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Abstract Rare conditions are sometimes ignored in biomed-
ical research because of difficulties in obtaining specimens
and limited interest from fund raisers. However, the study of
rare diseases such as unusual cancers has again and again led
to breakthroughs in our understanding of more common dis-
eases. It is therefore unsurprising that with the development
and accessibility of next-generation sequencing, much has
been learnt from studying cancers that are rare and in partic-
ular those with uniform biological and clinical behavior. Here-
in, we describe how shotgun sequencing of cancers such as
granulosa cell tumor, endometrial stromal sarcoma, epitheli-
oid hemangioendothelioma, ameloblastoma, small-cell carci-
noma of the ovary, clear-cell carcinoma of the ovary,
nonepithelial ovarian tumors, chondroblastoma, and giant cell
tumor of the bone has led to rapidly translatable discoveries in
diagnostics and tumor taxonomies, as well as providing in-
sights into cancer biology.
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Impact of study of rare tumors

The history of biomedical research has repeatedly shown that
with the advent of new methodologies, the study of rare, but
clinically well-defined disease entities has led to the

generation of a disproportionate amount of knowledge. For
instance in the eighteenth century, the peculiar scrotal skin
cancers of adolescent males with a history of occupation as
chimney sweeps led Percivall Pott to describe one of the ear-
liest associations of workplace hazards and cancer [1]. His
study shed light on the potential role of environmental factors
in cancer formation and helped lay the foundations for the
science of epidemiology. Another example happened in
1961 when Sir Anthony Epstein came across D.P. Burkitt’s
description of an unusual new children’s cancer in Africa with
a geographic distribution related to certain rainfall and tem-
perature patterns [2]. Epstein thought of a possible climate-
dependent vector and initiated a study, during a time of great
advancements in molecular biology and virology, that led to
the discovery of the Epstein Barr virus, the first proven
human cancer virus [3]. Retinoblastoma was another
relatively rare condition that led to the conceptualization
of tumor suppressor genes. The comparison of kinetics
of unilateral sporadic versus bilateral familial cases led
Alfred Knudson Jr. to describe the two-hit hypothesis,
which revolutionized cancer biology [4].

It has long been clear that mutations play a critical role in
the development of cancer. However, many common cancers
are both biologically and clinically complicated and their mu-
tational landscape reflects such complexity [5, 6]. On the other
hand, some perhaps more obscure tumors, especially ones
affecting younger patients and specific sites, reveal simpler
genomic landscapes with characteristic mutations that allow
a more focused look at the oncogenic processes. That is not to
say that such scenarios are absent in more common cancers,
especially when examined as specific subtypes. However, rare
cancers should not simply be ignored because of their rarity or
the logistical difficulty of working with them. These anoma-
lies in nature, because of the very fact of their unusual pat-
terns, can hold the key to understanding more common tu-
mors. We term such neoplasms forme fruste tumors. Forme
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fruste refers to an attenuated manifestation of disease. We
recognize that these tumors are true neoplasms and in many
cases, cancers. However, they do not have the genomic bag-
gage and heterogeneity due to genomic instability as seen in
common cancers and it is this attenuated genomic phenotype
that makes them such tractable and useful targets for genomic
research. In this review, we will go over recent sequencing
studies of some forme fruste tumors which led to discoveries
of profound importance.

Era of next-generation sequencing

Ever since the discovery of DNA and its association with
human cancer, scientists and clinicians have dreamt of the
possibility to scrutinize it base by base. The ability to sequence
DNA, which quickly developed into a robust method by
Sanger sequencing [7], was a solid step toward this goal. With
the Human Genome Project establishing a map of the human
genetic code and rapid advances in computer technology, ev-
erything seemed to be in place other than cost and efficiency.
Billions of dollars and years of multi-institutional efforts
would not make nucleotide sequencing an accessible tool for
scientists to ask questions on a regular basis, and the limited
resources were not earmarked for the study of rare specimens.
The limitations of Sanger sequencing were in the termination
of polymerase reactions as well as in the need to separate the
products of these reactions by gel or other electrophoretic
systems [8]. Additionally, preparation of sequencing libraries
was necessary via transformation in E. coli or by an incredibly
large number of separate PCR reactions. However, with mas-
sively parallel sequencing platforms, the first shortcoming
was overcome by reversible fluorescent nucleotide addition
and imaging (used in Illumina platforms) or through monitor-
ing nucleotide addition via ion detection (used in Ion Torrent
platforms (Life Technologies)) both achieved by cyclic ma-
nipulation of polymerase or ligase enzymes [9]. Moreover, the
second shortcoming was resolved by in vitro library prepara-
tion via techniques such as emulsion PCR [10] (Ion Torrent)
or bridge PCR on solid surfaces [11, 12] (Illumina).With these
improvements, the sequencing cost and time requirements
have been vastly reduced. Advancements in bioinformatics
and the ability to more readily distinguish signal from noise
have also increased the feasibility of large- and small-scale
genomic studies. Thus, today, sequencing whole genomes
and transcriptomes is more accessible and has become a real-
ity for individual laboratories. We argue that we are in an
incredibly exciting era of molecular medicine where a new
Bmolecular microscope^ in the form of massively parallel se-
quencing, also commonly referred to as next-generation se-
quencing (NGS) or second-generation sequencing, is giving
rise to a whole new paradigm for the understanding of human
diseases.

We will discuss recent attempts to study forme fruste
tumors using NGS. The general approach and representative
bioinformatic tools employed in such studies are summarized
in Fig. 1. Specific forme fruste tumor types will be discussed
that exemplify the impact of such studies in three categories: a
better definition of an already known disease, establishment of
new disease subtypes, and development of novel insights into
oncogenic mechanisms. Table 1 includes a more comprehen-
sive summary of discoveries in forme fruste tumors with a
focus on recent NGS findings and their study designs. In
addition, Fig. 2, accompanied by Table 2, demonstrates the
broad range of pathways affected in such tumors. Lastly, we
will go over some of the challenges and scenarios where the
study of certain forme fruste-like tumors shows that their
genomic behavior is not always straightforward. In addition
to the broad array of discoveries made, the small number of
cases used in each successful discovery process is perhaps
noteworthy (Table 1) with the single case of endometrial stro-
mal sarcoma where, as described below, sequencing led to a
diagnostic and formal disease reclassification.

Better definition of an existing pathology

Pathognomic mutations allow a more specific definition of a
previously established histological diagnosis. Below, we will
discuss the cases of the FOXL2 mutation in adult-type granu-
losa cell tumors (GCTs) as well as theWTR1-CAMTA1 fusion
in epithelioid hemangioendotheliomas (EHEs).

Granulosa cell tumors and FOXL2 mutations

GCTs are rare, constituting only about 5 % of ovarian tumors
[13]. Until 2009, themolecular biology of this tumor remained
a mystery and hence, there was limited success in develop-
ment of therapeutics for aggressive cases [14]. There are two
subtypes of this tumor: adult-type and juvenile. These have
similar biomarker profiles but occur in different age groups
and have different histopathological features [13]. Adult-type
GCTs fit the concept of a forme fruste cancer: cytogentics had
shown a more stable genome compared to other ovarian tu-
mors [15], and the tumor subtypes have a consistent patholog-
ical presentation with cells that have maintained some levels
of differentiation expressing follicule-stimulating hormone re-
ceptors and inhibin [16]. There were no associations between
expression of common oncogenes and tumor suppressors,
such as MYC, TP53, ERBB2, or RAS family and outcomes
in GCTs [17]. Based on these facts, Shah et al. reasoned that
with sequencing of very few adult-type GCTcases, rather than
the massive sample sets needed for the more common genet-
ically complex tumors, considerable insight into the biology
of GCTs could be attained. Thus, only four samples of adult-
type GCTs were used for whole transciptome sequencing as a
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discovery cohort and 11 other ovarian tumors were sequenced
as a comparative cohort [18]. After alignment and removal of
previously reported germline insertions and deletions, there
were between 289 and 495 somatic nonsynonymous variants
in the GCTs. Genes with mutations in at least three of the four
cases that were not mutated in the comparative cohort were
considered for further follow-up [18]. The only potential mu-
tation found in all four cases was a C134W mutation in
FOXL2 [18]. The resulting mutant protein was still expressed
in GCTs as observed by immunohistochemistry in cases with
apparent homozygosity (likely through loss of the normal al-
lele), meaning most likely there was a gain/switch of function.
In a validation cohort of an additional 95 sex-cord stromal
ovarian tumors, specificity and sensitivity of the C134W mu-
tation in adult-typeGCTs was established [18]. This study was
significant in three aspects: it was the first time that a consis-
tent genetic event was associated with GCTs, the first time
FOXL2 had been indicated to have an oncogenic role in any
tumor, and the first example of a novel disease-defining

pathognomonic driver mutation being discovered using mas-
sively parallel sequencing.

Although FOXL2 is known to be critical for the develop-
ment of ovaries and is one of the early differentiation markers
[19], somatic mutations in this transcription factor had not
been linked to pathology before this study. The diagnostic
implications of the C134W mutant FOXL2 have already be-
come apparent [20, 21], and some studies have since looked at
potential mechanistic pathways. It has been suggested that the
hotspot FOXL2 mutation might have very particular effect in
a specific context: the mutant FOXL2 reduces the expression
of gonadotropin-releasing hormone (GnRH) receptor and
limits the GnRH-induced apoptosis seen in normal human
granulosa cells [22]. This finding shows that tissue-specific
pathways may be the bottlenecks that limit driver mutations
that can arise in a specific cell of origin. Furthermore, the
mutant FOXL2 has also been suggested to be less stable be-
cause of increased phosphorylation via GSK3β and MDM2-
mediated ubiquitination and proteasome degradation [23].

Discovery Cohort

WGSS Exome WTSS

T+
N

OR AND/OR

• Soma�c SNV/Indels
(mutationseq)

• CN (ADTEx)

• Soma�c SNV/Indels
(mutationseq)

• CN, LOH (TITAN)
• Regulatory regions (SnpEff) 
• Structural change (Destruct)

• SNV/Indels (mutationseq)
• Fusions (Defuse)
• Expression (cufflinks)

Align
(BWA)

Verifica�on in discovery samples
• SNV/Indel (Sanger/Targe�ed sequencing; T+N)
• CN/Expresssion loss (qPCR, IHC)
• Structural/Fusion (FISH)

Valida�on
• Verifica�on methodology applied to addi�onal cases
• Frequency and significance of change

Align
(BWA)

Align
(GSNAP)

Fig. 1 A flowchart of the typical approach to a NGS study to discover
novel mutations. Representative bioinformatic programs are in
parenthesis and in bold (further details can be found in [75–81]). For
somatic mutations, tumor (T) and matched normal (N) samples,
obtained from blood or adjacent normal tissue, are used in whole
genome (WGSS) or exome sequencing to look for somatic mutations
and copy number changes (CN). Transcriptome analysis (WTSS) of
tumor samples will enable assessment of expressed mutations and
fusions as well as expression patterns. Confirmation of the NGS

findings using a different platform such as Sanger sequencing to
eliminate false positives would be the next step. Finally, to understand
the frequency of the findings in the disease of interest, analysis on a larger
validation cohort of tumor samples should be completed. For hotspot
mutations, sequencing; for inactivating mutations, sequencing or
immunohistochemistry (IHC); and for fusions, fluorescent in situ
hybridization (FISH) could be methods of choice for verification and
validation
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Hence, inhibition of GSK3β has already been identified as a
therapeutic target that stabilizes mutant FOXL2 and this sta-
bilization may in turn lead to increased apoptosis.

WWTR1-CAMTA1 in EHE

Another example of a disease-defining mutation came with
EHE, a rare tumor that can present diagnostic challenges.
The tumor is a vascular sarcoma with epithelial-looking cells
that show vascular differentiation with positivity for platelet
endothelial cell adhesion molecule and CD34 [24]. Through
the use of a single index case, Tanas and colleagues were able
to identify a fusion ofWWTR1 toCAMTA1 and establish it as a
specific event in EHE [25]. In a validation cohort of 47 cases,
they showed that rearrangements of the involved genes hap-
pened 87–89% of the time whereas none of 118 cases of other
vascular tumors showed these rearrangements [25]. Part of the
success in identifying this pathognomonic fusion was due to
the already known recurrent translocation involving chromo-
somes 1 and 3 in EHE [26, 27]. This meant that during the
bioinformatic analysis, focus was limited to the predicted fu-
sions involving genes on these chromosomes. Simultaneous-
ly, another group was also able to use the more traditional

method of fluorescent in situ hybridization (FISH) positional
cloning in 17 cases of EHE and also discovered the fusion
partners WWTR1 and CAMTA1 [28].

WWTR1 (also known as TAZ) encodes a transcriptional
coactivator containing the WW domain. This domain, which
is named as such because of the two conserved tryptophans,
mediates specific protein-protein interactions and has been
implicated in Hippo signaling, a critical pathway in regulating
organ size and keeping proliferation in check. WWTR1 is
phosphorylated by lats tumor suppressor kinases (LATS2)
which are key components of Hippo signaling and this in turn
leads to binding by 14-3-3 proteins which lead to cyto-
plasmic localization and hence inactivation of WWTR1
[29]. Interestingly, in the EHE fusion, the 14-3-3 bind-
ing domain of WWTR1 is maintained; however, one of
the critical LATS2 phosphorylation sites, namely
Ser311, is lost. This perhaps could render the fusion
protein partly resistant to inhibition by Hippo signaling.
CAMTA1 is a transcriptional regulatory protein with the
capacity to bind DNA. Because WWTR1 has no known
DNA-binding motifs and since the DNA-binding do-
main of CAMTA1 is maintained, the new fusion protein
might giveWWTR1 a new ability to bind DNA [25].

Fig. 2 Recent discoveries ofmutations in forme fruste tumors revealing a
broad range of pathways involved. Driver mutations from membrane
receptors, to signal transducers, chromatin modifying, and remodeling
complexes, as well as transcription factors and microRNA processing
factors have been described in a variety of specific tumor pathologies,
which may occur at low frequencies in the population. However, such

insight, when followed by an understanding of the tumorigenic
mechanisms involved, can vastly improve understanding of more
common cancers and tumor biology in general. This figure is
accompanied by Table 2 which includes a list of such tumors as well as
the indicated mutations (marked by asterisks)
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Establishment of new classification/subtype

In addition to identifying pathognomonic mutations by deep
sequencing a few samples, sequencing studies of forme fruste
tumors have led to new classification and subtype establish-
ments. Three examples are discussed as follows.

YWHAE fusions in high-grade endometrial stromal sarcoma

Endometrial stromal sarcoma (ESS) is a malignancy of the
uterus that had been previously linked with recurrent fusions:
the fusion of JAZF1, a transcriptional repressor, with members
of the polycomb complex including SUZ12, PHF1, and EPC1
[30, 31]. Yet, there remained a subset of ESS tumors, often
with a higher histologic grade, that could not be demonstrated
to carry fusions involving these genes. Lee and colleagues
thus decided to look in depth at the genomics of such cases
and ended up discovering recurrent fusions involving YWHAE
and the FAM22 family [32]. As in earlier work, Lee and col-
leagues first drew on results from cytogenetic studies and

noted a recurrent t(10;17)(q22;p13). Similar to the case with
the WWTR1-CAMTA1 fusion in EHEs, this karyotype infor-
mation greatly aided the analysis of the next-generation se-
quencing data such that, by the use of just one sample, they
were able to focus on the YWHAE-FAM22A translocation
event, later showing that in cases missing this particular fu-
sion, YWHAE was fused to homologs of FAM22A such as
FAM22B [32]. This work established a new entity of higher-
grade endometrial stromal sarcomas with a molecular defining
feature that distinguishes them from other endometrial stromal
sarcomas [33]. In fact, soon after the discovery of this novel
fusion, the World Health Organization incorporated the pres-
ence of YWHAE-FAM22 translocations into the classification
of endometrial stromal sarcomas [34].

BCOR-CCNB3 bone sarcoma

An exemplary case of NGS defining a new pathology came
through the study of peculiar small round cell bone sarcomas
that lacked the EWSR1-ETS fusions of the top candidate in the

Table 2 List of mutations indicated in Fig. 2

Pathway Target Mode of dysregulation Tumor example

SWI/SNF SMARCA4 Inactivated SCCOHT, medulloblastoma,
Burkitt’s lymphoma, NSCLC

SMARCB1 Inactivated Rhabdoid tumors, epithelioid sarcoma,
CRINET, SBC, schwannomatosis, renal
medullary carcinoma, gastrointestinal neoplasms

SMARCE1 Inactivated Familial multiple spinal meningiomas

ARID1A Inactivated CCC, EC, GC, neuroblastoma

Histone 3.3 H3F3A Hotspot GCBT, DIIPG

H3F3B Hotspot Chondroblastoma

Transcription factors GTF2I Hotspot Thymoma

MYOD1 Hotspot ERMS

FOXL2 Hotspot GCT

PRC2 complex SUZ12 Inactivated MPNST

EED Inactivated MPNST

miRNA processing DICER Hotspot NEOC, e.g., SLCT

DROSHA Hotspot WT

RTK signal transduction PDGFRB Hotspot IMT

Fusion FIM

NF1 Inactivated MPNST

RAF Hotspot M. Ameloblastoma

MAP2K1 Hotspot IGHV4-34+ HCL

GPCR GRM1 Fusion Chondromyxoid fibroma

RTK receptor tyrosine kinase, SCCHOT small-cell carcinoma of the ovary of the hypercalcemic type, NSCLC nonsmall-cell lung cancer, CRINET
cribriform neuroepithelial tumor, SBC sinonasal basaloid carcinoma, RMC renal medullary carcinomas, CCC clear-cell carcinoma of the ovary, EC
endometriod carcinoma of ovary, GC gastric cancer, GCBT giant cell bone tumor, DIPG diffuse intrinsic pontineglioma, ERMS embryonal rhabdo-
myosarcoma, GCT granulosa cell tumor, MPNST malignant peripheral nerve sheath tumor, NEOC nonepithelial ovarian cancer, SLCT Sertoli-Leydig
cell tumor, WT Wilm’s tumor, IMT inflammatory myofibroblastic tumor, FIM familial infantile myofibromatosis, M. Ameloblastoma mandibular
ameloblastoma, HCL hairy cell leukemia
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differential diagnosis, Ewing sarcoma. Four index cases were
used for RNA-seq with fusion analyses, and out of these
strong evidence for fusion transcripts was seen in two cases:
one that had an atypical Ewing fusion of FUS-FEVand another
with a completely novel fusion of exon 15 of BCOR to exon 5
of CCNB3 [35]. The authors then carried out a comprehensive
RT-PCR screening of 594 sarcomas lacking fusions classically
sought in diagnostics laboratories. Theywere able to identify an
additional 24 cases of sarcomas with the BCOR-CCNB3 fusion.
Microarray expression profiling of ten such cases showed that
these tumors had a different profile than other tumors in the
differential diagnosis such as Ewing sarcoma, and hence, a
whole new bone sarcoma was established [35]. BCOR is
thought to encode a ubiquitously expressed protein with a role
in repression of transcription through epigenetic mechanisms
and in mesenchymal stem cell function [36]. On the other hand,
CCNB3 expression is restricted to testis and the encoded protein
is a cyclin expressed during spermatogenesis [37]. The ectopic
expression of CCNB3 as a result of the fusion event could be
the driver of oncogenesis in this novel sarcoma. Indeed, expres-
sion of both the truncated andBCOR fusedCCNB3 in fibroblast
lines leads to increased proliferative capacity [35].

Maxillary versus mandibular ameloblastomas

Another recent study established that ameloblastomas, rare
benign tumors of the jaw thought to originate from ameloblasts
[38], have distinct recurrent mutations depending on whether
they arise in the maxilla versus the mandible. The maxillary
ameloblastomas harbor a SMO hotspot mutation, and the man-
dibular tumors have BRAF hotspot mutations [39]. Although
ameloblastomas are benign and rare tumors, this study empha-
sizes the mutational heterogeneity of histologically indistin-
guishable tumors depending on their location and highlights
the significance of molecular classification. As mutant BRAF,
commonly seen in melanomas, can be targeted with new ther-
apies, this finding also has immediate therapeutic implications.
Associations of tumor location and defining mutations have
also been identified, for instance, in mengiomas: those that arise
in the lateral and posterior regions bear NF2 mutation whereas
those in the anterior andmedial regions do not [40]. Even in rare
tumors with seemingly distinctive histology, there exist subsets
defined by specific molecular aberrations. The new disease
subclassifications thereby identified may be of great signifi-
cance for development and application of targeted therapeutics.

Insights into cancer mechanisms

The study of rare tumors has also expanded our knowledge
about cancer pathways. We will focus on recent findings of
recurrent mutations in chromatin remodelers, microRNA pro-
cessors, and histones.

SWI/SNF mutations in ovarian epithelial tumors
and meningiomas

Clear-cell ovarian carcinomas are the second most common
type of ovarian cancer [41] and until 2010 were not very well
studied despite evidence of relative genomic stability [42, 43].
With whole transcriptome sequencing/exome sequencing, re-
current mutations in ARID1A, a member of the already
established SWI/SNF chromatin remodeling complex were
found [44, 45]. The mutations were spread across the ARID1A
gene and led to its inactivation, thus suggesting that this gene
may function as a tumor suppressor. Although other core
members of the SWI/SNF complex had been linked to cancer
previously (SMARCB1 and SMARCA4 are known to have lost
expression in a variety of tumors), this study showed that
noncanonical members of the SWI/SNF complex could also
play important roles in tumorigenesis. Furthermore, lack of
evidence for mutations in other members of the complex
hinted at a context-specific tumor suppressor role for the in-
dividual members of the SWI/SNF complex. Additionally,
Wiegand and colleagues also showed that the mutation was
present in precursor atypical endometriotic lesions of the tu-
mor, and thus was likely an early driver of ovarian clear-cell
carcinoma. ARID1Amutations were later found in a variety of
other more common types of cancer including gastric adeno-
carcinomas [46] and colorectal cancers [47].

Small-cell carcinoma of the ovary of the hypercalcemic
type (SCCOHT) is another rare but genetically stable tumor
[48] that was discovered to have abnormalities in the SWI/
SNF complex. In this case, the core enzymatic unit of the
protein complex, SMARCA4, was mutated in an inactivating
fashion in the majority of cases, and almost all tumors of this
specific diagnosis stained negatively for SMARCA4’s protein
product BRG1 [49–52]. Although mutations in SMARCA4
have been described in more common cancers such as lung
adenocarcinomas [53], they occur in a fraction of cases and
are not the obvious drivers of oncogenesis. The studies in
SCCOHT with loss of SMARCA4 in almost all cases empha-
sized the driver role of SMARCA4 loss. Another example of a
critical driver role of SWI/SNF mutations came through the
NGS study of familial multiple spinal meningiomas [54]. In
familial cases, which tested negative for previously described
NF2 or SMARCB1 mutations, germline SMARCE1 mutations
were identified through exome sequencing. Again, the protein
was lost in the tumor samples but not in normal tissue, thus
suggesting a classic Kundson biallelic inactivation and a tu-
mor suppressor role of SMARCE1.

It should be noted that the reason for disease specificity of
SWI/SNF member mutations and indeed the steps in tumori-
genesis associated with their loss are not clear. SWI/SNF is
thought to regulate the expression of many genes and interacts
with many critical cancer pathways from cell cycle regulation
to hedgehog and Wnt signaling. Indeed, it has been suggested
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that perhaps the remaining complex, which still assembles
without the mutated members, might act as an oncoprotein
and drive tumorigenesis [55]. Thus, much is still to be clarified
in this area; however, since the establishment of the associa-
tion of the SWI/SNF complex with cancer in rather rare enti-
ties, we know today that about 20 % of all cancers have mu-
tations in this complex [56]. However, the impact of these
mutations is by and large yet to be established.

MicroRNA processing mutations in nonepithelial ovarian
tumors

Given abnormalities in microRNA levels in certain cancer, it
was thought that the genes encoding proteins involved in
microRNA processing might also be of significance in onco-
genesis. Germline mutations inDICER1were identified in the
rare familial pleuropulmonary blastoma–family tumor and
dysplasia syndrome [57]. However, the first evidence for so-
matic oncogenic mutations ofDICER1 came from the study of
nonepithelial ovarian tumors [58]. Recurrent somatic hotspot
mutations in DICER1 were identified across nonepithelial
ovarian tumor types and were most predominantly seen in
Sertoli-Leydig cell tumors [59]. Although low expression of
DICER1 has been previously associated with worse prognosis
in breast cancer [60] and ovarian tumors [61], the study of
these nonepithelial ovarian tumors changed the paradigm as
for the first time it was found that a hotspot genetic aberration
in DICER1 can drive cancer through the combination of loss
of one allele and a functionally deficient protein, this is an
aberration of the classic two-hit hypothesis [59]. In actuality,
DICER1 in nonepithelial ovarian tumors does not fit tradition-
al tumor suppressor or oncogene models. Rather, there seems
to be a mix of the two models involved in tumorigenesis.
There is an inherited inactivation of one copy of the genes,
and the remaining allele is not totally inactivated somatically,
which would be lethal in most cells rather is hypomorphic via
hotspot mutations (Fig. 2). The hotspot mutations are found in
the RNaseIIIb metal-binding site, reducing RNaseIIIb activity
and leading to a global loss in the processing of mature 5p
microRNAs but maintenance of 3p processing [62]. Later
studies showed that oncogenic mutations in DROSHA, anoth-
er microRNA processing gene, and associated global
microRNA changes also occur in Wilm’s tumor [63]. There-
fore, processors of microRNA represent another family of
cancer-associated proteins and forme fruste tumors were sig-
nificant in this realization.

Histone mutation in bone and central nervous system tumors

Another prime example of insights into cancer biology comes
from the identification of mutations in histones in forme fruste
tumors. Mutations in H3F3A, which encodes histone 3.3,
were identified in pediatric diffuse intrinsic pontinegliomas

(DIPGs) [64] and pediatric glioblastomas [65]. Histone 3.3
is a member of the histone 3 family which is associated with
active chromatin and is incorporated into chromatin through-
out the cell cycle [66–68]. Interestingly, an independently reg-
ulated gene named H3F3B also seemingly encodes the same
histone 3.3 protein; however, mutations in this gene were not
identified in DIPGs or glioblastomas. In a seminal study,
Behjati et al. described H3F3A driver mutations in another
tumor type: chondroblastomas [69]. Additionally, they also
discovered novel H3F3B mutations in giant cell tumors of
bone [69]. Chondroblastomas and giant cell tumors of bone
have similarities such as clinical presentation in the bone
epiphysis and the presence of large numbers of
osteoclastic giant cells; however, they tend to affect different
age groups and have different clinical outcomes. As men-
tioned, the two genes encode the same protein, yet Behjati
et al. showed a clear predilection toward H3F3A or H3F3B
depending on tumor type. Since there is no expression differ-
ence between these genes in giant cell bone tumor versus
chondroblastomas, temporal expression, for instance at the
time of tumor formation, is a possibility suggested by the
authors [69]. The above studies were of great value shifting
the focus from histone modifying complexes to histones them-
selves and showing that mutations in histones can be driver
mutations.

Concluding remarks

It should be noted that rare tumors with homogenous clinical
behavior are not always easy to study, and the examples used
above are success stories that have benefitted from the relative
ease of interpreting NGS results when the tumors are truly
simple genomically. Embryonic rhabdomyosarcomas have
clinical and morphologic features of forme fruste tumors but
ended up revealing a complex genome with various tumori-
genic mechanisms identified in different cases, unlike the
more consistent drivers seen in the tumor types described
above [70, 71]. Similarly, our own group’s study of epithelioid
sarcoma has revealed that despite its unique and consistent
pathology and biology, this tumor has a relatively complex
genome.

Yet, as a whole, forme fruste tumors have been particularly
informative in deep sequencing studies, expanding on our
knowledge of cancer biology in a resource-efficient manner.
Here, we have cited several successful examples of recent
findings that have lead to the discovery of pathognomonic
mutations, the establishing new subtypes and classifications,
such as the case of high-grade ESS, and providing insight into
mechanisms of cancer formation such as findings of SWI/SNF
and microRNA processing gene abnormalities. This is not to
say that such discoveries are not possible in more common,
genetically complex cancers, but in forme fruste tumors, the
reduced complexities in the genome allows for identification
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of driver oncogenic events with the use of very few samples.
Part of the reason for success in studying these tumors can also
be attributed to the fact that they have tended to be
understudied and not somuch is known about them. However,
their rarity comes with the challenge of a lack of banked sam-
ples appropriate for the nucleic acid extractions needed for
deep sequencing. Recent advancements in sequencing tech-
nologies mean that formalin-fixed paraffin-embedded tissues
can now be also used for deep sequencing, and hence, some of
the challenges in studying forme fruste tumors are already
being overcome [39, 72].

Beyond next-generation sequencing

The focus of this review has been on next-generation sequenc-
ing and its role as a molecular microscope helping define
tumors in a new way. However, sequencing technologies
and associated analytic capacities are advancing at a rapid rate.
The ability to study clonal evolution and diversity, which has
been successfully utilized in the breast cancer field for in-
stance [73], can be of great value if applied to rare conditions
to see the degree of genomic heterogeneity in these seemingly
simpler tumors (which should have a more interpretable
signal-to-noise ratio for subclone tracking). Additionally, tools
such as single-cell RT-PCR and single-cell next-generation
sequencing that are in development and reviewed elsewhere
[74] can reveal a whole new window on intratumoral hetero-
geneity, and forme fruste tumors, in particular biphasic can-
cers like synovial sarcoma, can again provide models that may
well prove easier to study. We believe that with all these de-
veloping methodologies, rare tumors can be a source of break-
throughs that give clearer answers at lower cost, with fewer
samples needed to make discoveries.
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