space. To address this, the Markov Chain 

Monte Carlo method can be used so that the posterior distribution can be sampled, rather 

than directly computed (20, 70).

Numerical Simulations, Phantom and In vivo Studies

Our simulation results show that in the limit of high SNR, all six investigated methods 

yielded results that were accurate and precise. However, large differences in performance 

were seen at low to moderate SNR. Overall, MAPR performed the best of all methods, 

although NLLSR provided comparable results in many cases. As an example, the accuracy 

and precision of the estimate of the fraction of the rapidly decaying component, fs, in the 

biexponential model were greatly improved using MAPR as compared to the other methods, 

including NLLSR. This is of particular importance, since fs has been proposed as a 

biomarker of pathology in several biological tissues, including cartilage (1-2, 38-39), bone 

(51) and brain (3-7, 40).

Our in vivo brain study indicates that, as expected, any of the six methods works well at high 

SNR. However, MAPR provides the most robust parameter estimates, especially in the low 
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SNR regime. This can be seen visually from the parameter maps (Fig. 9) and from the error 

maps (Fig. 10). In contrast to MC simulations and phantom experiments, for the in vivo 

analyses there was no underlying correct model for comparison, and both monoexponential 

and biexponential models have been used in the analyses of transverse relaxation data from 

brain. In diffusion studies of brain, mono-, bi- and stretched-exponentials have all been 

applied (14, 43, 46, 71-73).

We found that in general, methods incorporating Rician noise performed better than those 

using Gaussian noise, regardless of the signal model. This is in agreement with previous 

work on cartilage for monoexponential T2 (12) and biexponential T2
* (15) measurements. 

Our results also indicate that Bayesian-based methods exhibit higher precision than NLLS-

based methods.

Our MC simulations, and phantom and in vivo experiments, all highlight the importance of 

considering the correct form of the noise distribution for magnitude MR images. We have 

used the Rician distribution, as is appropriate for single-coil signal reception. However, 

multiple receiver coils are widely used to increase speed or SNR. If uncorrelated, equally 

distributed and stationary noise is assumed, the noise distribution in the resulting magnitude 

images is described by a non-central χ-distributions

where R denotes the number of channels (55, 74). The corresponding likelihood function is 

given by

This expression can be incorporated into a Bayesian approach for parameter estimation in a 

fashion analogous to the above. This can be compared to an NLLS minimization using the 

first moment of Pχ(Sn | A(θ;TEn),σ,R) as the expectation value of the acquired data

(75-78), where 1F1 is a confluent hypergeometric function.

Our results indicate that in general, Bayesian analysis provides more reliable estimates of 

transverse decay parameters than does NLLS when the underlying signal model is known. In 

realistic experiments, the correct signal model may be unknown. We believe that previous 

results (17, 20, 79) and the results presented here provide strong motivation for 

investigations of model selection using Bayesian probability theory.
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APPENDIX

We define details of the marginalization used in Bayesian parameter estimation. To obtain 

the estimated parameter, , (Eqs. A1-A6), the corresponding posterior probability, P(θi | 

S,σ), was computed for a grid of parameter values, θi. The MAP estimate, , corresponds to 

the value for which P(θi | S,σ) attains the maximum of the computed values (17, 20-21, 37). 

Integrals were performed numerically using the integral, integral2 and integral3 commands 

in Matlab for mono-, stretched-, and biexponential signal models, respectively. The 

integration limits were chosen such that the contribution of the relevant likelihood function 

to the integral outside these limits was negligible.

Bayesian inference requires assignment of a prior probability based on pre-existing 

knowledge (80). This choice becomes of particular importance when the likelihood function 

is not the dominant term in the posterior probability such as is often the case when only a 

limited number of measurements are available (37). In the present work, the number of 

measurements was much greater than the number of derived parameters, so that results are 

largely independent of reasonable selections of prior probabilities (data not shown). We 

assumed a formally improper uniform prior in all cases; that is, the P(θ) term in Eq. 7 was 

taken as unity. With limited data, the selection of the prior is more critical (37).

Likelihood functions for Bayesian-based methods

Each Bayesian-based method is defined by its likelihood function, L(S|θ,σ) and a uniform 

prior. For MAPR , L(S|θ,σ) = LRice(S|θ,σ) (Eq. 3), for MAPG , L(S|θ,σ) = LGauss(S|θ,σ) (Eq. 

6), and for MAPG,O, L(S|θ,σ) = LGauss(S|θ,σ) with A(θ;TEn) in Eq. 6 replaced by A(θ;TEn) + 

ε.

Marginalization Integrals for Signal Models

Monoexponential Signal Model

The estimate of T2 was obtained according to

[A.1]

where A(θ;TEn) is given by Eq. 10.
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Stretched Exponential Signal Model

Estimates of T2 and α were obtained according to

[A.2]

[A.3]

where A(θ;TEn) is given by Eq. 11.

Biexponential Signal Model

Estimates of fs, T2,s and T2,l were obtained according to

[A.4]

[A.5]

[A.6]

where A(θ;TEn) is given by Eq. 12.
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Fig. 1. 
Signals as a function of TEn generated for T2 = 30 ms and A0 = 1, assuming 

monoexponential transverse decay (Eq. 10) with SNR of 20 (Panel a) and 100 (Panel b). The 

noisy signal, S(TEn), was obtained through addition of Rician noise to the underlying noise-

free signal,A(θ;TEn), according to  where the noise 

in the real and imaginary channels, Nre and Nim, was generated from a Gaussian distribution 

with zero mean and standard deviation σ.
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Fig. 2. 
Monte Carlo simulation results for all three investigated signal models showing relative bias 

and dispersion in parameter estimates as a function of SNR using the fitting methods 

NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR. (a) Results for T2 assuming the 

monoexponential signal model with T2 = 70 ms as the underlying parameter value. (b) 

Results for T2 and α assuming the stretched exponential signal model with T2 = 60 ms and α 

= 0.8. (c) Results for fs, T2,s and T2,l assuming the biexponential signal model with fs = 0.25, 

T2,s = 20 ms and T2,l = 90 ms. Overall, bias and dispersion were substantially reduced 

through use of Rician noise model and Bayesian analysis; see text for detailed discussion.
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Fig. 3. 
Relative bias and dispersion in T2 estimates obtained using Monte Carlo simulations for the 

monoexponential signal model at SNR of 10 (left column) and 50 (middle column) using the 

NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR analysis methods for five different 

input T2 values (right column). Decreased bias and dispersion, that is, improved accuracy 

and precision, were achieved through use of Rician noise model and Bayesian analysis as 

discussed in detail in the text.
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Fig. 4. 
Relative bias and dispersion of T2 and α estimates obtained using Monte Carlo simulations 

for the stretched exponential signal model at SNR 10 (left column) and 70 (middle column) 

using NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR analysis methods for five 

different combinations of T2 and α values (right column). Decreased bias and dispersion, 

that is, improved accuracy and precision, were achieved through use of Rician noise model 

and Bayesian analysis as discussed in detail in the text.
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Fig. 5. 
Relative bias and dispersion of the estimates of fs, T2,s and T2,l obtained using Monte Carlo 

simulations for the biexponential signal model at SNR of 30 (left column) and 100 (middle 

column) using NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR analysis methods 

for five different combinations of fs, T2,s and T2,l (right column). Decreased bias and 

dispersion, that is, improved accuracy and precision, were achieved through use of Rician 

noise model and Bayesian analysis as discussed in detail in the text.
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Fig. 6. 
Phantom study results showing relative bias and dispersion in parameter estimates as a 

function of SNR using the fitting methods NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and 

MAPR. (a) Results for T2, assuming the monoexponential signal model with T2 = 58 ms as 

the underlying parameter value. (b) Results for fs, T2,s and T2,l assuming the biexponential 

signal model with fs = 0.33, T2,s = 14 ms and T2,l = 112 ms as underlying parameter values. 

Overall, accuracy and precision were substantially improved through use of Rician noise 

model and Bayesian analysis; see text for detailed discussion.
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Fig. 7. 
Relative bias and dispersion obtained from phantom measurements for the estimation of T2, 

with a monoexponential signal model, for SNR of ~ 12 (left column) and ~ 46 (middle 

column), using NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR analysis methods 

for three different input T2 values (right column). Improvements in accuracy and precision 

are seen through use of Rician noise model and Bayesian analysis, as discussed in the text.
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Fig. 8. 
Relative bias and dispersion obtained from phantom measurements for the estimation of fs, 

T2,s and T2,l, with a biexponential signal model, for SNR of ~ 30 (left column) and ~ 95 

(middle column), using NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR analysis 

methods, for four different combinations of input fs, T2,s and T2,l values (right column). 

Improvements in accuracy and precision are seen through use of Rician noise model and 

Bayesian analysis, as discussed in the text.
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Fig. 9. 
Reference parameter maps obtained at high SNR (~ 200) using the MAPR method (left 

column) and parameter maps obtained at moderate SNR (~ 50) using the fitting methods 

NLLSG, NLLSG,O, NLLSR, MAPG, MAPG,O and MAPR (columns from left to right). (a) T2 

maps assuming the monoexponential signal model. (b) T2 and α maps assuming the 

stretched exponential signal model. (c) fs, T2,s and T2,l maps assuming the biexponential 

signal model. Greater consistency is achieved through use of Rician noise model and 

Bayesian analysis; see text for detailed discussion.
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Fig. 10. 
Relative error maps indicating the deviation of the parameter maps obtained at modest SNR 

(~ 50), shown in columns 2-7 of Fig. 9, from the high SNR fiducial map shown in column 1 

of Fig. 9. The columns show the results obtained through use of NLLSG, NLLSG,O, NLLSR, 

MAPG, MAPG,O and MAPR for (a) the monoexponential signal model, (b) the stretched 

exponential signal model, and (c) the biexponential signal model. The mean and standard 

deviation of the relative error is given below each error map. Clear improvements are seen 

through use of Rician noise model and Bayesian analysis, as discussed in detail in the text.
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