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background: Progesterone is a key hormonal regulator of the female reproductive system. It plays a major role to prepare the uterus for
implantation and in the establishment and maintenance of pregnancy. Actions of progesterone on the uterine tissues (endometrium, myometrium
and cervix) are mediated by the combined effects of two progesterone receptor (PR) isoforms, designated PR-A and PR-B. Both receptors func-
tion primarily as ligand-activated transcription factors. Progesterone action on the uterine tissues is qualitatively and quantitatively determined by
the relative levels and transcriptional activities of PR-A and PR-B. The transcriptional activity of the PR isoforms is affected by specific transcrip-
tional coregulators and by PR post-translational modifications that affect gene promoter targeting. In this context, appropriate temporal and cell-
specific expression and function of PR-A and PR-B are critical for normal uterine function.

methods: Relevant studies describing the role of PRs in uterine physiology and pathology (endometriosis, uterine leiomyoma, endometrial
cancer, cervical cancer and recurrent pregnancy loss) were comprehensively searched using PubMed, Cochrane Library, Web of Science, and
Google Scholar and critically reviewed.

results: Progesterone, acting through PR-A and PR-B, regulates the development and function of the endometrium and induces changes in
cells essential for implantation and the establishment and maintenance of pregnancy. During pregnancy, progesterone via the PRs promotes myo-
metrial relaxation and cervical closure. Withdrawal of PR-mediated progesterone signaling triggers menstruation and parturition. PR-mediated
progesterone signaling is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogenon eutopic normal endo-
metrium, and on ectopic implants in endometriosis. Similarly, ligand-activated PRs function as tumor suppressors in endometrial cancer cells
through inhibition of key cellular signaling pathways required for growth. In contrast, progesterone via PR activationappears to increase leiomyoma
growth. The exact role of PRs in cervical cancer is unclear. PRs regulate implantation and therefore aberrant PR function may be implicated in
recurrent pregnancy loss (RPL). PRs likely regulate key immunogenic factors involved in RPL. However, the exact role of PRs in the pathophysi-
ology of RPL and the use of progesterone for therapeutic benefit remains uncertain.

conclusions: PRs are key mediators of progesterone action in uterine tissues and are essential for normal uterine function. Aberrant PR
function (due to abnormal expression and/or function) is a major cause of uterine pathophysiology. Further investigation of the underlying
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mechanisms of PR isoform action in the uterus is required, as this knowledgewill afford the opportunity to create progestin/PR-based therapeutics
to treat various uterine pathologies.
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Introduction
Progesterone is an essential hormone in the female reproductive system.
In conjunction with estrogen (mainly in the form of estradiol), it controls
uterine function to facilitate reproduction. The central role of these hor-
mones is reflected in the fact that progesterone/estrogen therapy alone
is sufficient to produce a receptive uterus capable of supporting a viable
pregnancy in post-menopausal women receiving donor embryo transfer.
The principal uterine targets for progesterone are stromal and epithelial
cells in the endometrium, smooth muscle cells in myometrium, and
stromal fibroblasts and glandular epithelial cells in the cervix. Effects of
progesterone in these cells are mediated by its interaction with specific
progesterone receptors (PRs), and its pleiotropic actions are due to
cell type-specific variations in PR signaling. The etiology of uterine path-
ologies, including endometriosis, leiomyoma, endometrial cancer, cer-
vical cancer and recurrent pregnancy loss has been associated with
aberrant PR signaling. Consequently, therapies targeted to correct pro-
blems with PR-mediated progesterone signaling have promise for the
treatment of multiple uterine disorders. The goal of this review is to syn-
thesize the current understanding of how PRs mediate progesterone
actions in the endometrium, myometrium and cervix to facilitate
normal uterine function, and how PR dysregulation may contribute to
uterine pathophysiology.

The human progesterone
receptor
Effects of progesterone on target cells are mediated by cellular PRs
whose function is altered by progesterone binding. To date two
groups of PRs have been identified: (i) the nuclear PRs that function as
ligand-activated transcription factors and mediate genomic actions (i.e.
affect gene expression) (Evans, 1988) and (ii) a family of PRs that
reside at the cell surface and are structurally related to G-protein
coupled receptors and single transmembrane receptors and appear to
mediate direct non-genomic actions of progesterone (Gerdes et al.,
1998; O’Brien et al., 1998; Saner et al., 2003; Welter et al., 2003; Zhu
et al., 2003a,b; Price et al., 2005; Younglai et al., 2006; Behera et al.,
2009; Lee et al., 2010). Actions of progesterone in the female reproduct-
ive system are thought to be primarily mediated by the nuclear PRs. The
physiologic relevance of the membrane PR is unclear since their capacity
to bind progesterone is relatively low, compared with the nuclear PRs,
and some studies suggest that they are not activated by progesterone
(Krietsch et al., 2006). In light of this controversy, the following discussion
focuses on the role of nuclear PRs in uterine pathophysiology.

The human nuclear PRs are encoded by a single gene (PGR) located on
chromosome 11 (11q22-q23). Expression of PGR is controlled by two
promoters to produce two major mRNA transcripts that encode two
proteins: the full-length PR-B (116 kDa) controlled by the distal PR-B
promoter region and initiated from the first AUG translational start
codon, and PR-A (94 kDa) controlled by the proximal PR-A promoter

region and initiated from the second AUG (492 bases upstream) trans-
lational start codon (Kastner et al., 1990; Sartorius et al., 1994; Wen
et al., 1994; Leonhardt et al., 2003) (Fig. 1). Other PR isoforms are
thought to be generated by the initiation of translation from further
downstream AUG start sites (e.g. PR-C), exon splicing and exon inser-
tions (Fig. 1) (reviewed by Hirata et al., 2003; Cork et al., 2008); but
their physiologic relevance is uncertain, and for some of these variants,
especially the putative PR-C, their production in vivo is unclear since
the natural AUG start sites lacks an upstream Kosak sequence needed
for translation initiation (Samalecos and Gellersen, 2008). The following
discussion will therefore be limited to PR-A and PR-B.

PR-A and PR-B belong to a family of ligand-activated transcription
factors and share common structural and functional elements (i.e. regu-
latory region, DNA binding domain, hinge region and ligand binding
domain) with other steroid hormone receptors (Fig. 1) (Evans, 1988;
Mangelsdorf et al., 1995; Escriva et al., 2004; McEwan, 2009). The
DNA binding domain, hinge region and ligand binding domain are
identical in PR-A and PR-B with the difference between the two PRs
being in the N-terminal regulatory domain that is truncated by 164
amino acids in PR-A. Differences in the activities of PR-A and PR-B are
thought to be conferred by the N-terminal segment (B-upstream
segment) unique to PR-B.

Effects of progesterone are generally considered to represent the
combined activities of PR-A and PR-B. Upon ligand binding, PR-A and
PR-B affect cellular function by altering gene expression via two modes
of action: (i) the direct genomic mode, whereby the PRs function as
ligand-activated transcription factors to directly interact with specific
DNA promoter/enhancer elements and transcriptional co-regulators to
modulate the expression of downstream genes; and (ii) the indirect
extranuclear mode whereby the PRs interact with Src tyrosine kinases in
the cytoplasm to activate mitogen-activated protein kinases (MAPKs)
which then affect gene expression (Boonyaratanakornkit et al., 2001;
Leonhardt et al., 2003; Boonyaratanakornkit and Edwards, 2007) (Fig. 2).

PR-A and PR-B are co-expressed in varying relative amounts depend-
ing on the cell type and pathophysiologic condition. Studies to assess the
abundance and cellular localization of PR-A and PR-B are complicated by
technical limitations due to the common sequence of PR-A and
PR-B. Consequently, antibodies specific for PR-A are not available, and
PR-A mRNA abundance cannot be directly measured by quantitative
RT–PCR-based techniques. The abundance of PR-A and its level relative
to PR-B can only be determined by immunoblotting, which is semi-
quantitative at best. In vitro approaches, however, using various cell
types genetically modified to express PR-A and/or PR-B in conjunction
with PR-reporter systems, have revealed key functions of PR-A and PR-B,
and how they interact to affect transcription in specific cell types. In add-
ition, significant progress in understanding PR function has been gained
from studies of mice genetically modified to abolish the PR-A and PR-B
isoforms together or individually (see below).

Initial studies of PR transcriptional activity were performed using arti-
ficial reporter genes controlled by canonical progesterone responsive
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elements (PREs). In that assay, PR-B is a strong transactivator in response
to progesterone, whereas PR-A is less active and in most cases inhibits
the transcriptionally active PR-B, especially when its level exceeds that
of PR-B (i.e. PR-A:PR-B ratio .1) (Tung et al., 1993; Giangrande et al.,
1997, 2000; Pieber et al., 2001; Richer et al., 2002; Condon et al.,
2006; Merlino et al., 2007). Those observations led to the concept
that PR-A and PR-B have opposing transcriptional activity and that as
such net progesterone responsiveness is inversely related to the
PR-A:PR-B ratio. Such a mechanism permits control of progesterone re-
sponsiveness by the target cell via modulation of isoform levels. Recent
studies, however, using global gene expression analyses, show that
both isoforms are transcriptionally active at diverse sets of endogenous
promoters, most of which lack a canonical PRE. Importantly, the repres-
sive activity of PR-A was found to be minimal at endogenous genes

promoters (Richer et al., 2002; Graham et al., 2005; Jacobsen et al.,
2005; Leo et al., 2005; Yudt et al., 2006; Khan et al., 2012). It is now gen-
erally accepted that response to progesterone is determined by the com-
bined actions of PR-A and PR-B, which upon ligand binding form
homodimers or heterodimers that have distinct transcriptional activities
at specific sets of gene promoters (Fig. 3).

The capacity for the PR isoforms to target distinct promoters and
affect the expression of diverse downstream genes is qualitatively and
quantitatively affected in a cell- and context-specific manner by: (i) tran-
scriptional co-regulators that form a functional bridge connecting the PRs
with the basal transcription machinery (McKenna et al., 1999); (ii) the
functional interaction of PRs with other transcription factors such as
NFkB (Kalkhoven et al., 1996), AP-1 (Bamberger et al., 1996) and SP1
(Faivre et al., 2008); and (iii) post-translational modifications (PTMs)

Figure 1 Structure of the human PR isoforms produced from the PGR gene. The major mRNA transcripts are derived from translational start sites con-
trolled by the PR-B (distal) and PR-A (proximal) promoters. The major proteins products (boxed) are the full-length PR-B produced from PR-B mRNA and
initiated from the first AUG, and the PR-A which is produced from PR-A mRNA and initiated from the second AUG. The receptors contain functional
domains that are typical of the nuclear receptors family. The structures of other putative splice variants are shown below the boxed area.
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including serine phosphorylation, ubiquitination and sumoylation of the
PRs that affects their stability, trafficking, transcriptional activity and
target gene selectivity (Abdel-Hafiz and Horwitz, 2012, 2014; Knutson
et al., 2012) (Fig. 4). Regulation of numerous coregulators (coactivators
andcorepressors) is pivotal formodulationofPR-mediated gene transcrip-
tion leading to activation or repression of specific target genes (Xu and Li,
2003). For example, the p160 steroid receptor coactivator-1 (SRC-1) is a
transcriptional coactivator for PR, which interacts with liganded-PR and
serves to recruit histone acetyl transferases and methyltransferases to spe-
cific gene promoter regions to facilitate transcription by altering chromatin
structure (McKenna et al., 1999). These factors account for most of the
cell- and context-specific pleitropic actions of progesterone.

PGR expression by uterine cells is stimulated by estrogens via estrogen
receptor-a (ERa) and consequently progesterone responsiveness is de-
pendent on the presence of an estrogenic drive (Tsai et al., 1998). The
affect is especially relevant in the endometrium whereestrogen exposure
during the follicular phase promotes PR expression in endometrial cells
to augment progesterone responsiveness during the luteal phase. In
fact, low levels of estrogen are required for progesterone responsiveness
throughout the luteal phase (Janne et al., 1975; Kreitmann et al., 1979;
Katzenellenbogen et al., 1980; Bergeron et al., 1988; Lessey et al.,
1988; Press et al., 1988; Okulicz et al., 1989; Savouret et al., 1990;
Fung et al., 1994; Ingamells et al., 1996; Moutsatsou and Sekeris,
1997). Conversely, ERa expression in uterine cells is inhibited by
progesterone via PRs (Haluska et al., 1990). This functional feedback

interaction between the progesterone and estrogen hormonal systems
is crucial for normal uterine function and for balancing the often-
opposing actions of the progesterone/PR and estrogen/ER systems.
Steady state levels of PR are decreased by progesterone through
ligand-induced phosphorylation of the PR, which increases transcription-
al activity but also induced PR ubiquitination that targets the protein for
degradation through the proteosome (Lange et al., 2000; Shen et al.,
2001; Abdel-Hafiz and Horwitz, 2014). Similar to ligand-dependent
PR down-regulation through the ubiquitin-proteosome pathway, the
presence of ligand also contributes to down-regulation of specific PR
coregulators, including SRC-1 (Amazit et al., 2011). Thus, in the presence
of ligand, levels of PR (especially PR-B) are inversely correlated with
transcriptional activity.

Other PR-independent mechanisms could also operate to facilitate
target cell control of progesterone responsiveness. One important
mechanism is via the intracrine mode of hormonal control whereby a
hormone is metabolized to a more or less active form within the
target cell prior to its interaction with a cognate receptor. In the case
of progesterone, target cells may express enzymes such as 5a-reductase
and 20a-hydroxysteroid dehydrogenase that metabolize progesterone
to less active forms prior to its interaction with intracellular receptors.
This PR-independent regulatory mode may be critical for controlling
progesterone actions in the cervix during pregnancy and especially at
parturition (Mahendroo et al., 1999). Intracrine mechanisms also may
control progesterone actions on the brain (Mellon, 2007).

Figure 2 Genomic signaling pathways for PR action. In response to ligand, PRs undergo a conformational change and dimerize. The receptors then trans-
locate to the nucleus where they function as ligand-activated transcription factors. The receptors also activate cytoplasmic signaling cascades such as the
ERK/MAPK pathway by interacting directly with extranuclear signaling molecules. BTA, basal transcriptional apparatus; CR, co-regulators.
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Progesterone receptors in
normal uterine function
Effects of progesterone on uterine physiology occur during the post-
ovulatory luteal/secretory phase of the menstrual cycle and during preg-
nancy; i.e. when circulating levels of progesterone are sufficient to acti-
vate PRs in uterine cells. Progesterone affects cells in each of the
functional tissue types of the uterus, and PR-A and PR-B are detectable
in epithelial and stromal/decidual cells in the endometrium (Mote et al.,
1999), smooth muscle cells in the myometrium (Fig. 5) (Mesiano, 2007),
and stromal fibroblasts in the cervix (Cowan et al., 2004). The overall
scope of progesterone action in the uterus has been delineated
through studies utilizing PR antagonists such as mifepristone (RU486)
for emergency contraception. While administration of high doses of
RU486 in the mid- or late follicular phase delays the luteinizing
hormone (LH) surge and inhibits ovulation, low doses can cause infertility
by delaying endometrial maturation (Spitz et al., 1994; Gemzell-
Danielsson and Marions, 2004; Lakha et al., 2007). Similarly, if adminis-
tered during pregnancy, RU486 induces abortion, fetal loss or parturition

depending on the gestational age (Chwalisz, 1994; Wildschut et al., 2011;
Shaw et al., 2013). Thus, PR-mediated progesterone actions that are dis-
rupted by RU486 are essential for normal uterine function.

The endometrium is a remarkably dynamic uterine tissue that exhibits
dramatic steroid hormone dependent changes in morphology and func-
tion during the menstrual cycle and during pregnancy. It is composed of
stromal and epithelial cells arranged into two morphologically and func-
tionally distinct zones: the inner basalis, made up mainly of stromal cells,
and the outer functionalis, which contains stromal and epithelial cells.
Progesterone exerts specific effects on endometrial epithelial and
stromal cells. During the pre-ovulatory follicular phase, the functionalis
thickens in response to estrogens (mainly estradiol) by epithelial and
stromal cell proliferation. Cell proliferation is then inhibited by progester-
one during the post-ovulatory luteal phase and a morphologic and func-
tional change occurs to establish a glandular secretory endometrial
epithelium and a vascular stroma conducive for blastocyst implantation
and the establishment of pregnancy. In endometrial stromal cells, proges-
terone increases proliferation during the follicular phase and during
the peri-implantation phase via activation of the ERK/AKT pathway

Figure 3 Functional interaction between PR-A and PR-B. Upon ligand binding, the receptors form transcriptionally active homo- and hetero-dimers that
affect the expression of specific and common gene sets. PR-A also acts as a trans-repressor of PR-B at some promoters.
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Figure 4 (A) Sites for known serine phosphorylation and ubiquitination/sumoylation in PR-A and PR-B that are induced in response to ligand binding
and/or in response to growth factors and other kinases. (B) It is proposed that post-translational modifications (PTMs) affect the targeting of
ligand-activated PRs to specific gene promoter classes. This mechanism explains how the PRs mediate pleiotropic actions of progesterone in different
cell types and different physiologic conditions.

Figure 5 Immunohistochemical localization of PR-A and PR-B at the human myometrial/endometrial interface during the secretory phase of the men-
strual cycle. Total PR (PR-A and PR-B) was detected with antibody PgR1294 (Dako Corp) that reacts with an epitope in the N-terminal region common to
both PR-A and PR-B. PR-B was detected with antibody C1A2 (Cell Signaling, Inc.) that reacts with an epitope in the N-terminus unique to PR-B. IgG repre-
sents the negative control using the non-immune immunoglobulin of the same isotype as the PgR1294 (mouse) and C1A2 (rabbit) primary antibodies. Posi-
tive staining is indicated by brown coloration. Sections were counterstained with hematoxylin (stains nuclei blue). Magnification ¼ ×200.
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(Vallejo et al., 2014). This effect highlights the complex functional inter-
action between the ER and PR systems especially via their extranuclear
modes of action (see Fig. 2). Importantly, progesterone induces
stromal cell decidualization in the late luteal phase and is essential for
maintenance of the decidual phenotype (Lydon et al., 1995; Das et al.,
2009). In the decidualization process, which initiates prior to implant-
ation and is independent of the presence of a blastocyst, endometrial
stromal cells proliferate, become rounded, and accumulate cytoplasmic
glycogen (Bergeron et al., 1988; Lessey et al., 1988). In non-conception
cycles, the functional lifespan of the corpus luteum is limited, and within
14–18 days after its formation, it undergoes apoptosis leading to a rapid
fall in circulating progesterone levels. If pregnancy is not established,
falling progesterone levels due to luteolysis reverse decidualization and
induce the expression of chemokines, pro-inflammatory cytokines and
matrix metalloproteinases that cause endometrial inflammation, cell
death and extracellular matrix degradation leading to shedding of the
functionalis, i.e. menstruation (Gellersen and Brosens, 2003; Jabbour
et al., 2006; Gellersen et al., 2007). The functionalis then regenerates
from the remaining basalis layer in response to estrogen during the pro-
liferative phase of the following cycle (Ferenczyet al., 1979; Graham et al.,
2005). If conception occurs, the steroidogenic life span of the corpus
luteum is prolonged for up to 10 weeks by chorionic gonadotrophin
(CG) secreted by trophoblast cells of the successfully implanted blasto-
cyst. The extended time of progesterone exposure causes the endomet-
rium to undergo complete decidualization within the first week of
pregnancy. Complex paracrine signaling between the decidua and
trophoblast cells in the chorionic membrane is critical for establishing
and maintaining pregnancy. The appropriate role of decidual cells in
that dialogue is dependent on progesterone. PR is expressed in endo-
metrial epithelium immediately prior to blastocyst implantation but
decreases markedly during the implantation process. At the same time
PR expression in stromal cells increases and remains high during the
decidualization process (Tan et al., 1999; Spencer et al., 2004). Specific
ablation of PR expression in endometrial epithelial cells showed that ex-
pression of the receptors in these cells is critical for embryo attachment,
stromal decidualization and the inhibition of estrogen-induced epithelial
hyperplasia (Fernandez-Valdivia et al., 2010). Loss of PRexpression in de-
cidual cells at term is thought to cause functional progesteronewithdraw-
al that triggers inflammation at the maternal– fetal interface leading to
parturition (Lockwood et al., 2010).

Differential effects of progesterone on endometrial epithelial and
stromal cells are thought to be due to cell type-specific differences in
PR-A and PR-B expression and function. PR-A and PR-B are present in
endometrial epithelium during the proliferative phase and increase con-
cordantly with estrogen levels, consistent with the known induction of PR
expression by estrogen. Late in the secretory phase, PR-A levels decline,
whereasPR-B levels remain constant in the epithelial cells, suggesting that
it is involved in the control of glandular secretion. Stromal cells, in con-
trast, exhibit a predominance of PR-A throughout the menstrual cycle,
which likely reflects the need for prolonged progesterone-PR-A signaling
in this compartment to support the establishment of pregnancy (Mote
et al., 1999, 2000; Attia et al., 2000).

Studies of mice genetically modified to alter PR expression demon-
strated fundamental roles of the PRs in mediating progesterone actions
on the uterus. Animals lacking PR expression develop normally to adult-
hood regardless of sex (Lydon et al., 1995; Fernandez-Valdivia et al.,
2010). Female PR-null homozygous mice, however, have multiple

defects in uterine growth and function, the most notable being hyper-
trophy and inflammation of the glandular epithelium and failure to
exhibit decidualization in response to a traumatic stimulus. PR-null
mice fail to reproduce due to defects in ovulation and implantation.
Studies targeting PR-A or PR-B demonstrated specific roles of each PR
isoform in mediating progesterone actions on the murine uterus. Proges-
terone actions mediated by PR-A (i.e. phenotype of PR-B-knockout
mice) were sufficient to restore normal uterine function. Ovarian func-
tion, implantation, pregnancy and parturition are normal in mice expres-
sing only PR-A (Mulac-Jericevic et al., 2003). Progesterone actions
mediated by PR-B (i.e. reproductive phenotype of PR-A-knockout
mice) lead to increased hyperplasia of the endometrial epithelium and in-
flammation, and no decidualization in the endometrial stroma (Mulac-
Jericevic et al., 2000). Taken together the data from PR knockout mice
show that PR-A is critical for normal function of the endometrial epithe-
lium and stroma, and that PR-B functions to promote hyperplasia of the
epithelium, an effect which is repressed by PR-A. Both receptors appear
to mediate anti-inflammatory actions of progesterone on the endomet-
rium. Studies in mice over-expressing PR-A show that the relative levels
of PR-A and PR-B are critical for normal response to progesterone
(Fleisch et al., 2009). Over-expression of PR-A was associated with en-
largement of the uterus, and hyperplasia of the endometrium that
included atypical lesions, endometritis and pelvic inflammatory disease.

The myometrium and cervix also undergo changes in response to es-
trogen and progesterone during the menstrual cycle, albeit less dynamic
compared with those in the endometrium. The myometrium, which
forms the bulk of the uterus, is composed of myometrial smooth
muscle cells arranged into randomly orientated interlacing bundles. Pro-
gesterone and estrogen promote myometrial growth mainly by stimulat-
ing hyperplasia and hypertrophy of myometrial cells. After menopause,
the myometrium becomes atrophic and the size of the uterus decreases
to about half its size. Myometrial cells contain PR-A and PR-B throughout
the menstrual cycle and during pregnancy. Progesterone affects the
contractile activity of myometrial cells. During the estrogen-dominated
proliferative phase, peristaltic waves of myometrial contractions
gradually increase in frequency and intensity and at the time of ovulation
the direction of the waves is predominantly from cervix to fundus
(Chalubinski et al., 1993; Kunz et al., 1996). The waves decrease
during the progesterone-dominated post-ovulatory secretory phase
presumably due to the relaxatory actions of progesterone, and contrac-
tions increase in association with the decrease in progesterone levels late
in the secretory phase and during menstruation. These effects are
mediated by the nuclear PRs since administration of the nuclear PR
antagonist, RU486, increases uterine contractions during the secretory
phase (Bygdeman et al., 1993; Gemzell-Danielsson et al., 1993). Like-
wise, during pregnancy, nuclear PRs expressed by myometrial cells
mediate relaxatory actions of progesterone and inhibition of this activity
by RU486 treatment increases myometrial contractility and excitability
and, in most cases, induces labor and delivery (Avrech et al., 1991). With-
drawal of progesterone in human pregnancy is thought to be mediated
by increased expression of PR-A, possibly due to altered methylation
of the PR-A promoter region (Chai et al., 2014), leading to a switch in
the PR-A:PR-B ratio to PR-A-dominance, which is thought to inhibit
PR-B-mediated pro-gestational actions (Mesiano et al., 2002). The with-
drawal or disruption of PR-mediated progesterone actions generally
leads to the uterine emptying, i.e. mensuration or parturition, that
involves increased myometrial contractity and tissue level inflammation
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within the endometrium, myometrium and cervix (Thomson et al., 1999;
Jabbour et al., 2006).

The cervix is composed of stromal fibroblasts and squamous epithelial
cells and can be divided into three anatomically distinct compartments:
(i) the ectocervix that projects into the vagina and is lined by a thick strati-
fied squamous epithelium, (ii) the endocervix that forms the lining of the
cervical canal and comprises single layer of columnar mucus-secreting
epithelial cells that form deep furrows and tunnels; and (iii) the stroma
which comprises the bulk of the cervix and is composed of cervical fibro-
blasts that produce a tough collagenous extracellular matrix (ECM)
(Bathgate et al., 2006). PRs localize to the nucleus in stromal fibroblasts
and basal squamous epithelial cells, but are absent in intermediate and
superficial squamous epithelial cells (www.nordiqc.org/Run-18-B2/
assessment/assessment-PR.htm). During the proliferative phase of the
menstrual cycle, the endocervical epithelium, in response to estrogen,
produces a thin watery mucus that is conducive to the passage of
sperm into the uterus. In contrast, during the secretory phase, progester-
one promotes the production of a highly viscous cervical mucus, which
forms a plug that restricts the passage of sperm and micro-organisms
from the vagina. Estrogensoftens the cervical stroma byaffecting collagen
synthesis and breakdown and promoting water imbibition. In contrast,
progesterone, especially during pregnancy, promotes cervical closure
by increasing collagen production and rigidity. These effects aremediated
by PRs that, in response to progesterone, modulate the expression of
genes whose products promote collagen synthesis and inhibit its break-
down (Di Nezza et al., 2003; Jaffe et al., 2007; Ward et al., 2008; Neu-
bauer et al., 2011). Progesterone also antagonizes estrogen-induced
collagenase expression (Shiozawa et al., 1998; Kyo et al., 2011) and inhi-
bits hyaluronate synthesis in human endocervical fibroblasts (Uchida
et al., 2005, 2007). A decrease in hyaluronate prevents water imbibition
and collagen dissolution and, therefore, maintains ECM rigidity. In all
species studied so far, treatment with PR antagonists at any stage of preg-
nancy promotes cervical ripening (Dai et al., 2001; Smid-Koopman et al.,
2003; Gielen et al., 2006; Paulssen et al., 2008; Moe et al., 2009), which
demonstrates that PR signaling is essential for progesterone-induced cer-
vical competence. Sensitivity of the cervix to PR antagonist-induced
ripening increases as pregnancy nears term, suggesting that the capacity
for progesterone to maintain cervical competence wanes and pro-
softening influences increase as pregnancy progresses (Orbo et al.,
2009).

In the gravid uterus, progesterone promotes relaxation of the myome-
trium, closure and rigidity of the cervix, and inflammatory quiescence in
the chorion/decidua. The pro-gestational actions of progesterone are
mediated by PRs expressed in myometrial, cervical and decidual cells
(Merlino et al., 2007). Progesterone promotes pregnancy, in part, by de-
creasing responsiveness of myometrial, cervical and decidual cells to
pro-inflammatory/pro-labor stimuli (Hardy et al., 2006; Tan et al.,
2012). In myometrial cells, the anti-inflammatory effects of progesterone
are mediated by PR-B and inhibited by PR-A (Tan et al., 2012).

In all viviparous species studies to date, the process of parturition is
triggered by withdrawal of the progesterone block to labor, and depend-
ing on the species, occurs by a either a decrease in circulating progester-
one levels (referred to as systemic progesterone withdrawal) or
desensitization to PR-mediated progesterone action (referred to as func-
tional progesterone withdrawal). Human parturition is triggered by a
functional progesterone withdrawal mediated, in part, by changes in
the transcriptional activities of PR-A and PR-B such that the capacity

for progesterone to exert anti-inflammatory actions via PR-B is inhibited
by transrepressive actions of PR-A (Mesiano et al., 2011; Tan et al., 2012).
Transcriptional activity of PR-B is further impaired at parturition by
decreased expression of progesterone-PR coregulators such as
cAMP-response element-binding protein (CREB-binding protein) and
steroid receptor coactivators 2 and 3 (Condon et al., 2003). Secondary
to their inherent histone acetyltransferase activity, decreased expression
of these coactivators may result in the decline of histone acetylation, and
therefore, chromatin inaccessibility and transcriptional repression during
parturition (Chen et al., 1997; Condon et al., 2003).

Thus, a common theme of PR-mediated progesterone actions in the
human uterus (gravid and non-gravid) is that PRs mediate pro-gestational
and anti-inflammatory actions and withdrawal of this activity, either by
functional inhibition of PR-B signaling or a systemicdecrease in progester-
one levels, leads to tissue level inflammation, which causes menstruation
in the non-gravid uterus and parturition and involution in the gravid
uterus. In both contexts, the key physiologic consequence of progester-
one/PR withdrawal is the resumption of the menstrual cycle.

Progesterone receptors in
uterine pathophysiology
The following discussion focuses on the role of PR-A and PR-B in the de-
velopment and progression of endometriosis, uterine leiomyoma, endo-
metrial cancer, cervical cancer, and recurrent pregnancy loss. As
discussed above, progesterone affects normal uterine function via a
finely tuned and tissue/cell type specific balance between PR-A- and
PR-B-mediated transcriptional activities. Most pathophysiologies of
myometrium, endometrium and cervix are responsive to progesterone,
albeit in an abnormal manner. PR-mediated progesterone actions vary
according to the cell type. In the breast, PR (mainly PR-B) mediates pro-
liferative actions of progesterone, whereas in the uterus progesterone
stimulates growth of leiomyomas but inhibits growth of the endomet-
rium. In general, studies examining the role of PRs in the etiology of
uterine pathophysiologies have assessed only the expression level and
cellular location of PR-A and PR-B, without considering net transcription-
al activity. Clearly, it is now evident that functional pleiotropy in PR activ-
ity can arise not only through cell type-specific differences in PR-A:PR-B
levels, but also by changes in PR PTMs, and differences in transcriptional
co-regulators and target gene promoter structure. Nonetheless,
temporo-spatial information of PR isoform expression has provided a
better understanding of PR function in uterine pathophysiology.

Endometriosis
Endometriosis is the presence of glandular and stromal endometrial
implants at an extrauterine (ectopic) site. The disease affects 5–10%
of women of reproductive age and is markedly influenced by estrogen
and progesterone. Inflamed endometriotic lesions are usually found in
the peritoneal cavity and on the ovaries, and it is generally considered
that they derive from abnormal endometrial cells that access the periton-
eum by retrograde menstruation (Sampson, 1927; Giudice and Kao,
2004; Giudice, 2010). Lymphatic/hematogenous dissemination of ab-
normal endometrial cells and metaplastic transformation of native peri-
toneal tissue may also be responsible for implants at distant sites
(Giudice, 2010).

162 Patel et al.

www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm
www.nordiqc.org/Run-18-B2/assessment/assessment-PR.htm


Endometriotic implants undergo estrogen- and progesterone-
induced changes in growth and morphology during the menstrual cycle
in parallel with the eutopic endometrium (Jiang et al., 2002). Conse-
quently, the clinical severity of endometriosis is affected by estrogens
and progesterone, with estrogen exposure being a major endocrine
risk factor for disease development and progression (Halme et al.,
1995), whereas progesterone has inhibitory effects on endometriotic
implants and is associated with disease regression (Kaunitz, 1998;
Olive et al., 2004). This pattern of response is consistent with estrogen-
induced proliferation of endometrial epithelial cells during the prolifera-
tive phase and the inhibition of proliferative activity by progesterone
during the secretory phase.

Whether aberrant PR signaling in endometrial cells plays a role in the
etiology of endometriosis is unclear. Endometriosis appears to be asso-
ciated with decreased progesterone responsiveness in endometrial
stromal cells (Bulun et al., 2006; Yin et al., 2007, 2012) that may be
due to decrease in PR expression. Studies of PR-A and PR-B levels and
cell localization in endometriosis however are equivocal. Most studies
using assays that have not discriminated between PR-A and PR-B have
reported lower PR levels in ectopic compared with eutopic endomet-
rium (Lyndrup et al., 1987; Prentice et al., 1992; Bergqvist and Ferno,
1993a,b; Bergqvist et al., 1993), with one study (Nisolle et al., 1994)
reporting no difference. Immunoblot analysis of PR-A and PR-B shows
that peritoneal endometriotic tissue does not express PR-B and has
reduced levels of PR-A compared with eutopic endometrium (Attia
et al., 2000). In contrast, mRNA analysis of ovarian endometriotic
tissue shows dominant expression of PR-B (Misao et al., 1999),
whereas studies of PR gene structure in endometriosis show hyper-
methylation of the PR-B promoter consistent with decreased PR-B
expression (Wu et al., 2006).

A key unanswered question regarding the etiology of endometriosis is
why it affects 5–10% of women even though retrograde menstruation
occurs in most women (Eskenazi and Warner, 1997). One explanation
is that endometriosis arises due to changes in eutopic endometrial cell
progesterone responsiveness, especially decreased responsiveness, that
confers a predisposition to form ectopic implants. To test this hypothesis,
several studies analyzed PR expression in eutopic endometrium from
women with and without endometriosis. Outcomes, however, conflicted
with some studies reporting dysregulation of PR isoform expression
associated with the presence of disease (Kao et al., 2003; Burney et al.,
2007) and others reporting no difference (Prentice et al., 1992; Attia
et al., 2000; Igarashi et al., 2005; Aghajanova et al., 2009). Taken together,
published data regarding the role of PRs in the etiology of endometriosis
produce no clear consensus. Nonetheless, aberrant PR signaling, especial-
ly reduced capacity for progesterone to oppose estrogen-induced endo-
metrial cell proliferation and/or responsiveness to pro-inflammatory
stimuli in eutopic endometrium may contribute to the development of
endometriosis once the cells relocate to the peritoneum (Osteen et al.,
2005). Progesterone is clearly a central player in the disease, and it is
likely that further studies using more specific and sensitive assays for
PR-A and PR-B expression, PTM forms, and transcriptional activity will
elucidate the role of the PRs in the pathophysiology of endometriosis.

Leiomyoma
Uterine leiomyoma, also known as uterine fibroids, are benign monoclo-
nal smooth muscle cell tumors thought to arise from a genetically

modified myometrial cell. The tumors comprise modified myometrial
smooth muscle cells, known as leiomyoma cells that overproduce
ECM (Williams et al., 1997; Sumitani et al., 2000; Barbarisi et al., 2001;
Park et al., 2008). Leiomyoma is the leading indication for hysterectomy
occurring in �70–80% of reproductive age females and causes multiple
gynecologic symptoms including pelvic pain and dysfunctional uterine
bleeding (Flynn et al., 2006; Parker, 2007).

Clinical observations provide strong circumstantial evidence that
leiomyoma is estrogen and progesterone responsive. The disease has
not been reported in pre-pubescent girls but the incidence and burden
of tumors increase in association with high estrogen and progesterone
levels, especially during the reproductive years, and decrease after
menopause when ovarian steroids are low. Moreover, treatment with
gonadotrophin releasing hormone (GnRH) agonist, which causes
hypogonadism, suppresses leiomyoma growth, whereas estrogen and
progesterone replacement therapy increases the tumor size in meno-
pausal women (Sener et al., 1996; Palomba et al., 2001; Yang et al.,
2002). The mitogenic potential of estrogen and progesterone on leio-
myoma cells is curbed by concurrent treatment with GnRH agonists
(Chegini et al., 2002). As side effects related to hypoestrogenism
preclude long-term treatment with GnRH analogs, low doses of estrogen
and progesterone can be utilized as add-back therapy without stimula-
tion of leiomyoma growth (Thomas, 1996; Takeuchi et al., 2000).

Clinical evidence shows that progesterone stimulates leiomyoma
growth. An elevated proliferative index (assessed by Ki67 staining) and
epidermal growth factor receptor expression were detected in leio-
myoma cells compared with adjacent myometrium, and are highest
during the progesterone-dominant secretory phase (Tiltman 1985;
Kawaguchi et al., 1989; Brandon et al., 1993; Harrison-Woolrych et al.,
1994). In post-menopausal women, the leiomyoma proliferative index
is higher in women receiving combined estrogen and progesterone re-
placement therapy compared with those receiving estrogen alone (Lam-
minen et al., 1992). Progestin (synthetic progestogen) therapy decreases
the efficacy of GnRH agonist treatment to reduce leiomyoma size (Fried-
man et al., 1993) and increases leiomyoma size in post-menopausal
women (Lamminen et al., 1992; Palomba et al., 2002). Importantly,
RU486 and other selective progesterone receptor modulators
(SPRMs) significantly reduce the leiomyoma tumor burden, suggesting
that targeting progesterone signaling in leiomyoma is an effective strategy
for reducing the burden of this disease (Murphy and Mahesh, 1985;
Murphy et al., 1993, 1995; Cermik et al., 2002; Eisinger et al., 2003,
2005; Steinauer et al., 2004; Fiscella et al., 2006; Xu et al., 2006, 2008;
Chwalisz et al., 2007; Williams et al., 2007; Wilkens et al., 2008;
Donnez et al., 2012a, b).

Actions of progesterone in leiomyoma are thought to be mediated by
PR-A and PR-B. Both receptors have been detected in leiomyoma tissue
and in immortalized leiomyoma cell lines (Kawaguchi et al., 1991; Nisolle
et al., 1999; Carney et al., 2002), and some studies show increased ex-
pression of PR-A and PR-B in leiomyomacomparedwith normal myome-
trium from the same subjects (Brandon et al., 1993; Viville et al., 1997;
Fujimoto et al., 1998). Interestingly, PR-A and PR-B expression in leio-
myoma is decreased by GnRH agonist therapy (Nisolle et al., 1999),
which is consistent with estrogen-induced PR expression. Extranuclear
actions of PRs, especially via the PI3K/AKT signaling cascade, which aug-
ments cell viability and prevents apoptosis, may contribute to progester-
one/PR-induced leiomyoma growth (Hoekstra et al., 2009). In addition,
progesterone via the PRs may inhibit apoptosis by directly augmenting
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expression of Bcl-2 (Yin et al., 2007) and promote proliferation by in-
creasing expression of EGF (Shimomura et al., 1998; Matsuo et al., 1999).

Leiomyoma are characterized as benign fibrous tumors with excessive
deposition of disorganized ECM. The composition of the leiomyoma
ECM, and in particular the relative levels of specific proteoglycans such
as decorin and versican, are thought to affect tumor growth by modulat-
ing the activity of growth factors, especially transforming growth factor-b
(TGF-b), that bind to proteoglycans (Harper et al., 1994). Compared
with unaffected tissues, leiomyoma contain higher relative amounts of
versican and lower relative amounts of decorin (Carrino et al., 2012).
Higher TGF-b levels have been found in leiomyoma, and decorin has
been shown to antagonize TGF-b signaling. A decrease in decorin
would be expected to increase TGF-b activity in the leiomyoma micro-
environment. Importantly, progesterone and estrogen increase ECM
production and TGF-b expression in leiomyoma cells (Arici and Sozen,
2000; Joseph et al., 2010) and potentially initiate a positive feedback
interaction whereby excessive deposition of the decorin-deficient
ECM leads to excessive TGF-b signaling which increases the proliferation
of cells that produce the aberrant decorin-deficient ECM and over-
express TGF-b in response to progesterone. Although studies assessing
the link between proteoglycan synthesis and PR transcriptional activity in
leiomyoma are lacking, the use of SPRMstargeting this interaction to treat
leiomyoma disease has been proposed (Kim et al., 2013).

To date, numerous SPRMs have been investigated as potential treat-
ments for symptomatic leiomyomas and two, asoprisnil (DeManno
et al., 2003) and ulipristal acetate (Yoshida et al., 2010), have been exam-
ined in detail. Asoprisnil reduces leiomyoma volume and associated
symptoms (Chwalisz et al., 2007) possibly by inhibiting proliferation
and inducing apoptosis of leiomyoma cells without effecting normal myo-
metrial cells (Chen et al., 2006; Wang et al., 2006; Sasaki et al., 2007).
Asoprisnil also decreases leiomyoma collagen synthesis and enhances
the expression of matrix metalloproteinases (MMPs) and tissue inhibi-
tors of MMPs (TIMPs), thereby reducing collagen deposition into the
leiomyoma ECM (Stewart et al., 1994; Morikawa et al., 2008). Ulipristal
acetate also has demonstrated anti-proliferative, anti-fibrotic and
pro-apoptotic effects on cultured leiomyoma cells, but not on normal
myometrial cells (Yoshida et al., 2010) and has recently received approval
by both the US Food and Drug Administration and the European Medi-
cine Agency for preoperative treatment of leiomyoma (Talaulikar and
Manyonda, 2012; Biglia et al., 2014). Ulipristal has been shown to
reduce both leiomyoma and uterine size in women with symptomatic
leiomyoma (Levens et al., 2008; Nieman et al., 2011). Repeated doses
of ulipristal acetate at 3-month intervals are effective in treating symp-
tomatic leiomyoma, with induction of amenorrhea and reduced leio-
myoma volume (Donnez et al., 2014). Ulipristal may inhibit the
proliferation of leiomyoma cells and induce apoptosis through increased
expression of pro-apoptotic caspase 3 and decreased expression of anti-
apoptotic Bcl-2 (Maruo et al., 2000; Maruo, 2007; Biglia et al., 2014). Uli-
pristal also down-regulates expression of key angiogenic growth factors
including vascular endothelial growth factor (VEGF), and similar to aso-
prisnil, may reduce deposition of collagen in the extracellular matrix
(Spitz, 2009; Talaulikar and Manyonda, 2012; Biglia et al., 2014).
Overall, SPRMs are associated with fewer adverse effects compared
with pure progesterone receptor antagonists. In some studies,
however, SPRM use has been associated with adverse endometrial
effects, including endometrial hyperplasia. Endometrial hyperplasia is
classified by the World Health Organization (WHO) based on cystic

glandular dilation/crowding of the epithelium and a gland to stromal
ratio of .50% in the absence of secretory endometrial changes
(Owings and Quick, 2014). Simple hyperplasia is associated with few
mitoses and glands with minimal outpouching. In contrast, complex
hyperplasia is associated with numerous mitoses, disorganized glands
with luminal outpouching. Additionally, nuclear atypia can accompany
either of these classifications. As such, endometrial hyperplasia is a pre-
cursor to endometrial adenocarcinoma. These endometrial effects asso-
ciated with SPRMs appear to be related to the dose of PR ligand utilized,
hormonal status at the time of treatment, and the animal model used in
previous studies. For instance, mifepristone (RU486), a PR antagonist,
has both anti-proliferative and hyperplastic effects depending on the
dose and subject. In premenopausal subjects, low dose mifepristone
has an anti-proliferative effect, while higher doses result in various
degrees of hyperplasia (Chwalisz et al., 1998, 2000; Spitz and Chwalisz,
2000; Chabbert-Buffet et al., 2005). The exact mechanism of endomet-
rial hyperplasia with SPRM use remains unclear. SPRMs bind minimally to
the estrogen receptor (Chabbert-Buffet et al., 2005). Like mifepristone,
the hyperplastic effect of SPRMs on the endometrium may be related to
their antiglucocorticoid effects. The ensuing increase in adrenocortico-
tropic hormone (ACTH) may increase production of androstenedione
and testosterone from the adrenal cortex, which are then aromatized
to estrone and estradiol respectively, thus resulting in an overall increase
in estrogen-drive in the endometrium (Lamberts et al., 1991; Heikin-
heimo 1997; Heikinheimo et al., 2000; Chabbert-Buffet et al., 2005).
However, histological endometrial changes noted with SPRMs are dis-
tinct from estrogen-associated endometrial hyperplasia or disordered
proliferative endometrium (Biglia et al., 2014). The term ‘progesterone
receptor modulator-associated endometrial changes’ (PAECs) has
been used to describe various histological patterns noted in the endo-
metrium of women receiving SPRMs that do not include malignant or
premalignant changes (Mutter et al., 2008; Biglia et al., 2014). Patients re-
ceiving ulipristal have demonstrated PAECs, with noted cystic changes in
the endometrium and increased endometrial thickness. Despite the clin-
ical finding of increased endometrial thickness in these patients, PAECs
are distinct from endometrial hyperplasia as there is pronounced dyssyn-
chrony of endometrial and stromal proliferation resulting in cystic dilation
admixed with both estrogen-induced (mitotic) and progesterone-
induced (secretory) epithelial changes (Mutter et al., 2008). Overall,
PAECs differ from classic unopposed estrogen effects in demonstrating
lower or absent mitotic activity, exhibiting varying levels of epithelial
secretory change, and having occasional stromal pseudodecidualization.
Additionally, these changes are reversible after cessation of ulipristal
therapy, with restoration of endometrial thickness to baseline levels. It
is important to note, however, that these endometrial changes are of
unknown pathologic significance as biopsies from both control subjects
and patients prior to treatment have demonstrated these endometrial
changes at times (Ioffe et al., 2009). Thus, taken together, the current
data regarding SPRM use for the treatment of leiomyoma are promising
and further studies are needed to determine their exact mechanism
of action and especially their effects on PR-A and PR-B activity in the
leiomyoma cell context.

Endometrial cancer
Endometrial cancer is the most common gynecologic malignancy,
accounting for 6% of all cancers in women (Siegel et al., 2011; American
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Cancer Society 2013). The majority of endometrial cancers occur in
postmenopausal women, and 80% of patients are diagnosed when the
tumor is confined to the uterus (stage 1 disease). As described above,
endometrial hyperplasia is a precursor to endometrial adenocarcinoma
and is characterized by disordered proliferation of endometrial glands,
resulting in a greater gland-to-stroma ratio than observed in normal
endometrium (Kurman et al., 1994).

In normal endometrium, expression of PR is induced during the
estrogen-dominated proliferative phase. During the secretory phase,
when circulating concentrations of progesterone are maximal, activation
of PR results in reduced proliferation of the endometrial epithelium, and
its differentiation into a secretory phenotype. If progesterone effects are
disrupted, as might occur during anovulatory cycles when its production
by the ovary is reduced, the epithelium can become hyperplastic in re-
sponse to unopposed estrogen. Indeed, many of the established risk
factors for developing endometrial cancer (most notably type I) are asso-
ciated with excess exposure to estrogen unopposed by progesterone.
For instance, risk of developing endometrial cancer is increased by
estrogen-only hormone replacement therapy (Beral et al., 2005) and a
high body mass index (BMI), which is associated with higher estrogen
levels and anovulation (Rieck and Fiander, 2006). Polycystic ovary syn-
drome (PCOS), a condition characterized by hyperandrogenism and
chronic anovulation, is associated with approximately a 2.7 fold increase
in endometrial cancer (Fauser et al., 2012; Barry et al., 2014). In addition,
endometrial adenocarcinomas express enzymes involved in estrogen
biosynthesis (Bulun et al., 1994; Utsunomiya et al., 2001), which may
further increase the local estrogenic drive. Thus, progesterone plays a
critical role in restricting the tropic actions of estrogen on the endomet-
rium, and as such PR expression status in endometrial carcinoma is con-
sidered to be an independent prognostic factor (Ballester et al., 2013;
Zhang et al., 2013). While positive immunohistochemical staining of
ER in endometrial adenocarcinoma is one of the most important prog-
nostic factors for survival, PR expression mayalso predict survival (Balles-
ter et al., 2013; Zhang et al., 2013; Carlson et al., 2014). However,
controversy around this issue exists. While some small studies have
not shown specific advantages with respect to PR expression status
and survival (Thigpen et al., 1999; Singh et al., 2007; Carlson et al.,
2014; Gunderson et al., 2014), a recent prospective multicenter trial in-
cluding specimens from 832 women with endometrial carcinoma found
decreased survival in patients with ER and PR receptor loss (Trovik et al.,
2013).

The understanding that progesterone exerts PR-mediated anti-
mitotic effects on the endometrium has led to the use of various proges-
tins as therapeutics for low-grade endometrial adenocarcinoma (Lentz
et al., 1996; Thigpen et al., 1999; Fiorica et al., 2004; Whitney et al.,
2004; Decruze and Green, 2007). Progestin therapy markedly affects
the histopathologic characteristics of endometrial cancers (Wheeler
et al., 2007). Gland-to-stroma ratio, glandular cellularity, mitotic activity
and cytologic atypia are each decreased by progestin therapy, and these
changes are associated with complete resolution of disease after
12 months of treatment in some patients. Additionally, the anti-
gonadotropic activity of progesterone suppresses endogenous estrogen
production by the ovaries (Banno et al., 2012). Progesterone also
decreases ER expression in endometrial cells and activates enzymatic
pathways that inactivate estradiol by its conversion to estrone by the
17-b hydroxysteroid dehydrogenase type 2 and sulfotransferase within
endometrial cells (Banno et al., 2012).

Although increased PR-A expression has been found in ER positive
endometrial cancer, the specific roles of PR-A and PR-B in the etiology
of endometrial cancer are unclear (Singh et al., 2007). Endometrial
cancer is associated with mutations in progesterone/PR responsive
genes whose products are thought to mediate anti-proliferative and im-
munosuppressive actions of progesterone (Shiozawa et al., 1998; Di
Nezza et al., 2003; Jaffe et al., 2007; Ward et al., 2008; Kyo et al.,
2011). One such PR-responsive gene, forkhead box protein O1
(FOXO1), is emerging as a key mediator for cellular senescence in endo-
metrial carcinomas (Kyo et al., 2011). The transcription factor FOXO1 is
a downstream target of the phosphatidylinositol-3-kinase/Akt signaling
pathway (Goto et al., 2008) and, as such, FOXO1 is a regulator of the
cell-cycle and plays a role in cellular apoptosis. FOXO1 expression is
decreased in the majority of endometrial cancers, and treatment with
progesterone increases its expression, an effect which is mediated by
PR-B (Ward et al., 2008). Progesterone, through PR-B but not PR-A,
also induces expression of the anti-mitogen, insulin-like growth factor
binding protein 1 (IGFBP-1), in endometrial cancer cells (Nakamura
et al., 2013). IGFBP-1 requires upstream binding of FOXO1 to its pro-
moter in order to exert progesterone-induced anti-proliferative effects
in endometrial cells, thereby lending credence to the concept that
progesterone-induced FOXO1 is key to tumor suppression in endomet-
rial cells.

Progesterone and PRs also may mediate anti-proliferative effects
through regulation of cell-cycle dependent kinases (CDKs) (Banno
et al., 2012). CDKs advance the cell cycle through functional interactions
with other transcription factors including PR (Hagan et al., 2011). This has
been proposed as a key mechanism for progesterone/PR induced
proliferation of breast epithelial cells and the etiology of breast
cancer (Hagan et al., 2011). Progesterone induces expression of p27, a
cyclin E/CDK2 inhibitor, thereby suppressing the cell cycle (Banno
et al., 2012).

Some endometrial cancers exhibit a complete loss of PRexpression. In
a recent study,Yang et al. examined the possibility of restoring PRexpres-
sion in endometrial cancer cells by epigenetic modulation treating cells
with histone deacetylase inhibitors (Yang et al., 2014). Importantly,
they found that treatment of endometrial cancer cells with a histone dea-
cetylase inhibitor increased PR expression and conferred progesterone
responsiveness at various target genes relevant to endometrial cancer
biology, including FOXO1, p21 and p27. This innovative therapeutic ap-
proach may be used to sensitize endometrial tumors to progestin
therapy. Further understanding of how PGR is controlled in endometrial
cancer and how PR gene targets are affected by PR-A and PR-B in re-
sponse to various progestins, and of their roles in disease etiology and
progression, will increase the therapeutic arsenal to treat this disease
specifically by exploiting the protective action of progesterone.

Cervical cancer
Cervical cancer is a consequence of infection with human papilloma virus
(HPV) (Van Ranst et al., 1996). Specifically, viral gene E2, an important
regulator of protooncogenes E6 and E7, is deleted in malignantly trans-
formed cells. Oncogenes E6 and E7 interact with cellular proteins that
regulate the cell cycle and apoptosis (zur Hausen, 2002). Notably, E6
promotes proteosome-mediated degradation of tumor suppressor
protein p53 and E7 inactivates the tumor suppressor retinoblastoma
protein.
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The link between sex steroids and cervical cancer surfaced when a
higher incidence of cervical carcinoma was noted among long-term
oral contraceptive users (Franceschi, 2005). This relationship appears
to have temporal effects as cervical cancer risk increases 4-fold in
women who have used oral contraceptives for .10 years (Moreno
et al., 2002). Estrogen and progesterone appear to facilitate HPV DNA
integration into the host cell genome (Webster et al., 2001), and proges-
terone facilitates the oncogenic transformation of HPV DNAwith the ras
oncogene (Pater et al., 1990) and increases expression of the E6 and E7
oncogenes (Chen et al., 1996; Michelin et al., 1997; Yuan et al., 1999).
These effects are likely mediated by PRs whose expression is increased
in stromal cells of both squamous cell and adenocarcinoma cervical
lesions compared with normal controls (Bodner et al., 2010; Kwas-
niewska et al., 2011). Intensity of PR staining also directly correlates
with grade of precancerous cervical lesions, with high-grade precancer-
ous lesions staining intensely for PR (Monsonego et al., 1991).

Despite much of this evidence, it is important to note that the exact
role of progesterone and the PRs in cervical cancer still remains
unclear. Although most studies have shown a positive correlation
between progesterone and the development of cervical cancer, epi-
demiological data regarding the use of medroxyprogesterone acetate
(MPA), a potent progestational agent, and cervical carcinoma have
yielded conflicting results. While many studies have suggested that
MPA use increases the risk of neoplastic disease in the cervix (Thomas
et al., 1985, 1995; McFarlane-Anderson et al., 2008), several case–
control studies show that MPA use is not a risk factor for the disease
(Thomas and Ray 1995; Kaunitz 1996), and may, in fact, inversely correl-
ate with disease (Harris et al., 2009). Furthermore, from studies in a
transgenic mouse model expressing E6 and/or E7, high doses of MPA
may actually cause regression of cervical dysplasia (Yoo et al., 2013). In-
terpretation of these effects is complicated by the fact the MPA also acti-
vates the glucocorticoid receptor. Prospective studies are required to
provide clear insight into the clinical outcomes of cervical cancer with
progesterone use and the possible utility of various SPRMs as therapeutic
measures for cervical carcinoma.

Recurrent pregnancy loss
Recurrentpregnancy loss (RPL) is defined as two or moreclinically recog-
nized failed pregnancies and affects �0.5–1% of couples (Baek et al.,
2007). Embryonic and parental cytogenetic abnormalities, anatomic mal-
formations, thrombophilic disorders, and hormonal aberrations have
been implicated in this condition. Progesterone deficiency and aberrant
PR-mediated signaling may play a role in RPL. As discussed above, pro-
gesterone induces the endometrial phenotype that is conducive to
embryo implantation and to the establishment and maintenance of preg-
nancy (Norwitz et al., 2001). Progesterone deficiency and a shortened
luteal phase may result in retarded endometrial development, which
has been associated with RPL. While progesterone acting through PRs
undoubtedly plays a pivotal role in implantation and maintenance of preg-
nancy, progesterone supplementation for patients with sporadic miscar-
riage does not improve pregnancy outcomes (Haas and Ramsey, 2013).
However, a small number of studies involving patients with RPL have
shown that administration of progestin may be of some benefit in pre-
venting miscarriage in this population (Oates-Whitehead et al., 2003).
Larger prospective clinical trials are needed to definitively elucidate the
benefits of progestin therapy in patients with RPL. Clearly, in most

cases the problem lies with progesterone responsiveness rather than
hormone availability. In these cases the abnormal expression and/or
function of the PRs is implicated. RPL is associated with decreased PR ex-
pression by the embryo (Hickman et al., 2002) and in the endometrium
(Carranza-Lira et al., 2000). Specific PGR polymorphisms have been
reported in patients with idiopathic RPL (Su et al., 2011). Of particular
interest is a 306 base pair insertion polymorphism in intron G of the
PGR gene that correlates with RPL and is linked to implantation failure
in in vitro fertilization cycles (Cramer et al., 2003). Interestingly, the poly-
morphism also segregates with progesterone-dependent neoplasms
(Romano et al., 2006).

The establishment of pregnancy involves a complex hormonal dia-
logue between the mother and the fetus that modulates the maternal
immune system such that it does not reject the fetal allograft. Progester-
one is thought to playa key role in this process through multiple effects on
the maternal immune system. Progesterone has been reported to
reduce natural killer (NK)-cell activity (Hansen et al., 1992), increase
HLA-G production in trophoblast cells (Yie et al., 2006b), increase
suppressor-cell levels (Brierley and Clark, 1987), inhibit cytotoxic
T-cell activity (Mannel et al., 1990), induce the production of
lymphocyte-blocking proteins (Barakonyi et al., 1999), and modify the
cytokine response from the Th-1 to the pro-pregnancy Th-2 pattern
(Piccinni et al., 1995; Choi et al., 2000). The mechanism for this effect
is unclear and the involvement of the nuclear PRs is controversial (Van
Voorhis et al., 1989; Szekeres-Bartho et al., 1990, 2001; Mansour
et al., 1994; Schust et al., 1996). Indeed, the effects may be indirect via
increased trophoblast HLA-G production (Yie et al., 2006a) or via pro-
duction of a factor in lymphocytes, referred to as progesterone-induced
blocking factor (PIBF) (Szekeres-Bartho et al., 1985, 2001). Interestingly,
progesterone-treated lymphocytes of pregnant women showing clinical
symptoms of threatened preterm delivery fail to release PIBF (Szekeres-
Bartho et al., 1990; Yie et al., 2006a). The uncertainty of the role of pro-
gesterone and PRs in RPL underscores the need for further research to
delineate the exact role of endometrial PR modulation in RPL.

Conclusions
As its name implies, progesterone is a pro-gestation hormone and has
long been considered the master hormone of pregnancy. Its effects on
the uterus are essential for the establishment and maintenance of preg-
nancy, and as such it plays a central and critical role in the viviparous re-
productive cycle. The discovery of PR antagonists such as mifepristone
(RU486) and onapristone demonstrated that the nuclear PRs mediate
most, if not all, actions of progesterone on the uterus. Understanding
of PR molecular biology has advanced significantly in the last 20–30
years, and it is now clear that progesterone actions in the human
uterus are mediated by the combined, and sometimes opposing,
effects of the two PR isoforms, PR-A and PR-B. The dual PR isoform
systems allow for qualitative and quantitative control of progesterone re-
sponsiveness through modulation of relative PR-A and PR-B levels and
transcriptional activities and by the presence and activity of transcription-
al co-regulators in a cell-specific manner. This paradigm together with
cell- and context-specific PR post-translational modifications, explains
the pleiotropic actions of progesterone in the various uterine cell
types, and allows for control of progesterone action secondary to the
presence of hormone. Given the essential role of progesterone in
human reproduction and the fact that its levels can vary markedly
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between menstrual cycles, such a system may have evolved to favor the
establishment of pregnancy despite a wide range of circulating progester-
one levels. It is not surprising therefore that the etiology and clinical tra-
jectory of multiple uterine pathophysiologies involves defects in PR-A/
PR-B signaling and its relationship with the estrogen/ER system. Thus,
PR expression and activity in conjunction with the associated signal trans-
duction systems are a key element in progesterone actions in the human
uterus. A clear understanding of the molecular biology of progesterone/
PR signaling in each of the uterine target cells will be essential for the de-
velopment of SPRM-based therapies to treat uterine pathophysiologies.
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