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Abstract
The specificity of protein^DNA interactions can be determined directly by sequencing the bound and unbound
fractions in a standard binding reaction. The procedure is easy and inexpensive, and the accuracy can be high for
thousands of sequences assayed in parallel. From the measurements, simple models of specificity, such as position
weight matrices, can be assessed for their accuracy and more complex models developed if useful. Those may
provide more accurate predictions of in vivo binding sites and can help us to understand the details of recognition.
As an example, we demonstrate new information gained about the binding of lac repressor. One can apply the
same method to combinations of factors that bind simultaneously to a single DNA and determine both the
specificity of the individual factors and the cooperativity between them.
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The binding of transcription factors (TFs) to DNA

plays a fundamental role in the regulation of gene

expression. TFs find and occupy their regulatory se-

quences, against a large excess of competing alterna-

tive DNA sequences, using sequence-specific

interactions, direct contacts with both the bases in

the major and minor grooves of the DNA, and also

indirectly through sequence-dependent variations in

DNA structure. It is the differences in binding affin-

ity to different sequences, the specificity of the TF,

that is critical for the proper functioning of the regu-

latory networks. The absolute affinity of a protein for

a DNA sequence, usually defined as the association

constant (or its reciprocal, the dissociation constant),

is of lesser importance than the specificity because

the concentration of DNA in a bacterial cell, or a

eukaryotic nucleus, is so high that the TF will be

bound almost entirely to DNA somewhere, and

the critical issue is how it occupies the functional

regulatory sites. There are many experimental

methods for determining the affinity of a protein

to a specific DNA sequence [1]; and traditionally,

specificity was determined by comparing a preferred

binding site either to bulk non-specific DNA or to a

few variants of the preferred binding site to assess

how those variants affect affinity. In recent years,

there have been several new methods, such as pro-

tein binding microarrays (PBMs [2]) and related

methods [3, 4], high-throughput SELEX

(HT-SELEX or SELEX-seq [5–7]) and bacterial

one-hybrid selections (B1H [8, 9]), that can assess

specificity much more comprehensively, comparing

millions of sites in parallel (reviewed in [10]). The

data quality can be variable, sometimes being highly

reproducible and sometimes not. In addition, those

methods do not measure affinity directly, or even

relative affinity, but rather something related to it,

and computational analysis, based on some assump-

tions, is required to determine models of specificity,

and the results can be highly dependent on the
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analysis method used [11–13]. Another approach is

‘mechanical induced trapping of molecular inter-

actions’ (MITOMI), which can determine absolute

affinities for thousands of binding sites in parallel

through the use of a microfluidic device and multiple

assays on each sequence at multiple concentrations

[14]. But, it still requires non-linear curve fitting to

obtain the binding affinities.

In this article, we describe Spec-seq, which has sev-

eral advantages over previous methods. It cannot do

millions of sequences in parallel, like PBM, SELEX-

seq or B1H, and so is not as useful for general motif

discovery. But for determining specificity, changes in

binding energy for thousands of variants of a preferred

sequence, it is fast and easy and highly accurate because

it measures exactly what we need for specificity, the

distribution between the bound and unbound fractions

for the entire set of sequences in one experiment. In

the following sections, we describe Spec-seq in general

and then results from using it on the lac repressor where

several novel and interesting findings emerged [15].

Finally, we describe how Spec-seq can be used to

study combinatorial binding by two TFs and all of

the parameters that can be obtained in a single experi-

ment. Note that the following sections contain many

equations but none of them more complex than taking

ratios. Equations 1, 2 and 4 are definitions of affinity,

relative affinity and cooperativity, respectively, and the

remaining are ratios of measured quantities. Together

these simple experimental measurements are sufficient

to determine all of the parameters we need to charac-

terize the specificity of TF binding to DNA, including

combinatorial binding.

Spec-seq METHOD FOR
DETERMINING BINDING
SPECIFICITY
For a bimolecular interaaction between a protein X,

and a particular DNA site with sequence xi, the

interaction is diagrammed as follows:

Xþ xi $ X � xi

where X � xi refers to the complex. The equilibrium

binding constant (or association constant) of protein

X to the sequence xi is defined as follows:

KX xið Þ ¼
X � xi½ �

X½ � xi½ �
ð1Þ

where the brackets, ‘[. . .]’, refer to concentrations.

Specificity refers to the differences in binding

affinities for different DNA sequences, but there

are several distinct ways in which the term is used

[1]. For our purposes, it refers to quantitative meas-

ures of binding constant ratios for all, or a large

subset, of possible binding sites.

KX x1ð Þ : KX x2ð Þ : . . . : KX xnð Þ ¼
X � x1½ �

x1½ �

:
X � x2½ �

x2½ �
: . . . :

X � xn½ �

xn½ �
ð2Þ

Importantly, determining relative binding affi-

nities does not require measuring the free protein

concentration, X½ �, which is often the most difficult

part of determining absolute binding constants.

Figure 1A shows an example of several different

DNA sequences competing for the binding to a spe-

cific protein. Some of each sequence will be bound

and some unbound. If the reaction mixture is run on

an electromobility shift assay (EMSA) gel, we can

separate the bound and unbound fractions of the

DNA (Figure 1B: the BX and B� bands of the gel,

respectively) and then sequence each fraction. The

ratios of each sequence in the bound and the un-

bound fraction are proportional to their binding

constants, so their ratios give us the relative binding

affinities we desire [15]:

KX x1ð Þ : KX x2ð Þ : . . . : KX xnð Þ ¼
N x1 jBXð Þ

N x1 jB�ð Þ

:
N x2 jBXð Þ

N x2 jB�ð Þ
: . . . :

NðxnjBXÞ

NðxnjB�Þ
ð3Þ

where N xi jB/ð Þ is the count of sequence xi in the

band of the gel B/ (a 2 X;�f g bound or unbound,

respectively). We have long used the approach of

separating bound and unbound fractions to deter-

mine relative binding affinities [16–22], but its

throughput and its accuracy was limited by the tech-

nologies available at the time. Current high-

throughput sequencing technology allows us to

assess relative affinities for thousands of sites in par-

allel. Furthermore, we are not limited to determining

models for binding, such as position–weight matrices

(PWMs) that assume independent contributions

from the positions in the binding sites [23–26].

Such models are clearly approximations, sometimes

reasonably good and sometimes not [11–13, 20, 27–

30]. The accuracy is quite high because we measure

exactly what is required for determining specificity;

complex mathematical analysis is not needed, only

calculating ratios are needed. Spec-seq is similar to
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SELEX-seq but obtaining accurate models from that

requires complex mathematical analysis and non-

linear regression because the unbound fraction is

not sequenced [6]. As long as we have sufficient

counts for every sequence in both fractions, the ac-

curacy of the ratios is high. We could assay larger

numbers of sequences but if the counts get too low

the ratios will only be approximately correct, dimin-

ishing accuracy. In some situations that may be suf-

ficient, in which case Spec-seq could be used on

many more sequences in parallel.

APPLICATION TOTHE lac
REPRESSOR: MULTIPLE MODES
OF BINDING DEPENDING ON
OPERATOR LENGTH
The lac repressor was the first discovered regulatory

protein [31] and has been studied extensively in the

subsequent years (see reviews in [32, 33]). One of the

interesting findings about the lac operator sequence

is that, although the protein binds as a dimer, the

binding site is asymmetric with a central G and

two differences between the left and right half-sites

(Figure 2A). It had previously been observed that a

symmetric variant, in which the central G is deleted

and the right half-site is mutated to be equivalent to

the left half-site, bound the lac repressor with slightly

higher affinity that the wild-type operator [34]. We

designed four different libraries that contained 2560

variant binding sites that included both variations in

the distance between the half-sites and variations in

each half-site (Figure 2A) and obtained relative bind-

ing affinities for each site using Spec-seq [15].

Figure 2B shows a brief summary of the results

using an energy logo [25, 35]. For sites with the

central G (libraries R3.1 and R3.2), the wild-type

asymmetric operator has the highest affinity of all

sequences tested. Furthermore, replacement of the

central G with any other base greatly reduces affinity.

For sites with the central G deleted (library R2), the

symmetric site with two copies of the left half-site is

preferred. But for sites with an insertion of an add-

itional base in the center (library R4), the symmetric

site with two copies of the right half-site is preferred.

For each of the different libraries the preferred se-

quences have similar binding affinities, within about

0.5 kT of each other, even though they are quite

distinct binding sites with different lengths and dif-

ferent preferred sequences. Those results demon-

strate that the helix-turn-helix (HTH) domain of

the lac repressor can prefer different sequences, or

bind in different modes, and that the binding

mode is determined by the distance of the half

site-from the central CG of the operator [15, 32].

In the wild-type operator, the distance is different for

the left and right half-sites and therefore the repressor

prefers the asymmetric site, with the two HTH do-

mains binding in alternative modes. In addition to

those three preferred sites in each library, we also

determined the relative affinities for all sites both

within and between the four libraries because all of

the sequences were competing for binding to the

same pool of repressor protein. Figure 2C and D

Figure 1: Binding reaction and separation of bound
and unbound fractions. (A). A reaction tube with a
DNA-binding protein (crescent shapes) and a mixture
of different DNA sequences (curvy lines). Different se-
quences have different affinities for the protein, which
are indicated by different shades of lines. Some of each
sequence is bound to the protein and some is unbound,
but higher affinity sequences are bound in higher pro-
portion. (B). An EMSA gel, in which the bound and un-
bound fractions are separated into distinct bands (BX

and B�, respectively).
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Figure 2: Lac repressor studies using Spec-seq. (A). The wild-type operator, O1, and four randomized libraries. In
library R2, the central G (position 0) is deleted and the asymmetric bases from O1 (�4, �2, þ2, þ4) are rando-
mized. In library R3.1 and R3.2, the central position (0) is randomized as are positions 2 to 5 (in R3.1) and �5 to
�2 (in R3.2, note reversed orientation). In R4, an extra C is inserted (we now have two 0 positions, labeled �0
and þ0) and positions �4, �2, þ2, and þ4 are randomized. Also shown are the highest affinity binding sites ob-
tained for each library. (B). Energy logo from the R3 libraries, with the preferred sequence matching the O1 se-
quence. For sites with a CG spacer (R2 library), two copies of the left half-site are preferred. For sites with the
CCGG spacer (R4 library), two copies of the right half-site are preferred. (C). From replicate experiments, per-
formed with different protein concentrations, the fractional differences between the two measurements of relative
affinity. The majority are within 10% of each other. (D). Data as shown in part C., but taking the logarithm to
show the differences in binding energy for replicate measurements. The majority are within 0.1 kT of each other.
(E). Plot of all of the energies from libraries R3.1 (right side) and R3.2 (left side) compared with the number of mis-
matches from the preferred binding site. This shows that the left half-site plateaus are at higher energy than the
right half-site, and that variations to the left half-site are generally more detrimental to binding. Furthermore,
many of the left-half site variants with two or more mutations have higher energy than predicted from the sum of
single variants.
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show that these determinations of relative affinity,

and relative binding free energy (or ��G), are

highly reproducible. In repeat experiments, the rela-

tive affinities are nearly always within 10% of each

other, which corresponds to ��G values within

about 0.1 kT [15]. Figure 2E shows the entire

range of binding energies as a function of the

number of variations from the preferred binding

site for each of the half-sites [15]. This allows us to

assess the additivity approximation rigorously.

Applying multiple regression to the various libraries,

we can usually find PWMs that fit the entire data

with R2> 0.7, and most predictions are within 0.5

kT of the measured binding energy, but we also find

significant deviations from additivity when ��G of

multiple variants are compared with single variants

[15]. A surprising result is that for library R2, all of

the multiple mutants have higher binding energy

than expected from the single variants, quite differ-

ent from what is observed for several bHLH proteins

where multiple mutants nearly always have lower

energy than expected from additivity [14]. This has

implications for the details of the interaction, includ-

ing the relative contributions of enthalpy and en-

tropy to binding [15].

Spec-seqTO STUDY
COMBINATORIALBINDING
TFs often bind in combinations to control gene ex-

pression, especially in eukaryotes. When multiple

TFs bind to a small region of DNA they may do

so independently, but often there is some interaction

between them. Interactions between multiple ligands

binding to a common substrate are referred to as

cooperativity, first observed in the binding of

oxygen to hemoglobin, and there is extensive litera-

ture describing the analysis of such interactions [36].

The first observed cooperativity among TFs was

found for binding of the lambda repressor to the

lambda operator region [37] where cooperativity is

critical for proper functioning of the lambda genetic

switch [38, 39]. Since then, cooperativity has been

observed among many different TFs and is probably

common at all regulatory regions in eukaryotic gen-

omes. A few examples include cooperativity among

P53 proteins that is essential for their roles in tumor

suppression and apoptosis [40, 41], the interactions

among Sox and Oct proteins that determines the

specific combinations that bind to specific regulatory

regions and is required for their diverse

developmental roles [42] and interactions between

Hox proteins at developmentally important regula-

tory regions [43].

Spec-seq can be applied to combinatorial inter-

actions for two (or more) TFs where the thousands

of different sites can include both binding site vari-

ants as well as the variations in the spacing between

them. Figure 3 describes the overall reaction of two

proteins, X and Y, binding to a sequence Si, which

is a combination of two sites, xi and yi with some

spacer, zi, between them (zi could be nothing if the

sites are adjacent, but we can vary it to measure any

effect on cooperativity). As above, we define the

equilibrium constant of protein X to sequence xi
as KX xið Þ, and we also have the equilibrium constant

of protein Y to yi as KY yi
� �

. (Here we assume that

yi and zi do not affect binding of X to xi, but we

can take that into account if necessary). We also have

the binding constant of protein X to sequence xi
when protein Y is already bound, KXjY xið Þ, and

similarly, the binding constant of protein Y to yi
when X is already bound, KYjX yi

� �
. One interesting

question is whether the specificity of one protein is

altered in the presence of the other protein, a

phenomenon that has been observed for

certain Hox proteins and has been labeled as ‘latent

specificity’ [43].

The interaction between the X and Y is referred

to as cooperativity, for which we use the symbol x

[42]. For a particular sequence Si, xi is determined

by comparing the binding constants for the proteins

binding individually with the constants for both

Figure 3: Reaction diagram for binding of two pro-
teins, X and Y, to a sequence with binding sites for
each, xi and yi, respectively. Binding constants shown
are for protein X binding alone KX, for Y binding
alone KY, and for each binding when the other is al-
ready bound,KXjYand KYjX.
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proteins binding:

xi ¼
KXjY Sið Þ

KX Sið Þ
¼

KYjX Sið Þ

KY Sið Þ
¼

KX;Y Sið Þ

KX Sið ÞKY Sið Þ
ð4Þ

xi can be any nonnegative number; if xi ¼ 1, then

binding is independent (often referred to as

having ‘no cooperativity’); if xi < 1 there is

‘anti-cooperativity’, with 0 for the case that binding

of the two proteins is mutually exclusive (for

example, if the binding sites overlap so that only

one can bind at a time); if xi > 1 then binding of

the second protein is facilitated by binding of the

first, which indicates ‘positive cooperativity’, al-

though this case is usually just referred to exhibiting

cooperative binding. As indicated by the subscript,

cooperativity may depend on the sequence,

especially on the spacer part, zi, just as the individual

and joint binding constants may depend on the

sequence.

Figure 4 describes an ideal experiment where the

mixture of different sequences are bound to the pro-

teins and then separated on an EMSA gel where four

distinct bands are seen, one for each state of the

DNA sequence: unbound (B�;�); bound individu-

ally by one of the proteins (BX;� and B�;Y); and

bound by both proteins (BX;Y). An example where

all four bands are observed is the combinatorial bind-

ing of Oct4 with different Sox TFs [42]. By cutting

out and sequencing each of those bands, we can

determine all of the relative parameters, how they

vary with sequence, and also the absolute and relative

cooperativity, for thousands of sequences simultan-

eously from a single experiment, as described with

the following equations.

Just as above in equation (3), the relative affinities

for individual proteins to all of the possible binding

sites can be determined from the ratios in two bands,

unbound and bound by X alone:

KX x1ð Þ : KX x2ð Þ : . . . : KX xnð Þ

¼
N x1 jBX;�
� �

N x1 jB�;�
� � :

N x2 jBX;�
� �

N x2 jB�;�
� � : . . . :

NðxnjBX;�Þ

NðxnjB�;�Þ

ð5Þ

and for protein Y, the unbound band and the band

of protein Y alone:

KY y1

� �
: KY y2

� �
: . . . : KY yn

� �

¼
N y1 jBY;�
� �

N y1 jB�;�
� � :

N y2 jBY;�
� �

N y2 jB�;�
� � : . . . :

NðynjBY;�Þ

NðynjB�;�Þ

ð6Þ

We can also determine the relative affinities

for the same proteins to all possible sites when the

other protein is already bound by comparing the

band of both proteins with that of the individual

Figure 4: Binding reaction and separation of bound
and unbound fractions for combinatorial system. (A).
Mixtures of two proteins (crescent and bullet shapes)
and DNA sequences that contain binding sites for each
protein. Different shades indicate different affinities for
the two proteins. Not shown is possibility to include
various distances between the two binding sites. (B).
EMSA gel showing four bands for unbound DNA
(B�;�), bound by either X orY alone (BX;� or B�;Y)
or bound by both (BX;Y).
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proteins:

KXjY x1ð Þ : KXjY x2ð Þ : . . . : KXjY xnð Þ

¼
N x1 jBX;Y
� �

N x1 jB�;Y
� � :

N x2 jBX;Y
� �

N x2 jB�;Y
� � : . . . :

NðxnjBX;YÞ

NðxnjB�;YÞ

ð7Þ

and

KYjX y1

� �
: KYjX y2

� �
: . . . : KYjX yn

� �

¼
N y1 jBX;Y
� �

N y1 jBX;�
� � :

N y2 jBX;Y
� �

N y2 jBX;�
� � : . . . :

NðynjBX;YÞ

NðynjBX;�Þ

ð8Þ

Comparisons between the relative affinities with

and without the other protein bound, for instance,

between the ratios in equations 5 and 7, and between

6 and 8, will determine whether the specificity

changes, for one (or both) protein, when the other pro-

tein is also bound, referred to as ‘latent specificity’ [43].

The absolute cooperativity for each sequence can

be determined if we also measure the total DNA in

each band (from the band fluorescent intensities),

IðB�;�Þ, IðBX;�Þ, IðB�;YÞ and IðBX;YÞ:

h ¼
IðBX;YÞIðB�;�Þ
IðBX;�ÞIðB�;YÞ

ð9Þ

h is the average cooperativity of all the sequences,

and if there is only one sequence it is just x for that

sequence [42]. Having determined that average we

can then determine the absolute cooperativities for

each individual sequence:

xi ¼ h
PðSijBX;YÞPðSijB�;�Þ
PðSijBX;�ÞPðSijB�;YÞ

ð10Þ

where PðSijBa;bÞ is the probability of sequence Si

within the set of sequences from the band Ba;b. The

relative cooperativity, how it changes in different se-

quences, is just the ratios of the absolute cooperativities

over all sequences, which eliminates the factor h (if we

want to know only relative coperativities, the meas-

urements used in equation (9) are not needed). We

expect that cooperativity may change due to variations

in the spacing and/or sequence between the binding

sites for X and Y, the component we refer to above as

zi, but it could also change for other reasons.

We get all of the parameters that we need to char-

acterize the individual and combinational binding

events for the entire set of sequences from a single

experiment, with the exception of absolute binding

constants. If we also desire that, it need only be obtained

for a single sequence and the rest can be inferred from

the relative values. While the total number of variants

that can be tested simultaneously is only in the

thousands, much less than the universe of all possible

combinatorial sites, that will often be enough for a

comprehensive view of the binding potential across a

genome. For example, we might synthesize DNA that

contains the top 50 sites for protein X and also for

protein Y, for 2500 different combinations, and even

add in a few different spacings, and still be able to

accurately determine the relative binding affinities to

all of those sequences from a typical short-read

sequencing run of� 100 million reads. Doing a few

experiments in parallel containing different sets of se-

quences, which could all be run on additional lanes of

the same gel, could expand that repertoire considerably.

CONCLUSIONS
Spec-seq is a fast, easy and reliable method for determin-

ing the specificity of a DNA-binding protein. It can

measure relative binding affinities for thousands of sites

in parallel. It can also be applied to combinations of

factors binding to the same DNA where both specificity

and cooperativity can be determined simultaneously.

Analysis of the data requires nothing more complex

than taking ratios, although regression may be applied

to infer models, such as PWMs, if desired [15]. The same

method could be applied to RNA-binding proteins

with the complication that binding affinity may

depend on both sequence and structure of the RNA.

Key points

� Spec-seq provides high accuracy measurements of relative bind-
ing affinity to thousands of binding sites in parallel.

� Analysis of the data requires taking only ratios of measured
quantities; no non-linear curve fitting is needed.

� Models of specificity, such as PWMs, can be rigorously tested
andmore complexmodels developed if useful.

� Binding of two (or more) factors can be studied using the same
approach, allowing for the determination of cooperativity be-
tween factors as well as specificity for the individual factors.

� Lac repressors shows alternative modes of binding that depend
on the length of the binding site.
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