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Abstract
Predicting the impact of genetic variation on human health remains an important and difficult challenge. Often, algorithmic
classifiers are tasked with predicting binary traits (e.g. positive or negative for a disease) from missense variation. Though
useful, this arrangement is limiting and contrived, because human diseases often comprise a spectrum of severities, rather
than a discrete partitioning of patient populations. Furthermore, labeling variants as causal or benign can be error prone, which
is problematic for training supervised learning algorithms (the so-called garbage in, garbage out phenomenon). We explore the
potential value of training classifiers using continuous-valued quantitative measurements, rather than binary traits. Using 20
variants from cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domains and six quantitative
measures of cystic fibrosis (CF) severity, we trained classifiers to predict CF severity from CFTR variants. Employing cross
validation, classifier prediction andmeasured clinical/functional valueswere significantly correlated for four of six quantitative
traits (correlation P-values from 1.35 × 10−4 to 4.15 × 10−3). Classifiers were also able to stratify variants by three clinically
relevant risk categories with 85–100% accuracy, depending on which of the six quantitative traits was used for training. Finally,
we characterized 11 additional CFTR variants using clinical sweat chloride testing, two functional assays, or all three
diagnostics, and validated our classifier using blind prediction. Predictions were within the measured sweat chloride range for
seven of eight variants, and captured the differential impact of specific variants on the two functional assays. This work
demonstrates a promising and novel framework for assessing the impact of genetic variation.

Introduction
The ability to accurately diagnose and optimally manage disease
from a patients unique molecular profile is paramount to the
realization of individualized medicine (1). The accumulation of
databases that catalog mutations putatively causal of disease
provide the opportunity to develop general principles for inter-
preting genetic variation (2,3). These principles can be encoded
in algorithms capable of utilizing the large variant databases

for training and/or testing, and the resulting classifiers employed
for predicting the disease liability of previously unclassified
variants (2–4). When assessed independently across multiple
variant databases, popular contemporary methods typically
achieve classification accuracies of ∼60 to ∼80% (5–7). Unfortu-
nately, the performance of individual methods can vary signifi-
cantly between genes and databases (5–8). In addition, there is
often a significant imbalance in prediction sensitivity and
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specificity (e.g. high sensitivity, but unacceptably low specificity).
These large changes in predictive performance in different set-
tings significantly limit the clinical utility of current methods
for assessing the consequence of genetic variation.

The inability of contemporary methods to achieve consistent
and clinically relevant performance highlights methodological
limitations. And in many cases, simplifying assumptions about
complex clinical phenotypes could directly contribute to mis-
classification (or perceived misclassification). Even though it is
increasingly acknowledged that many human diseases fall on a
spectrum of severity (9–15), classifiers are commonly tasked
with partitioning patients into discrete populations as positive
or negative for a given phenotype (5–8,16). Similarly, supervised
learning algorithms are often trained with genetic variants that
have been partitioned into two classes (e.g. disease causing and
neutral), ignoring the relative severity within the classes (3,17).
Also confounding is the presence of variants associated with
mild-to-moderate phenotypes or incomplete penetrance (18).
When labeled as disease causing or neutral for the purposes of
algorithmic training, these “borderline” variants could have a
negative impact on the performance of the resulting classifier.

One improvement to supervised learning algorithmsmight be
to utilize quantitative correlates of phenotype, known as endo-
phenotypes (19–21). Initially formulated in entomology studies
and popularized in psychiatric fields, the concept of the endo-
phenotype is now being considered in other disease areas
(19,21,22). As an example, in a population dichotomized as hav-
ing coronary heart disease (CHD) or not, each patient will have
continuous-valued risk factors of disease such as blood pressure,
cholesterol level or coronary calciumscore (19). Labeling a patient
as positive for the CHD phenotype does not explicitly indicate
disease severity. This could be problematic for classifier training
because variants with significantly different impact on disease
could be in the same class. Additionally, diagnosis of borderline
cases can be subjective and varied. For instance, a variant asso-
ciated with 30–60% narrowing of a major coronary artery (sten-
osis) could reasonably be considered neutral, borderline or CHD
causing (23), and could be differentially classified acrossmultiple
clinical studies. Conversely, an endophenotype such as blood
pressure can influence CHD severity, and is a quantitative
measurement rather than an arbitrary clinical interpretation.
Therefore, endophenotypic data could limit contamination intro-
duced by human interpretation or the information loss
associated with dichotomization, and might have benefits with
respect to training algorithmic classifiers.

The cystic fibrosis transmembrane conductance regulator
(CFTR) protein is a 1480 residue chloride channel encoded for
by the CFTR gene (24); the disease cystic fibrosis (CF) is caused
by variants in the CFTR gene. The recently established clinical
and functional translation of CFTR (CFTR2) database catalogs
data from ∼40 000 individuals with CF (25). Among these indivi-
duals, 1044 distinct genetic CFTR variations were found, with
159 of these variants having an allele frequency of 0.01% or great-
er and accounting for 96.4% of all variants observed. These 159
variants include 64missense variants, for which the CFTR2 data-
base includes endophenotypic data for up to six parameters, in-
cluding clinical traits in patients carrying those variants and in
vitro functional assays. Of these 64 missense variants, there are
20 variants that reside in CFTR nucleotide-binding domains
(NBD) and have data available for all six endophenotypic
measurements.

We recently developed a supervised learning algorithm called
phenotype-optimized sequence ensemble (POSE) (26). Provided a
multiple sequence alignment (MSA) and variants of known

phenotypic impact, POSE isolates an optimal set of sequences
for predicting the phenotype. Once this optimized MSA is cre-
ated, POSE can use the alignment to assess the impact of other
variants in the target gene. When tasked with predicting CF dis-
ease from mutation in the CFTR protein, the POSE method had
significantly higher prediction accuracy than other popular
methods tested using the same variants. POSE-derived MSAs
also improved the accuracy of other methods, relative to using
their default MSAs (26).

For this study, we extended the utility of POSE to account for
quantitative disease risk factors, by facilitating the use of con-
tinuous-valued endophenotypic data for training. The expanded
algorithm also now includes the option of using 3D protein struc-
ture for training and prediction. Here, we explore the potential
value of using these continuous-valued quantitative traits for
the purposes of classifier training, and predict CF disease liability
as a function of CFTR variation using endophenotypic data from
six clinical and functional assays. Training and prediction from a
leave-one-out cross-validation strategy applied to 20 CFTR var-
iants results in high predictive performance of both continu-
ous-valued endophenotypes and annotated CF phenotypes.
Finally, we clinically and functionally characterized 11 additional
CFTR variants to validate our classifier using blind prediction;
predicted and measured endophenotypes were in broad agree-
ment. This novel approach, of training a supervised learning
algorithm with disease endophenotypes for the subsequent
prediction of both endophenotype and phenotype, could be of
immediate utility for prioritizing functional assays, further eluci-
dating pathogenesis, and as a complement to existing CF
diagnostics.

Results
For this work, we further developed our POSE algorithm, such
that continuous-valued quantitative phenotypes (endopheno-
types) could be used to train the classifier. We tested this ex-
panded functionality by predicting CF disease liability from
CFTR amino acid substitution using six different clinical and
functional data types for training. For each of these six endophe-
notypes, individually, the POSE algorithm trained using all but
one of the variants, and prediction was made on that remaining
variant; this process was repeated for each variant (i.e. a leave-
one-out strategy). Importantly, the residue position for the vari-
ant being predicted on was never present in the training set. For
example, when predictions were made for R560T, R560K was
absent from the training set, and vice versa, because both var-
iants occur at residue 560. Our evaluation is performed in three
phases. First, we assess the correlation between prediction
(POSE score) and measured endophenotype. Second, we thresh-
old the continuous-valued POSE scores to compare predictions
with annotated CF phenotypes. Finally, we perform blind valid-
ation by clinically or functionally evaluating 11 additional CFTR
variants and comparing those measurements with POSE
predictions.

Correlation between prediction and endophenotype varied
considerably among the different CFTR domains. Calculations
considering all variants, or variants from either the NBDs or
transmembrane domains (TMDs) separately revealed signifi-
cantly better performance in the NBDs. Correlation between
POSE prediction and endophenotype was low for CFTR TMD var-
iants, where predictions were not significant for any of the six
endophenotypes (P-values < 0.05; see Supplementary Material,
Table S1). While predictions for some endophenotypes were
statistically significant when all variants were considered,
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correlations were generally low (Supplementary Material,
Table S2). Conversely, correlation was generally high for CFTR
NBD variants, and predictions were statistically significant for
four of six endophenotypes (see below). Because current algorith-
mic performance is too low to reliably aid in the interpretation of
TMD variants, we restrict further analysis and additional valid-
ation to variants in the NBDs.

Table 1 shows variant-specific endophenotype data for the
NBD variants used in this study, with the corresponding POSE
scores obtained from leave-one-out cross validation. This in-
cludes all 20 NBD variants from the CFTR2 database that had
data available across all six endophenotypes. Additionally, the
annotated phenotype is shown in Table 1. See Materials and
Methods for a complete description of all endophenotypic data
and phenotype definitions.

Figure 1A–E shows the correlation between prediction (POSE
score) and each of the six endophenotypes. Each data point is
themeasured endophenotype versus POSE score for a given vari-
ant, where each POSE score resulted from leave-one-out cross
validation. For POSE, increasing score indicates a prediction of in-
creasing disease severity (possible range is−3.0 to 3.0, where zero
is equivalent to wild type and negative values indicate a protect-
ive variant). For each of the six endophenotypes, the measured
values and POSE scores showed the expected, general correlation.
For instance, increasing sweat chloride, pancreatic insufficiency
and Pseudomonas infection are each associated with increasing
CF disease severity; POSE predictions captured this positive cor-
relation. Chloride-conductance, fraction of mature-to-total pro-
tein and lung function endophenotypes are all inversely
associated with CF disease severity; for these three endopheno-
types, POSE predictions captured this inverse correlation.

Across all 20 variants, POSE scores were highly predictive
of mean patient sweat chloride, achieving an R2 and Pearson cor-
relation of 0.45 and 0.65, respectively, and a Pearson P-value of
1.15 × 10−3 (Fig. 1A). POSE score was also highly correlated with
pancreatic insufficiency (Fig. 1B), having correlation statistics
similar with that of the sweat chloride predictions. POSE score
was only moderately correlated with the percentage of patients
with Pseudomonas aeruginosa infection, achieving an R2 of 0.20, a
Pearson correlation coefficient of 0.44 and a Pearson correlation
P-value of 0.05 (Fig. 1C). Overall correlation of predicting vari-
ant-specific chloride conductance in Fisher rat thyroid cells was
high, achieving an R2 of 0.56, Pearson correlation of −0.75 and a
Pearson P-value of 1.35 × 10−4 (Fig. 1D); training with this endo-
phenotype resulted in the highest overall correlation among
the six endophenotypes. POSE scores did reasonably well at pre-
dicting the ratio of mature-to-total CFTR protein in HeLa cells, as
a function of mutation, across the 20 leave-one-out calculations
(Fig. 1E). Patient lung function, measured as the forced expiratory
volume in 1 s (FEV1%pred), was themost difficult endophenotype
to predict using the POSE algorithm (Fig. 1F). While POSE scores
did show the expected negative correlation with FEV1%pred
measurements, the associated P-value was 0.168 and the R2

and Pearson correlation was only 0.10 and −0.32, respectively.
Next, we assessed the agreement between POSE scores and

the annotated phenotype associated with each of the 20 var-
iants (see Table 1). This is useful because an endophenotype-
trained POSE classifier could be used to help inform clinical
diagnoses in the same way the functional and clinical assays
currently help inform clinical diagnoses. And for the abovemen-
tioned reasons, endophenotypic data can limit contamination
and information loss relative to phenotypic data, which could

Table 1. Twenty CFTR nucleotide-binding domain mutations from the CFTR2 database with corresponding endophenotypic measurements,
POSE scores and annotated phenotype

Variant Sweat [Cl−] PI P.a. infection [Cl−] cond. C/(C + B) FEV1%pred Phenotype

A455E 83 (0.86) 53.5 (0.70) 46.2 (0.88) 6.8 (0.74) 0 (1.12) 75.7 (0.52) CF-causing
L467P 97 (1.53) 100 (1.54) 18.2 (1.62) 0 (1.61) 0 (1.61) 83.7 (1.62) CF-causing
S492F 72 (0.26) 20 (0.49) 60 (0.40) 0 (0.34) 0 (0.37) 67.9 (0.23) CF-causing
V520F 108 (1.13) 100 (1.31) 43.6 (1.49) 0.2 (1.15) 0 (1.43) 78.2 (1.06) CF-causing
S549N 101 (0.89) 93.9 (0.89) 53.2 (0.89) 1.6 (0.88) 95 (0.83) 72.7 (0.89) CF-causing
S549R 109 (0.89) 95.5 (0.89) 54.5 (0.88) 0.1 (0.88) 75.3 (0.83) 72 (0.89) CF-causing
G551D 104 (0.99) 97.8 (1.30) 58 (1.31) 1.3 (1.24) 99.4 (0.70) 74.4 (1.24) CF-causing
A559T 99 (1.55) 96.4 (1.56) 55.6 (1.56) 0 (1.43) 0 (1.56) 72.3 (1.56) CF-causing
R560K 112 (0.86) 100 (0.82) 40 (0.84) 0 (0.71) 0 (0.85) 71.5 (1.00) CF-causing
R560T 103 (0.86) 99.2 (0.82) 66.1 (0.84) 0.1 (0.73) 0 (0.87) 76.2 (1.00) CF-causing
G1244E 99 (1.37) 81.8 (1.50) 54.2 (1.50) 1 (1.36) 98.8 (0.99) 73.6 (1.50) CF-causing
S1251N 87 (0.86) 88.7 (0.89) 51.9 (0.81) 5.2 (0.87) 98.8 (0.60) 61.5 (0.62) CF-causing
N1303K 103 (1.10) 95.7 (1.07) 54.4 (1.09) 0.5 (1.03) 10.5 (1.10) 72.5 (1.10) CF-causing
D579G 75 (1.0) 72.7 (1.00) 30 (1.00) 13.9 (0.93) 76.3 (0.80) 82.7 (1.00) Indeterminate
D614G 72 (0.76) 0 (0.77) 20 (0.53) 18 (0.63) 40.9 (0.65) 59.2 (0.56) Indeterminate
I1234V 99 (0.32) 40 (0.79) 50 (0.82) 39.9 (0.36) 98.8 (0.68) 79.8 (0.46) Indeterminate
D1270N 65 (0.50) 25 (0.5) 11.1 (0.53) 53.2 (0.50) 97.4 (0.39) 92 (0.52) Indeterminate
M470V 81 (−0.01) 57.1 (0.01) 21.4 (0.00) 95.7 (0.00) 93 (0.17) 83.3 (0.02) Not CF-causing
G576A 50 (−0.01) 30 (−0.06) 8.3 (−0.09) 147 (0.03) 98.5 (0.31) 91.7 (−0.01) Not CF-causing
S1235R 54 (0.08) 57.9 (0.05) 25 (0.08) 78.7 (0.09) 95.9 (0.21) 87.4 (−0.22) Not CF-causing

Sweat [Cl−] is themean sweat chloride for patients with the variant; PI is the percentage of patients displaying pancreatic insufficiency; P.a. infection is the percentage of

patients with P. aeruginosa infection; [Cl−] cond. is the mean chloride conductance for cells expressing the CFTR variant; C/(C + B) estimates the fraction of properly

processed (“mature”) CFTR protein; FEV1%pred is the mean lung function as a percent of wild type. Increasing sweat [Cl−], PI and psuedo are each associated with

increasing CF severity. For [Cl−] cond., C/(C + B) and FEV1%pred, decreasing values are associated with increasing CF severity. For POSE scores, shown in parentheses,

increasing values always correspond to increasing disease severity. See Endophenotypic data and Annotated phenotype for a detailed description of functional–

clinical endophenotypes and phenotype definitions.
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make endophenotype-trained classifiers more reliable than
phenotype-trained classifiers. To do this, we performed area
under the curve (AUC), receiver–operator characteristic (ROC)
analysis using POSE scores as the continuous variable and an-
notated phenotypes as the binary variable (Fig. 2A–F). Table 2
shows the corresponding sensitivity, specificity, positive pre-
dictive value (PPV) and negative predictive value (NPV). Dichot-
omization of POSE scores to calculate these predictive
performance statistics was achieved by choosing the cutoff
that maximized balanced accuracy (arithmetic mean of sensi-
tivity and specificity). The 20 variants were previously annotated

as being associated with three distinct CF phenotypes (25), classi-
fied as not CF-causing, indeterminate and CF-causing. Dichotomiza-
tion of the tripartite data was achieved by either removing
the indeterminate group (“indeterminate excluded”), grouping
the indeterminate and not CF-causing variants (“indeterminate +
not CF-causing”) or grouping the indeterminate and CF-causing
variants (“indeterminate + CF-causing”). As an example, for binar-
ization using the indeterminate + CF-causing scheme, the negative
class comprises only variants labeled not CF-causing, and
the positive class comprises variants labeled indeterminate and
CF-causing.

Figure 1.Correlation of POSE scorewith six individual CFTRendophenotypes. Each plot shows the results of 20 leave-one-out POSE calculations (i.e. one data point for each

mutation), trained using the corresponding endophenotypic data. In each plot, theX-axis is the predicted impact (POSE score) for each of 20 CFTR amino acid substitutions,

and the Y-axis is the experimentally or clinically determined endophenotype. Green circles, yellow squares, and red diamonds denote the not CF-causing, indeterminate and

CF-causing annotated phenotypes, respectively. See Table 1 for a description of each endophenotypic measurement type and annotated phenotypes.
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Figure 2. ROC analysis for prediction of CF phenotypes from POSEs trained using six individual CFTR endophenotypes. Clinical phenotypes were defined as not CF-causing,

indeterminate or CF-causing. To achieve dichotomization, variants defined as indeterminate were either excluded, grouped with variants defined as CF causing or grouped

with the not CF-causing class (i.e. three individual ROC curves per chart). Continuous variables are POSE scores resulting from 20 leave-one-out calculations trained on each

of six individual endophenotypes. AUC is the area under the curve. See Table 1 for a description of each endophenotypic measurement.

Table 2. Predictive performance for classifying CF phenotypes from POSEs trained using six individual CFTR endophenotypes

Endophenotype Sensitivity (%) Specificity (%) PPV (%) NPV (%)

“Indeterminate” excluded Sweat [Cl−] 100 100 100 100
PI 100 100 100 100
P.a. infection 100 100 100 100
[Cl−] cond. 100 100 100 100
C/(C + B) 100 100 100 100
FEV1%pred. 100 100 100 100

“Indeterminate” grouped with “not CF-causing” Sweat [Cl−] 92 86 86 92
PI 85 86 75 92
P.a. infection 85 86 75 92
[Cl−] cond. 92 86 86 92
C/(C + B) 77 100 70 100
FEV1%pred. 85 86 75 92

“Indeterminate” grouped with “CF-causing” Sweat [Cl−] 100 100 100 100
PI 100 100 100 100
P.a. infection 100 100 100 100
[Cl−] cond. 100 100 100 100
C/(C + B) 100 100 100 100
FEV1%pred. 100 100 100 100

The statistical sensitivity, specificity, PPVandNPV for classifying different CF phenotypes. Results are shown for each of three phenotype binarization schemes (see Fig. 2),

for POSEs trained on six individual endophenotypes. See Table 1 for a description of each endophenotypic measurement.
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Comparing Figure 2A–E and Table 2, endophenotype-trained
POSE classifiers were good predictors of annotated phenotype
using any of the six endophenotypes for training. In addition,
predictive performance metrics (AUC, sensitivity, specificity,
PPV and NPV) were generally good for any dichotomization of
the tripartite phenotype annotations (Fig. 2A–E and Table 2).
For the indeterminate excluded and indeterminate + CF-causing di-
chotomizations, five of the six endophenotype-trained POSE
classifiers were perfect in all predictive performance metrics;
POSE classifiers trained using patient P. aeruginosa infection
show slightly reduced predictive performance for these pheno-
type groupings. For all six POSE classifiers, POSE scores were
worse predictors of phenotype for the indeterminate + not CF-
causing dichotomization, relative to the other two groupings.
This result suggests that the POSE score function scores var-
iants from the indeterminate group with a severity closer to the
CF-causing group than the not CF-causing group. However, even
for the indeterminate + not CF-causing dichotomization, POSE
scores result in good separation of the classes.

POSE scores and endophenotypic measurements comparably
partitioned the variants by annotated phenotype. For instance,
along the X-axis in Figure 1A the not CF-causing variants (green
circles) cluster around a POSE score of 0.0, indeterminate variants
(red squares) have POSE scores from 0.32 to 1.0, and CF-causing
variants (blue diamonds) have POSE scores partially overlapping
with indeterminate variants and extending to 1.55 (see also
Table 1). Looking at the Y-axis on the same plot, mean patient
sweat chloride partitioned the indeterminate and CF-causing var-
iants similar to the sweat chloride-trained POSE classifier. In add-
ition, the sweat chloride-trained POSE classifier more distinctly
separated the not CF-causing and indeterminate variants than do
the actual sweat chloride measurements. Indeed, this trend is
clear in almost all plots in Figure 1. Endophenotype-trained
POSE classifiers separate the not CF-causing and indeterminate
classes more distinctly than the corresponding endophenoty-
pic measurements. And, separation of the indeterminate and
CF-causing classes is comparable from the endophenotypes and
the corresponding POSE scores. The exception to these obser-
vations occurs for the in vivo chloride-conductance measure-
ments (Fig. 1D), which almost perfectly separates all three
annotated phenotypes; notably, this endophenotypic data type
also produced the best correlation with POSE score among all
endophenotypes.

Finally, we sought to test our algorithm using a blinded valid-
ation scheme. We evaluated 11 CFTR variants that had sweat
chloride, chloride-conductance and/or CFTR processing mea-
surements. Authors responsible for deriving POSE predictions
were not provided the measured data until after the predictions
were shared. Table 3 showsmeasured and predicted endopheno-
types, and POSE scores for this 11-variant validation set. POSE
“predictions” were derived using the new POSE scores and the
linear equations resulting from the initial leave-one-out cross
validations, for each relevant endophenotype (see Fig. 1).

Measured and POSE-predicted endophenotypeswere in broad
agreement for the 11-variant validation set (Table 3). The pre-
dicted sweat chloride was within 1 SD of the mean for five of
eight CFTR variants (sweat chloride measurements were not
available for three of the 11 variants). Predicted and measured
sweat chlorides were almost identical for the Y563N and I1269N
variants (see Table 3). For I502T, the predicted sweat chloride
level (84.3) is >1 SD from themeasured sweat chloride (96.5 ± 4.8);
however, both the measured and predicted values are indicative
of a CF-causing variant. For variants T1246I and V456A, the com-
parison between prediction and clinical measurement is less
clear. First, there is conflicting evidence for the role V456A in CF
disease pathogenesis (27,28). One group reported that T1246
variants can significantly impact CFTR function (29). In this
study, these variants have mean sweat chloride values asso-
ciated with the indeterminate phenotype, but have individual
measurements that span large ranges of disease liability (33.0–
98.0; see the Supplementary Material, supplemental spread-
sheet). POSE predictions suggest that both of these variants are
CF-causing.

Functional data were available for four variants from the 11-
variant validation set (Table 3). Cells expressing either the
Y549D or A561E variants were predicted to exhibit severely re-
duced chloride-conductance and CFTR processing, as confirmed
by the corresponding functional measurements. For G1349D and
G551S, POSE predicts that themajority of CFTR protein is properly
processed, but that cells expressing these variants are still poorly
conductive. Remarkably, this mechanism of disease pathogen-
esis is supported by the functional measurements, for both the
G1349D and G551S variants. A potential discrepancy between
predicted and measured functional endophenotypes occurred
for impact of G1349D on chloride conductance. For this variant,
the prediction was indicative of the indeterminate phenotype,

Table 3. Measured and predicted endophenotypes for 11 newly characterized CFTR variants

Variant Sweat [Cl−] [Cl−] cond. C/(C + B)
Measured Predicted (score) Measured Predicted (score) Measured Predicted (score)

Y569D NA NA 0 5.4 (1.0) 8 ± 7 11.4 (1.42)
A561E NA NA 0 0 (1.6) 8 ± 5 3.6 (1.53)
G1349D NA NA 2.9 ± 0.9 19.5 (0.83) 85 ± 6 76.4 (0.5)
G551S 79.7 ± 28.9 93.4 (1.0) 8.1 ± 3.4 0 (1.2) 86 ± 10 67 (0.64)
Y563N 97.0 ± 15.3 95.8 (1.1) NA NA NA NA
L1335P 81.4 ± 31.6 65.4 (0) NA NA NA NA
T1246I 63.9 ± 19.1 94.8 (1.1) NA NA NA NA
V456A 62.6 ± 14.4 82.8 (0.6) NA NA NA NA
G622D 78.2 ± 28.2 104.5 (1.4) NA NA NA NA
I502T 96.5 ± 4.8 84.3 (0.7) NA NA NA NA
I1269N 94.2 ± 10.6 95.3 (1.1) NA NA NA NA

Measured endophenotype and corresponding standard deviation, POSE-predicted endophenotype and POSE score (parentheses) for each of 11 newly characterized CFTR

variants. NA indicates that the specific measurement was not made for the corresponding mutation.
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whereas themeasured value clearly suggests a CF-causing pheno-
type (see Table 1).

Discussion
In this study, we explored the potential value of using continuous-
valued quantitative traits, rather than binary traits, to inform the
classification of missense variants. When available, these con-
tinuous-valued endophenotypes might provide some advan-
tages for classifier training, relative to training with data that
has been labeled as either positive or negative for a given trait.
Labeling can be subjective and is a potential source of contamin-
ation, and there is information loss associatedwith ignoring rela-
tive severity within the classes. These sources of error can
propagate downstream to algorithmic training, in turn causing
error in subsequent predictions.

For a dataset of 20 CF-associated variants in CFTR NBDs,
endophenotype-trained POSE classifiers show promise. Employ-
ing a leave-one-out cross-validation strategy, these classifiers
were generally well correlated with the corresponding endophe-
notype. And in many cases, POSE scores more distinctly sepa-
rated three annotated phenotypes than did the corresponding
clinical/experimental measurements. This suggests that endo-
phenotype-trained POSE classifiers might be worthy of consider-
ation, along with existing clinical diagnostics, for assessing the
disease liability of CFTR variants. POSE predictions might also
be useful for prioritizing in vivo assays of CFTR function. For
example, chloride conductance in Fisher rat thyroid cells is a
good predictor of variant-specific disease liability, but it is far
too expensive and time consuming to experimentally test all pos-
sible CFTR variants. In this report, we showed that POSE scores
are correlated with chloride conductance, providing a tractable
way to rank NBD missense CFTR variants and prioritize ongoing
experiments.

Blind prediction on an additional 11 CF-associated CFTR var-
iants also showed promising results. Particularly encouraging
was the ability of endophenotype-trained POSEs to elucidate
the different molecular mechanisms contributing to disease
pathogenesis. POSE accurately predicted that variants G1349D
and G551S impact CF disease via channel gating, rather than
improper CFTR processing. For Y569D and A561E, POSE predicted
an almost complete abrogation of CFTR processing, consistent
with the C/(C + B) measurements. Because these variants result
in a severe reduction of mature CFTR protein, gating is also ex-
pected to be low, consistent with both the measured and pre-
dicted chloride conductance.

One shortcoming of this work is the low correlation between
POSE score and endophenotype for variants in CFTR TMDs. This
result is consistent with that of a previous study, using an earlier
version of POSE to studyCF-causing CFTR variants (26); that study
did not consider endophenotypes. The POSE score function relies
entirely on sequences homologous to the target protein, and 3D
structural data, when available. CFTR is a member of the large
superfamily of ABC transporters, which bear high sequence simi-
larity among the NBDs and very low sequence similarity among
the TMDs (30,31). Similarly, high-resolution X-ray crystals struc-
tures are available for human CFTR NDBs, but not for human
CFTR TMDs. Furthermore, high-resolution structural studies of
bacterial ABC transporters show structurally conserved NBDs,
but TMDs that lack significant structural homology (32). Also,
CFTR is unique among ABC transporters in that CFTR is an ion
channel, rather than a transporter. Given the lack of sequence
and structural homology among ABC TMDs, it is not surprising
that a method relying on sequence and structure would suffer
in these domains. It is possible, however, that a different set of
sequences in the initial MSA could improve overall prediction.

For the autosomal recessive disease phenylketonuria, there is
evidence that phenylalanine hydroxylase variant severity, as-
sessed by in vitro assays, does not have a linear correlation with
disease severity (33). Considering that example, there is no rea-
son to assume a priori that the relationship between experimen-
tal data and POSE score should be linear. One potential
improvement to the POSE algorithm might be to include non-
linear regression during the sequence optimization (training)
phase. Here, CFTR homologs were selected that maximized R2

for the linear regression of endophenotypes onto POSE scores.
But, among the POSE score–endophenotype relationships
shown in Figure 1A–E, the chloride conductance (Fig. 1D) and
ratio of mature-to-total protein (Fig. 1E) appear exponential and
sigmoidal, respectively. Figure 3 shows chloride conductance
versus POSE score fit using a polynomial (Fig. 3A) and linear
(Fig. 3B) regression; R2 is 30% greater when fit with a third-degree
polynomial regression, relative to linear regression. Algorithmic
performance might benefit from the addition of second- and
third-degree polynomial and sigmoidal fitting during training,
with the appropriate penalty to prevent over fitting.

It is tempting to conclude that an apparent disagreement
between POSE prediction and annotated phenotype indicates
algorithmic misclassification. However, there is also disagree-
ment across the measured endophenotypes, which might be
instructive. For instance, S492F has an annotated phenotype of
CF-causing, but the POSE classifier consistently classified this

Figure 3. Correlation of chloride-conductance and POSE score using either a linear or exponential relationship. Variant-specific chloride-conductance ([Cl−] cond.) versus

POSE score fit using a third-degree polynomial regression (A). For comparison, (B) shows the same data fit using a linear regression (same as Fig. 1D).
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variant in the indeterminate regime. The lung function (FEV1%
pred), mature-to-total protein, chloride-conductance and Pseudo-
monas infection endophenotypes are all indicative of a CF-causing
classification for this variant. However, patient sweat chloride
and pancreatic insufficiency rates suggest that this variant was
milder. In reality, this variant could be differentially affecting dif-
ferent components of disease, could be associated with alterna-
tive disease mechanisms (deleterious to the airway in a manner
that was disruptive to chloride conductance) or could be asso-
ciated with less than complete penetrance. In this way, POSE
classifiers might be informative for identifying variants deserv-
ing more study.

The continued improvement of methods for predicting the
impact of genetic variation appears to be a recognized priority
for the near future. It is alsoworth acknowledging the upper lim-
its of these methods, such that efforts are allocated to achieve
maximum benefit. Even for “textbook” monogenetic disorders
such as CF, there are likely other endogenous factors that influ-
ence disease severity (34,35). These factors include expression
levels, modifying mutations in other genes, small molecule or
ion concentrations, etc. And of course, other exogenous or envir-
onmental factors can have significant influence on human dis-
ease (36). Indeed, highly accurate individualized medicine will
likely require multi-scale approaches that consider everything
from molecular-level phenomena to lifestyle circumstances
(36). Methods such as POSE should be a necessary component
of a larger algorithmic framework, utilizing diverse clinical and
laboratory inputs.

Materials and Methods
Previously, we developed the POSE algorithm to predict the
impact of protein amino acid substitution on phenotype. (26)
The algorithm is executed in two phases: (i) a supervised learning
(training) phase where the algorithm isolates subsets of se-
quences, from a pre-computed MSA, that facilitates an optimal
classification of variants of known phenotypic impact. (ii) The
POSE that results from training is then used to predict the pheno-
typic impact of variants not present in the initial training phase.
In this report,we extend the functionality of ouralgorithm toutil-
ize continuous-valued, quantitative disease risk data (endophe-
notypic data) during the supervised learning stage. POSE is
written in python and is freely available for nonprofit use at
http://karchinlab.org/apps/appPose.html. See the accompanying
Supplementary Material, Materials and Methods for a detailed
description of POSE and the implementation used for this work.

CFTR sequences

CFTR is member 7 of subfamily C of the large family of evolution-
arily related ABC transporters. For this study, we constructed the
MSA’s from all CFTR (ABCC7) orthologs, and CFTR paralogs
(ABCC1–6 and 8–12) from the UCSC 46-vertebrate genome align-
ments; this resulted in a total of 547 CFTR homologs. Sequences
were aligned using ClustalW in default mode (37).

CFTR homology model

POSE calculates relative residue burial from protein 3D structure,
if available, for scoring variants. For this study, we supplied POSE
with a homology model of CFTR in the so-called inward-facing
conformation (26). There is no crystal structure of full-length
CFTR available in the protein databank (PDB). However, crystal
structures for both CFTR NBD1 and NDB2, individually, were

available at the time of this writing. The added utility of using
the homology model, relative to isolated NBD crystal structures,
is that the homology model provides an estimation of the inter-
face formed between the interacting NBDs. Importantly, the
backbone RMSD is low between the homology model and each
of the NDB crystal structures (1.70Å for NBD1, PDB ID 2BB0; 3.0Å
for NBD2, PDB ID 3GD7). Unfortunately, no crystal structure for
CFTR TMD1 and TMD2 is currently available in the PDB.

CFTR variants

There were a total of 59 variants that had endophenotypic data
available in the CFTR2 database for each of six unique data
types (25). This included 20 variants in CFTR NBDs, 37 in the
TMDs and 2 in the regulatory domain. We performed leave-
one-out cross-validation calculations using three different
groupings of the variants: (i) including only the 20 NBD variants.
(ii) Including only the 37 TMD variants. (iii) All 57 variants in-
cluded in the cross-validation calculation. Considering mem-
brane and cytosolic protein regions separately was useful to
determine differences in performance between the domains.

We constructed a final validation dataset of 11 NBD variants.
Clinical endophenotype data on sweat chloride concentration
was derived from a new data collection for the CFTR2 project
that includes a larger number of CF patients. By using this new,
larger dataset wewere able to evaluate data for 11 additional var-
iants that did not have enough patients in the first dataset. All
patients included in analysis of the 11 additional variants had a
known CF-causing mutation on the other allele and were identi-
fied from patients in the CFTR2 database and occurred at a
frequency of at least 0.004%. Sweat chloride means were derived
fromaminimumof five patients. Detailed information, including
variant-specific sweat chloride ranges, is included in Supplemen-
tary Material, supplemental spreadsheet.

Annotated phenotype

The variants in the CFTR2 database were reported in CF patients
collected in national registries and large clinics (25). To confirm
that these variants were causing disease, the CFTR2 project
used the clinical severity of patients that carried the variant, la-
boratory based functional testing of the variants in experimental
cell lines, and a test of penetrance that looked at the non-
transmitted allele in fathers of CF offspring (25). This allowed
the CFTR variants observed in CF patients to be characterized
as CF-causing if clinical parameters were consistent with the
diagnostic criteria for CF, functional evaluation demonstrated
the variant would disrupt protein expression or function, and
there was no evidence that the variant was not fully penetrant
to cause infertility in fathers. One hundred and twenty-seven
variants of the 159 evaluated met all these criteria. The remain-
ing variants were assigned an “indeterminate” phenotype (20 of
159), unless there was evidence the variant was not penetrant
(12 of 159) and could therefore be classified as not CF-causing.

Endophenotypic data

In addition to the annotated phenotypes (CF, not-CF, indetermin-
ate) described above, we utilized specific endophenotypes that
allowed variants to be placed on a spectrum of severity (25).
Two of these phenotypes refer to functional testing of experi-
mentally generated cell lines that express a single copy of
the mutated protein. These cell lines were tested for CFTR
maturation, and for CFTR-specific chloride current. A variant
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was defined as more severe if there was greater disruption of
wild-type CFTR processing, or if the chloride conductance was
low. Clinical endophenotypes were derived from patients in the
CFTR2 database that carried a given variant on one chromosome,
with avariant known to be associatedwith zero CFTR function on
the other chromosome. More severe CFTR variants would be ex-
pected to have higher sweat chloride concentration, lower lung
function (measured as forced expiratory volume in 1 s, FEV1%
pred), to be associated with infection with a common pathogen
seen in CF (P. aeruginosa), and to be associated with exocrine pan-
creatic dysfunction.

Performance metrics

POSEnatively calculates the sensitivity, specificity, PPV,NPV, ROC
AUC, and R2 for the linear regression of POSE scores versus endo-
phenotypic measurements. Pearson correlation coefficients and
P-values are calculated using the R cor.test module, which inter-
faces with POSE via RPy2. All ROC plots were generated in R.

Sensitivity is defined as number of true positives (TP) divided
by the sum of TP and false negatives (FN). Specificity is defined as
the number of true negatives (TN) divided by the sum of TN and
false positives (FP). The PPV and NPV are defined as TP/(TP + FP)
and TN/(TN + FN), respectively. These predictive performance
statistics are calculated by dichotomizing POSE scores such that
the balanced accuracy of phenotype prediction is maximized
(i.e. POSE scores are dichotomized and compared with the binary
annotated phenotypes).

Supplementary Material
Supplementary Material is available at HMG online.
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