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Best choice problems have a long mathematical history, but their
neural underpinnings remain unknown. Best choice tasks are
optimal stopping problem that require subjects to view a list of
options one at a time and decide whether to take or decline each
option. The goal is to find a high ranking option in the list, under the
restriction that declined options cannot be chosen in the future. Con-
ceptually, the decision to take or decline an option is related to
threshold crossing in drift diffusion models, when this process is
thought of as a value comparison. We studied this task in healthy
volunteers using fMRI, and used a Markov decision process to quan-
tify the value of continuing to search versus committing to the
current option. Decisions to take versus decline an option engaged
parietal and dorsolateral prefrontal cortices, as well ventral striatum,
anterior insula, and anterior cingulate. Therefore, brain regions pre-
viously implicated in evidence integration and reward representation
encode threshold crossings that trigger decisions to commit to a
choice.
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Introduction

In many decision problems, one must sample items from a list
to find a good option. Often one cannot return to previous
items from the list even if they are better than the current offer.
For example, one may track interest rates on home mortgages
trying to find a low rate. When rates increase, you cannot
return to older, lower rates. Stochastic fluctuations in economic
variables may drive the rates lower in the future, but they may
not. In other cases, previously declined choice options may no
longer be available because of changes in choice preferences
of another agent, whose offer had been previously declined, as
in the fiancée problem. Johannes Kepler famously struggled
with this problem when interviewing candidates for his
second wife (Koestler 1960; Ferguson 1989). After interview-
ing the fifth candidate he decided to propose to candidate 4,
who turned him down because he had waited too long, or
perhaps because he had interviewed candidate 5. While this
problem has a long mathematical history in the form of
optimal stopping problems (Hill 2009), the neural underpin-
nings of this choice process have received less attention. Here,
we present the results of an fMRI study of this stopping
problem. Our task is similar to the secretary problem, which
has also been called the marriage problem, the fussy suitor
problem, and the best choice problem.

Threshold crossing problems are a special case of optimal
stopping problems (DeGroot 1970). In threshold crossing pro-
blems, one gathers evidence which supports 2 or more hypoth-
eses. When the evidence in favor of one of the hypotheses
crosses a threshold, a decision is executed. This framework has

been applied to decision-making tasks, particularly perceptual
inference tasks (Gold and Shadlen 2001; Ditterich 2006).
Recently, however, this problem has been recast as an optimal
stopping problem (Drugowitsch et al. 2012). In optimal stop-
ping problems, at each point in time, one considers the relative
values of making a decision versus continuing to sample infor-
mation. Continuing to gather information is similar to being
“below the bound” in a threshold crossing framework and com-
mitting to a decision is similar to being “above the bound.”
However, the values of stopping versus continuing are calcu-
lated dynamically after each new piece of information arrives,
explicitly considering the number of remaining samples. There-
fore, a valuewhich would lead to making a decision at one point
in the search process would not necessarily lead to making a
decision at another point in the search process. Thus, optimal
stopping is a form of value comparison. However, the process
differs somewhat from value comparisons in, for example,
2-armed bandit tasks, as outcomes are immediate in these tasks.
In stopping problems, when one decides to continue to sample
information because the value of sampling exceeds the value of
stopping, one is always choosing an expected future reward.

The decision problem in the current study cannot be
modeled as a drift diffusion process. Each choice option from
the list improves one’s estimate of the distribution from which
samples are being drawn, and therefore improves one’s ability
to estimate whether each option is a good candidate. However,
declining the current option and sampling again to improve
one’s estimate of the underlying distribution may mean fore-
going the best choice. The trade-off between declining suffi-
cient options to make an informed choice and not missing a
good option can be modeled formally using a Markov decision
process (MDP).

Materials and Methods

Participants and Task
Thirty-two healthy volunteers were enrolled in the experiment, which
was approved by the National Institute of Mental Health Institutional
Review Board. All participants were right handed, had normal or
corrected-to-normal vision, and were given a physical and neurological
examination by a licensed clinician to verify that they were free of psy-
chiatric and neurological disease.

Participants carried out a sequential sampling task, in which they
had to try to find a high ranking item from a list of items. Before each
list was presented, information was provided to the participants about
the nature of the problem to be solved in the list (Fig. 1). For example,
participants could be told that they had to buy a used car for $10 000.
They would see a list of 8 or 12 cars, one at a time. They were told
ahead of time how long the list would be. Each car would be character-
ized by the number of miles on it. After seeing each item, they would
be asked whether they wanted to take that item, or decline that item
and see the next option. Once they declined an option they could not
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return to it, and they had to take one of the subsequent options. All
declined options were shown on the screen to eliminate working
memory load. Thus, each new option could be compared directly to
the options which had already been presented. The participants knew
that if they took the best option from the entire list they would get $5.
If they took the second best option they would get $3 and if they took
the third best they would get $1. If the option they chose ranked <3 in
the list they received nothing. The ranks for payout were always calcu-
lated relative to the entire list of options, including seen and unseen
options. Therefore selecting an option that was highly ranked relative
to the options that had been seen did not guarantee a reward, as there
could be more highly ranked options in the list that had not yet been
seen.

The option lists were drawn from 14 categories which include:
buying an airplane ticket, a house, a subway ticket, a diamond ring, a
digital camera, a used car, bed linens, a used truck, a television, a
printer and a motorcycle, or renting an apartment. The other 2 cat-
egories were maximizing salary on a job offer, and finding a credit card
with a low interest rate. As detailed above, each of these was character-
ized by a single parameter, and the participant was told how to opti-
mize that parameter (e.g., find a car with the lowest mileage). There
were also 3 cost levels for each category so that, for example, subjects
could buy a used car for $5000, $10 000, or $20 000. We attempted to
make the values in the categories ecologically valid. Thus, the values
used for each category were set by examining costs in the region from
where subjects were drawn, for each of the items. Behavioral pilot
testing suggested that this was relatively successful. Further, the partici-
pants performed relatively well in the task, which suggests that the
values were reasonable. We ran 7 trials in each of 6 blocks for each par-
ticipant. Category and cost level per category were chosen randomly
without replacement for each participant, for each trial.

Model Fitting
The task was modeled as an infinite state, discrete time, finite-
horizon MDP. The MDP framework models the utility, u, of a state,

s, at time n as

unðsnÞ ¼ maxa[Asn
rnðsn;aÞ þ

ð
S
pnð jjsn;aÞunþ1ð jÞdj

� �
ð1Þ

where ASn is the set of available actions in state s at time n, and
rn(Sn, a) is the reward that will be obtained in state s at time n if
action a is taken. The integral is taken over the set of possible sub-
sequent states, S at time n + 1 weighted by the transition prob-
ability, or the probability of transitioning into each of those states
from the current state, sn if one takes action a, given by pn( j|sn,a).
The term inside the curly brackets is the action value,
Qðsn;aÞ ¼ rnðsn;aÞ þ

Ð
S pnð jjsn;aÞunþ1ð jÞdj. This is the expected

reward plotted in Figure 2, for either take or decline actions.
Utility estimates were calculated using backward induction. In the

final state one can only take the final option and there is no transition
to a subsequent state. Therefore, if we start by defining the utilities of
the final states, we can work backwards and define the utilities of all
previous states. Specifically, the algorithm proceeds as follows
(Puterman 1994), where N is the final state.

1. Set n =N

uN ðsN Þ ¼ rN ðsN Þ for all sN [ N :

2. Substitute n − 1 for n and compute

unðsnÞ ¼ max
a[Asn

rnðsn;aÞ þ
ð
S
pnð jjsn;aÞunþ1ð jÞdj

� �

3. If n = 1 stop, otherwise return to 2.

To implement the analysis, we modeled the options as samples from a
Gaussian distribution with a normal-inverse-χ2 (N-Inv-χ2) prior
(Gelman et al. 2004). The N-Inv-χ2 distribution has four parameters,
m0;k0;s

2
0; v0 which specify the prior mean, the degrees of freedom of

Figure 1. Task events. Participants were given an instruction screen at the beginning of each sequence of options that framed the problem. They were then shown a series of
options one at a time. They did not know what the other options in the list were. After each option, they had to decide whether to take or decline the current option. Declined
options were shown on the bottom of subsequent screens. If an option was chosen, the participant was given reward feedback.
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the prior mean, the prior variance and the degrees of freedom of the
prior variance, respectively. The values of the prior mean and variance
ðm0;s

2
0Þ were set to the mean and variance of the complete list of

items. The degrees of freedom were kept small at κ0 = 2, v0 = 1. The
analysis was not very sensitive to these values over the range 1–4 that
we tested. The posterior distribution is then also N-Inv-χ2 with

Figure 2. Model output and behavioral results. (A) Sequence of options that varied in mega-pixels for the scenario of purchasing a camera. (B) Expected reward for either decline
or take choices on the current option, for the camera scenario shown at left. (C) Sequence of options for the scenario of purchasing an airplane ticket. (D) Expected reward for
decline and take choices, for the airplane tickets shown at left. (E) Participant number of draws (Sub) and optimal number of draws (Opt) at list lengths of 8 and 12. (F) Summed
difference between actual rewards earned by the MDP algorithm, and rewards earned by individual participants. Negative values indicate subjects that slightly outperformed model.
(G) Cost-to-sample and average number of draws, for each subject. (H) Example sequence for a subject whose cost-to-sample was $0.31. In this case, the ideal observer would not
stop at the second sample, but the subject did. CTS, cost-to-sample model; IO, ideal observer model.
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parameters mn;kn;s
2
n; vn. These parameters are given by

mn ¼ k0m0 þ n�x
k0 þ n

kn ¼ k0 þ n

nns
2
n ¼ n0s

2
0 þ ðn� 1Þs2 þ k0n

k0 þ n
ð�x � m0Þ2

nn ¼ n0 þ n

where n is the number of data points that have been sampled, �x is the
mean of the sampled data and s2 is the variance of the sampled data.
The sampling distribution, which is the estimate of the distribution
from which values will be drawn for the next sample, is given by a
t distribution:

pðxjDÞ ¼ tvn mn;
1þ kns

2
n

kn

� �
:

As the state, sn is the current sample, the sampling distribution is the
transition distribution pn( j|sn,a = decline), when the subject decides to
decline the current option. The variable D indicates the data samples
collected up to the current point. The expected reward for decline
choices is zero: rn(sn,a = decline) = 0. When the subject takes the
current option there is no transition and the sequence is finished. We
then have to compute the expected reward, rn(Sn,a = take). To do this,
we have to calculate the probability that the current option, sn will be
ranked first, second, or third, among the unseen options. To compute
the p(rank(x) = i) quantities, we have to calculate the probability that
we will not sample any options that are better than the current option,
that we will sample one that is better, and that we will sample two
that are better, from among the unseen samples. The first step is to
compute the distribution function for the sampling distribution:

FðxÞ ¼
ðx
�1

pðxjDÞdx:

If we are currently on sample n and we have N total samples, we have
q =N− n remaining draws. We can then calculate the probability that
the current sample will be the best, second best, or third best, in the re-
maining samples (ignoring the declined samples, for the moment).
These probabilities are given by

pðrankðxÞ ¼ 1Þ ¼ FðxÞq

pðrankðxÞ ¼ 2Þ ¼ qFðxÞq�1ð1� FðxÞÞ

pðrankðxÞ ¼ 3Þ ¼ q � q � 1
2

� �
FðxÞq�2ð1� FðxÞÞ2

If the rank of the current sample, relative to the declined samples is h,
we can write the expected reward as

rnðsn;a ¼ takeÞ ¼
X3
i¼1

pðrank ¼ iÞ � Rðiþ ðh� 1ÞÞ:

where R(1) = $5, R(2) = $3 and R(3) = $1, and R(i > 3)) = 0.
Another modeling approach is possible. In this approach, the best

choice problem is solved under the assumption that participants only
calculate ranks, and do not have a prior on the sampling distribution.
In this case, the probability of sample n having true rank S given that
its rank among the already sampled options is s is (Lindley 1961)

pðrank ¼ SÞ ¼ S � 1
s � 1

� �
N � S
n� s

� �
=

N
n

� �

In this case, the expected reward is given as

rnðsn;a ¼ takeÞ ¼
X3
S¼1

pðrank ¼ SÞ � RðSÞ

Further, the transition probability, which is the probability that the
next sample will have rank s’ is (n + 1)−1. We implemented this model
and ran it against ours on simulated data. The models generate highly
similar value estimates, although ours slightly outperformed this
model. However, our model had accurate prior information about the
distribution it was about to sample from, so it would be expected to
slightly outperform this rank model, which had no distribution infor-
mation. All fMRI results were analyzed with respect to the first, Baye-
sian model, not the second model from Lindley, although results on
the fMRI data would be highly similar with either model because value
estimates generated by the 2 models were highly similar.

Modeling Individual Subject Behavior
Individual subject behavior often deviates from optimality. To character-
ize this, we added a parameter to the model to estimate a cost-to-sample
for individual subjects. This is implemented by setting

rnðsn;a ¼ declineÞ ¼ Cs

where Cs was fit to individual subjects, by minimizing the difference
between the sample on which the algorithm stopped, and the sample
on which the subject stopped. That is the specific cost function mini-
mized for individual subjects was given by the sum, across lists given to
that subject, of the absolute value of the difference, of the sample on
which the subject stopped and the sample on which the algorithm
stopped. The algorithm stopped on the first sample where the expected
value of taking the current option exceeded the expected value of
declining the current option.

fMRI Scanning
We carried out whole-brain T2*-weighted echo-planar imaging on a 3T
GE Signa scanner (GE Medical systems) with an 8-channel head coil.
Volumes were collected as 35 slices, 3.5 mm thick, matrix: 64 × 64
voxels, in-plane resolution 3.75 mm, TR 2 s, TE 30 ms, flip angle 90°.
Most participants underwent 6 scanning sessions, except for 2 who un-
derwent 4 and 1 who underwent 5 due to time constraints. The first 5
“dummy scans” of each session were discarded to allow for magnetiza-
tion equilibration effects.

fMRI Data Preprocessing and Statistical Analysis
Data were preprocessed and analyzed using MATLAB and SPM8 soft-
ware (Wellcome Trust Centre for Neuroimaging, London; http://www.
fil.ion.ucl.ac.uk/spm/). Functional scans were realigned within each
session and then across sessions. These were then normalized to the
standard Montreal Neurological Institute (MNI) echo-planar image
template. All statistical analyses were performed and are reported
using the matrix and voxel sizes associated with the MNI template
space (MNI matrix size: 79 × 95 × 68 voxels; MNI voxel size: 2 mm).
Before statistical analysis, normalized data were smoothed using a
6-mm isotropic FWHMGaussian kernel.

We employed conventional mass-univariate approaches for estimat-
ing the magnitude of the blood oxygenation level–dependent (BOLD)
hemodynamic response to each stimulus event (Holmes and Friston
1998). At the individual–participant level, we computed “first-level”
mass-univariate time series models for each participant. The aim of the
first-level model is to predict the fMRI time series using regressors
constructed from box-car functions representing stimulus presentation
times, convolved with a canonical BOLD response function, which
captures the temporal profile of the BOLD response to a behavioral
event. For each regressor and its associated event type, a β-value was
computed to estimate the magnitude of the BOLD response evoked by
the events. β-Values for different event regressors were then contrasted
statistically to test whether the BOLD responses evoked by different
events significantly differed in magnitude. The first-level analyses also
employed an AR(1) autocorrelation parameter and a high-pass filter
of 128 s. The term β-value or β weight comes from the fact that it is a
coefficient from a linear regression model.

Regressors in the first level model corresponded to the relevant
events in the task and were convolved with box-cars that corresponded
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to their durations. Specifically, we included regressors for the instruction
screen (6 s), presentation of an option (4 s), participant response (1 s),
and feedback (3 s). The participant response was modeled separately
for choices to take the current option versus choices to decline the
current option, so we could subsequently contrast these two decisions.
In addition, both the feedback and the participant response were para-
metrically modulated. The feedback was modulated by the reward
amount (either $0, $1, $2, or $5). The response was modulated by the
difference in value of the two choice options (i.e., Q(s, decline option) –
Q(s, take option)). Thus, it seems the participants BOLD responses (and
perhaps the participant’s mental processes) were modulated by the
difference in value, at the time that they made their choice, consistent
with previous reports (Kolling et al. 2012). Because we included a para-
metric modulator for the value of the choices at the time of choice,
differences in activation to take versus decline choices should be due to
factors other than the change in value between these choices, as the
parametric modulator controls for this change.

Once β values had been computed for each of our events of interest,
as well as contrasts over these β values (see Results), we carried out
a “second-level” analysis in which the β weights were entered into
1-sample t-tests, treating participants as a random effect. Between sub-
jects covariate analysis with the Barratt impulsivity scale (BIS) was also
carried out at this level. There were, however, no significant effects of
the BIS, so it is not further reported. The second level analysis allowed
us to test whether β values were statistically consistent across partici-
pants. All results reported below were observed at P < 0.001 with a
minimum of 100 voxels. They were then tested for family-wise error
(FWE) correction at the cluster level at P(FWE) < 0.05 using Gaussian
random field theory. This is a conventional method (Friston et al. 2006)
that uses the estimated smoothness of the data to correct for the massive
number of multiple comparisons at all voxels in the whole brain.

In addition to the GLM approach, we also carried out estimation of
finite impulse response (FIR) functions. This allowed us to check that
the assumption of a canonical hemodynamic response was reasonable.
We plot these FIRs for each regressor. However, we do not carry out
inference using the FIRs, as this is generally less powerful than using
the GLM analysis. The FIR plots shown are averaged within a 10-mm
radius sphere centered on the peak activation. Results were similar
when the entire cluster was used. We also calculated the FIRs by
weighting the contribution of each voxel by its z-value. The results of
this analysis were also highly consistent. Therefore, we present results
using a simple average of voxels values within the sphere.

Results

Task and Behavior
Participants carried out a sequential sampling task (Fig. 1). In
the task, participants were shown options drawn from a prede-
termined list, one at a time. Lists were either 8 or 12 options
long and participants were informed of the list length before
they began to sample. After seeing each option, they had to
decide whether to take the current option or decline the
current option and see the next option. If they declined the
current option, it was no longer available and they could not
return to that option later. All previously declined options
were shown on the bottom of the screen to reduce working
memory load. When they took an option, they were rewarded
on the basis of its rank in the complete list of options, seen and
unseen. If they found the best option they earned $5. If they
found the second best they earned $3 and if they found
the third best they earned $1. Any other options resulted in
no reward. If they went to the end of the list and had declined
all options, they were forced to accept the last option, indepen-
dent of its value.

Value estimates in the task was modeled using a MDP. This
model calculates the value of either taking or declining each

option in a list as

Qnðsn;a ¼ take optionÞ ¼ rnðsn;aÞ

Qnðsn;a ¼ decline optionÞ ¼ Ð
S pnð jjsn;aÞunþ1ð jÞdj

Thus, estimating the value of taking the current option in the
list, Qn(Sn,a = take option), involves computing the expected
reward, rn(Sn,a), for that option. Estimating the value of declin-
ing the current option in the list, Qn(Sn,a = decline option), in-
volves computing the expected value of continuing to sample.
This expected value is a function of the probability that better
options remain in the list. The distribution of future samples is
given by pn( j|Sn,a), and the value of each of the possible
samples is given by, un + 1( j). Thus, Qn(Sn,a = decline option) is
the expected value of the next state. The value of the next state
also depends on the value of the state after that, and so forth.
Therefore, this problem is normally solved by going to the last
sample and computing its value. This can be done because at
the last sample, one has to take the option. One cannot choose
to decline the last option. You can then work backward from
the last option, to compute the value of taking or declining
each of the previous options. Once you arrive at the current
option, you have calculated the value of declining the current
option. We applied this algorithm to estimate the values of de-
clining or taking the current option. This also allowed us to cal-
culate the trial on which the algorithm would stop sampling
and take the current option, and compare this to when the sub-
jects stopped, for each list that the subjects viewed. Finally, we
also parameterized the algorithm by introducing a
cost-to-sample to improve the fit of the algorithm to actual
subject behavior. This effectively reduces the value of future
samples, by assuming that subjects will implicitly assess a cost
on continuing to sample. The model without a cost-to-sample
will be referred to as the ideal observer, whereas the model
with a cost-to-sample will be referred to as the parameterized
model.

In the interest of generating multiple sequences of trials,
and using lists that would be ecologically relevant, we framed
the task as a series of purchases and related transactions. For
example, in 1 case, participants had to find a camera with the
maximum number of mega-pixels at a fixed price (Fig. 2A,B).
This might correspond to a scenario where someone has a
fixed budget, and they are watching sale prices over a series of
weeks to find a good camera at their price point. As they ad-
vanced through the list, the algorithm-generated value esti-
mates for each option, where the values calculated by the
algorithm were for the reward the participants would receive if
they chose 1 of the top 3 options in the list. It can be seen that
cameras with relatively low pixel counts were considered low
value (Fig. 2B). When an option was encountered that had a
high pixel count, at sample 5, it had a high value. Its value was
determined relative to the other options that had been seen, as
well as the number of remaining options that had not been
seen. On sample 5, the value of taking the current option ex-
ceeded the value of declining the current option, the threshold
was crossed, and the model would take that option. In another
example, participants were trying to buy an airline ticket
(Fig. 2C,D). Some of the cheaper early options were of rela-
tively low value because it was likely, given the number of re-
maining samples, that one could find a ticket that was cheaper.
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In this particular example, however, the best option is pre-
sented relatively early, as sample 3. Although this sample has a
relatively high expected reward, it is better, on average, to
proceed further through the list as there are 9 samples remain-
ing, and only on option 11 would the algorithm take the
current option.

We found that the participants examined more options on
lists of length 12 than they did on lists of length 8 (F1,31 = 31.0,
P < 0.001). However, participants drew a bit less than optimal
(Fig. 2E). When compared to the ideal observer, the participants
drew less on the same sequences, across list lengths
(F1,31 = 16.96, P < 0.001). There was also an interaction between
list length and subject type (i.e., ideal observer vs. participants;
F1,31 = 24.55, P < 0.001). Post hoc tests showed that the differ-
ence from optimal was significant for list lengths of 12
(t(31) = 4.98, P < 0.001) but not for list lengths of 8 (t(31) = 1.4,
P = 0.169). Thus, participants adjusted their strategy and
sampled more for longer lists, but they did not adjust as much as
they should have. This led to most participants underperform-
ing the model (Fig. 2F), although a few participants slightly
outperformed the model across the 42 trials. This is possible, as
the model is only guaranteed to be optimal on average.

As many of the subjects did not perform optimally, we para-
meterized the ideal observer model to capture the behavior of
individual subjects. Subjects generally did not examine a suffi-
cient number of samples, which implies that they undervalued
sampling again. To estimate the amount that each subject under-
valued declining the current option and sampling again, we esti-
mated their cost-to-sample (see Materials and methods). We
found that the average cost-to-sample across subjects was
$0.093 (SEM= 0.022). The cost-to-sample significantly improved
the model’s prediction, relative to the ideal observer, in 16 of
32 individual subjects (χ2(1) > 6.635, P < 0.01). Further, this par-
ameter captured the sampling behavior of the subjects, as it
was significantly correlated (Spearman rho (n = 32) =−0.67,
P = 0.001) with the number of samples the subjects drew, on
average (Fig. 2G). In the model, increasing the cost-to-sample
decreases the value of future samples, and leads to earlier
decision (Fig. 2H). The value estimates used below for the fMRI
analysis were derived from the parameterized model.

We also examined 2 additional behavioral models to see if
they better fit the subject choice data. In the first model the var-
iance of the inferred Gaussian distribution was fixed to the
mean. This is the distribution that the subjects assume the data
is being drawn from. This was done for the prior and for all
subsequent variance estimates, after updating with samples. It
is possible that subjects were making this simplifying assump-
tion, and therefore, such a model might better account for the
choice data. However, when we fixed the variance of the distri-
butions to the mean without a cost to sample parameter, and
compared the models, the model with the variance estimated
from the data outperformed (i.e., provided a better fit to the
subject choice data) the model with the variance set to the
mean (t(31) = 4.94, P < 0.001). When we introduced a cost to
sample parameter in both models and compared the fit of the
models to the subject choice data, the model with variance esti-
mated from the data again outperformed the model with the
variance set to the mean (t(31) = 7.95, P < 0.001).

We also fit a model which used actual category values,
instead of the payout from the ranks, to predict subject
choices. In other words, this model assumed that the subjects
were simply trying to maximize or minimize the actual

parameter (e.g., mileage on a car or the interest rate paid on a
credit card). When we compared the models without a
cost-to-sample parameter, there was no statistically significant
difference between the model that used actual category values,
instead of the payout from the ranks (t(31) = 0.54, P = 0.596).
We also introduced a cost-to-sample parameter and compared
the optimized cost-to-sample model based on category values
to the original model which used sample ranks and found that
there was again no difference in the models (t(31) = 1.61,
P = 0.117).

Functional Imaging Results
Participants were given monetary compensation for selecting 1
of the top 3 options in the list. To examine whether these mon-
etary outcomes were engaging neural circuits related to reward
motivation, we first examined effects of the outcome (Table 1).
We found, consistent with previous studies, that lateral orbital
prefrontal cortex (Fig. 3A) and the bilateral ventral striatum
(Fig. 3B) were modulated by the size of the reward delivered
for a high ranking choice option.

We next examined the contrast between choices to take the
current option versus choices to decline the current option,
which is similar to a threshold crossing. This contrast revealed
a robustly activated set of areas (Table 1). Specifically, we
found an anterior insula area bilaterally (Fig. 4A). There was
also a large activation in the dorsal anterior cingulate (Fig. 4B),
and the ventral striatum (Fig. 4C). In addition, parietal–frontal
areas were also activated (Fig. 4D,E). Specifically, we found a
left lateralized dorsal parietal activation (Fig. 4D) as well as a
left lateralized prefrontal activation (Fig. 4E). The opposite
contrast, declining versus taking the current option, did not

Table 1
Peak activation coordinates and statistics for reported contrasts

Region xa y z tb μLc

Value of outcomed

Inferior frontal gyrus −46 42 −16 5.62 1384
50 40 −2 6.54 4464

Ventral striatum −12 8 6 6.24 1648
14 10 −2 6.08 4936

Middle frontal gyrus 48 34 20 5.52 1616
Precentral gyrus −36 −14 68 6.70 2304
Posterior insula −46 −24 20 5.38 840
Parahippocampal gyrus 22 −20 −20 5.87 1496
Calcarine gyrus 18 −10 16 8.16 53 204

Take > declinee

Ventral striatum/medial thalamus −2 −14 6 9.20 8104
Anterior insula −34 22 −12 9.67 18 416

32 22 −12 8.65 5336
Anterior cingulate −2 40 36 8.51 14 104
Parietal cortex −50 −46 56 7.46 7160
Inferior frontal gyrus −36 14 32 6.79 2304
Posterior cingulate 0 −26 28 9.10 4520
Calcarine gyrus −32 −82 −14 8.68 8736

24 −78 −12 7.83 19 512
Value difference on declined choicesf

Ventromedial prefrontal cortex −4 54 −10 5.29 2412
Precuneus/calcarine gyrus 10 −58 22 5.28 5052

aPeak coordinates are reported in MNI space.
bWhole brain corrected at P< 0.05 FWE (initial threshold P< 0.001 uncorrected).
cCluster volume estimated using 2 mm3 voxels.
dClusters significant for the parametric modulator on reward outcome.
eClusters significant for the contrast of taking versus declining the current option.
fClusters significant for parametric modulation of responses, at the time of choice, for the decline
choices. The parametric modulator was the value difference between declining and taking the
current option.
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produce any significant clusters of voxels following whole-
brain correction.

In the next analysis, we examined whether activity at the
time of choice was parametrically modulated by the value of
the choice (Table 1). The parameterized MDP model generated
value estimates for every decision (e.g., Fig. 2H). We used
these value estimates to generate a parametric modulator of
the difference in value of the 2 choice options (i.e., value of de-
clining minus value of taking the current option). We found
that this parametric modulator was significant in visual cortex
as well as the ventromedial prefrontal cortex (vmPFC; Fig. 5).
Thus, these regions both showed larger responses when there
was a larger difference in value between the choice to decline
and the choice to take the current option, and the response
became smaller when the expected value of the take option
increased relative to the decline option. There were no signifi-
cant effects of the parametric modulator for take choices.

We also examined several other variables, to see if they para-
metrically modulated activation at time of choice. Specifically,
we examined reaction time, the number of samples that had
been viewed, and the cumulative estimate of the category
mean. We found that reaction time did not have any voxels sig-
nificant at the P < 0.001 uncorrected level. However, at
P < 0.005, there was a cluster in left vmPFC (−14, 54, 2; 89
voxels). It did not survive whole-brain correction, however.
For the number of samples viewed, there were 77 suprathres-
hold voxels at P < 0.001 uncorrected. However, none passed
the whole-brain corrected threshold. Finally, for the cumulat-
ive mean, there were only a few suprathreshold voxels at
P < 0.005 and none at P < 0.001 and none passed whole-brain
correction. Thus, none of these other variables accounted for
variance significantly at the whole-brain level.

We also used the value estimates generated from the model
which used actual category values, instead of rank values to

generate the difference in value regressor, and used this as a
covariate. Although this model predicted behavior as well as
the model based on the payouts calculated from the ranks, it
generates value estimates whose scale differs across categories
(i.e., values for airline tickets are much higher than values for
interest on credit cards). When we used this as a parametric re-
gressor, we did not find any significant voxels at the P < 0.001
uncorrected level.

The activation in the present study for the contrast of take
versus decline, was highly similar to the activation in Furl and
Averbeck (2011) for a related information sampling task. In
both tasks, this contrast compares the choice to stop sampling
information to the choice to continue sampling information.
Therefore, consistent activation across studies would support
the hypothesis that this set of areas is important for deciding
when the value of the current option exceeds the expected
value of future options. We masked the take versus decline
contrast in the current study, with the related contrast from the
previous study (Fig. 6). Note that we were not asking whether
2 variables activate the same areas within subjects from a
single study. Rather, we were asking whether contrasts in
different groups of subjects from tasks that have overlapping
computational demands activate similar areas. We found that
several areas were activated across both studies including the
anterior insula (Fig. 6A), the anterior cingulate (Fig. 6B),
dorsal parietal cortex (Fig. 6C), and the ventral striatum
(Fig. 6D). The lateral prefrontal activation (Fig. 4E) in the
current study was not present in the previous study, and there-
fore, it did not survive the mask.

Discussion

We carried out an fMRI study of participants doing an infor-
mation sampling task known as the best choice task.

Figure 3. Parametric modulation for reward outcome. Activations plotted at P< 0.05 FWE. Time series below each coronal section show mean and standard error from analysis of
finite impulse response (FIR), for comparison. The FIR analysis was not used for inference of active clusters. The time course of a parametric modulator, as plotted here, indicates
the time-course of significant covariation between the value of the modulator, and the value of the bold signal, over and above the actual event-related response. Histogram shows
β weights and 90% CI from the GLM analysis. (A) Activation in lateral-orbital cortex that correlated with the size of the outcome. (B) Activation in ventral striatum.
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Participants did well at the task, but on longer lists they tended
to under-sample. While participants were declining options,
the value of the declined options, relative to future options,
correlated with activation in ventromedial prefrontal cortex
(vmPFC). This finding is consistent with previous studies of
value representations in vmPFC (Lim et al. 2011; Kolling et al.
2012). When participants committed to a decision relative to
continuing to sample, effectively crossing a threshold, frontal–
parietal and cingulate, anterior insula, and ventral striatal areas
were activated.

The best choice problem we have studied is an optimal stop-
ping problem (DeGroot 1970). Other recent studies have also

examined stopping problems (Gluth et al. 2012; Kolling et al.
2012), although they mostly focused on value representations
rather than the decision to stop. Reaction time variants of per-
ceptual inference tasks studied in monkey (Roitman and
Shadlen 2002; Seo et al. 2012), are also stopping problems
(Drugowitsch et al. 2012). Perceptual inference tasks are often
modeled using drift diffusion or sequential sampling models,
in which one assumes that evidence is accumulated until a
bound is reached (Ratcliff 1978). Such an approach is not
readily applicable to the task used in the present study. In the
best choice task we have studied, one assumes there is some
distribution of values in the world associated with each

Figure 4. Significant clusters for contrast of Take option versus Decline option. Coronal (and one sagittal) sections with significant voxels are shown on top. The time-course of
activations from a FIR analysis is shown below each corresponding coronal section. Time zero is option onset, while choice indicates the time at which the subject entered their
decision. Activations plotted at P< 0.05 FWE. Histogram shows β weights and 90% confidence interval from GLM analysis for each of the activations shown in (A–E). (A)
Activation in left anterior insula. (B) Activation in anterior cingulate shown on a sagittal view. (C) Activation in ventral striatum. (D) Activation in dorsal parietal cortex. (E) Activation
in lateral–prefrontal cortex.
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category. Each subsequent sample improves the estimate of
this distribution. This corresponds most closely to inferences
about the state of the world in perceptual inference. However,
although collecting additional samples can lead to a better esti-
mate of the underlying distribution, this will not necessarily
lead to the selection of a better option, because one cannot
return to previously presented options, once they are declined.
Thus, each option serves not only to update level of belief
about the state of the world. Each option is also a unique
choice candidate. This scenario corresponds well to a large
class of real-world decision problems from finding a mate (the
fiancé(e) problem) to hiring a new employee (the secretary
problem) as well as tasks like buying airline tickets or locking
in on a mortgage rate, when prices fluctuate. In many of these
scenarios, once one has declined an option, one cannot return
to it.

While there is a substantial body of work on information
integration, or the representation of belief, in perceptual
decision-making tasks using both animal (Shadlen and
Newsome 1996; Roitman and Shadlen 2002) and human sub-
jects (Heekeren et al. 2006, 2008; Ho et al. 2009), there is rela-
tively little known about how the decision to stop gathering
information is arrived at. Computational models have hypoth-
esized that the superior colliculus might be relevant (Lo and
Wang 2006). The colliculus might be relevant for eye move-
ments, particularly in fast, millisecond scale decisions in sacca-
dic reaction time tasks. However, a general role in committing
to a choice option when deliberation extends over seconds, in-
dependent of the effector, seems less likely. We have found
that the decision to commit to an option robustly engaged

frontal–parietal areas as well as cingulate, anterior insula and
ventral striatal areas. Thus, this set of areas is a candidate
network for the decision to commit to an option and stop gath-
ering information. One possible alternative explanation is that
this network is simply registering the relative value of the
chosen option, and that this value is greater than the value of
all of the declined options. However, the effect of the relative
value on the BOLD response was estimated with the para-
metric modulator. Thus, the direct contrast of taken versus de-
clined options should not have been sensitive to the change in
relative value, as variance related to this should have been
taken up by the parametric modulator.

As further evidence that this set of areas underlies the
decision to commit, it was consistent with the set of areas
found in our previous study of the beads task for a similar con-
trast (Fig. 6). However, the current study extends the finding in
the beads task in 2 important ways. First, in the previous study,
the participants had to remember the beads drawn, so there
was a working memory component to the task. Thus, acti-
vation of parietal and prefrontal areas may have been related to
this aspect of the task. In the current task, previous samples
were displayed on the screen, so subjects did not have to use
working memory to retain the distribution of samples. Second,
the decision process in the current task cannot be modeled
within a drift diffusion framework. However, the beads task
can be modeled with this approach (Averbeck et al. 2011).
Thus, the finding in the current study and our previous study
suggest that these areas underlie the decision to commit to an
option, independent of the mechanism that underlies belief
updating.

Figure 5. Significant effects of parametric modulator for declined choices. The time-course for a parametric modulator shows significant covariation between BOLD response and
value of parametric modulator, over time. Activations plotted at P< 0.001 uncorrected. Histogram shows β weights from the GLM analysis that corresponds to activations.
Significant activations can be seen in visual cortex and vmPFC. Lower panels show time series from FIR analysis in visual cortex and vmPFC, as indicated.
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While we have identified a set of areas that seem to underlie
this process, the individual contributions of the areas, if in fact,
there are differential contributions, are not yet clear. However,
it is possible that the parietal–frontal areas underlie belief rep-
resentations that are relatively independent of value. In our
previous study, we found that parietal–frontal areas correlated,
between subjects, with the amount of information they gath-
ered before committing to a decision (Furl and Averbeck
2011). Thus, these areas may mediate probabilistic belief esti-
mates, although reward magnitude is also likely represented to
some extent (Platt and Glimcher 1999; Kim et al. 2009; Seo
et al. 2009). The striatum and the anterior insula, on the other
hand, may relate more to the reward magnitude of the choice
option, somewhat independent of underlying belief estimates
(Haber and Knutson 2010). In support of this, we found that
the ventral striatum was parametrically modulated by the size
of the reward outcome.

The role of the anterior cingulate in our task is perhaps
less clear, given this area’s involvement in a vast array of
mental processes. Relevant to this question, however, other
recent work has examined tasks in which subjects could
either “forage” or take a currently offered gamble (Kolling
et al. 2012). This task is similar to ours in some respects,
although it differs in important aspects. Specifically, their task
contrasts foraging choices in which subjects decide to (re-)

sample from a distribution of possible gambles rather than
engaging the currently offered gamble. The difference
between engaging the current gamble and searching for a
better gamble, which is similar to our contrast of taking
versus declining a current option, is not reported, although
this contrast was a focus of our study. One of the main con-
trasts of interest in their study compared the foraging period
to the decision period. This would be the closest contrast to
our comparison of declining versus taking a current option,
although it may not be directly related. However, they report
ACC activation for this contrast and we find no activation for
our contrast. Thus, our task appears to engage different
neural mechanisms. In addition to different patterns of brain
activation, there are substantive behavioral differences
between these 2 tasks. In the foraging task, the participants
know the distribution that they are sampling from because it
is presented on the screen. Thus, they can set an internal
threshold and sample until they get one of the option pairs
that they prefer. The behavioral analysis showed that they
took into account the cost of searching, but it was not clear
how they incorporated this information, as no formal model
was given against which the participant performance could
be compared. In addition to these differences the foraging
task is also an infinite horizon problem, as there is no limit to
how long they can sample.

Figure 6. Take versus decline activation, masked by significant clusters (P<0.05 FWE) from Furl and Averbeck (2011). Compare with Figure 4 from this earlier paper in which
information sampling was assessed in the beads task. (A) Anterior insula activation; (B) ACC activation; (C) dorsal parietal activation; (D) ventral striatal activation.
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Conclusion
We have identified a set of brain areas that are correlated with
the decision to commit to a choice option. This is similar to a
threshold crossing process. However, in the current exper-
iment, one is not drifting toward a bound. Rather, each sample
serves both to update one’s estimate of the underlying distri-
bution (i.e., the state of the world, from which value estimates
for each sample can be derived) as well as being a choice
candidate. This scenario typifies many real-world decisions,
where prices fluctuate over time, or potential partners have to
be explored sequentially.

Authors’ Contributions

V.D.C and B.B.A conceived and designed the experiment. V.D.
C performed the experiment. B.B.A developed the Markov
decision process model. V.D.C and B.B.A analyzed the data.
V.D.C and B.B.Awrote paper.

Funding

This work was supported by the Intramural Research Program
of the National Institute of Mental Health. We are grateful to
Jessica Carson for her assistance with data collection.

Notes
Conflict of Interest: None declared.

References
Averbeck BB, Evans S, Chouhan V, Bristow E, Shergill SS. 2011. Prob-

abilistic learning and inference in schizophrenia. Schizophr Res.
127:115–122.

DeGroot MH. 1970. Optimal statistical decisions. Hoboken: Wiley.
Ditterich J. 2006. Stochastic models of decisions about motion direc-

tion: behavior and physiology. Neural Netw. 19:981–1012.
Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget

A. 2012. The cost of accumulating evidence in perceptual decision
making. J Neurosci. 32:3612–3628.

Ferguson TS. 1989. Who solved the secretary problem? Statist Sci.
4:282–296.

Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD. 2006. Stat-
istical parametric mapping: the analysis of functional brain images.
Oxford: Academic Press.

Furl N, Averbeck BB. 2011. Parietal cortex and insula relate to evidence
seeking relevant to reward-related decisions. J Neurosci.
31:17572–17582.

Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian data analysis.
New York: Chapman and Hall/CRC.

Gluth S, Rieskamp J, Buchel C. 2012. Deciding when to decide: time-
variant sequential sampling models explain the emergence of value-
based decisions in the human brain. J Neurosci. 32:10686–10698.

Gold JI, Shadlen MN. 2001. Neural computations that underlie
decisions about sensory stimuli. Trends Cogn Sci. 5:10–16.

Haber SN, Knutson B. 2010. The reward circuit: linking primate
anatomy and human imaging. Neuropsychopharmacology. 35:4–26.

Heekeren HR, Marrett S, Ruff DA, Bandettini PA, Ungerleider LG.
2006. Involvement of human left dorsolateral prefrontal cortex in
perceptual decision making is independent of response modality.
Proc Natl Acad Sci USA. 103:10023–10028.

Heekeren HR, Marrett S, Ungerleider LG. 2008. The neural systems that
mediate human perceptual decision making. Nat Rev Neurosci.
9:467–479.

Hill TP. 2009. Knowing when to stop: How to gamble if you must-the
mathematics of optimal stopping. Am Sci. 97:126–133.

Ho TC, Brown S, Serences JT. 2009. Domain general mechanisms of
perceptual decision making in human cortex. J Neurosci.
29:8675–8687.

Holmes AP, Friston KJ. 1998. Generalisability, random effects and
population inference. NeuroImage. 7:s754.

Kim S, Hwang J, Seo H, Lee D. 2009. Valuation of uncertain and
delayed rewards in primate prefrontal cortex. Neural Netw.
22:294–304.

Koestler A. 1960. The watershed. A biography of Johannes Kepler.
Garden City, NY: Anchor Books.

Kolling N, Behrens TE, Mars RB, Rushworth MF. 2012. Neural mechan-
isms of foraging. Science. 336:95–98.

Lim SL, O’Doherty JP, Rangel A. 2011. The decision value compu-
tations in the vmPFC and striatum use a relative value code that is
guided by visual attention. J Neurosci. 31:13214–13223.

Lindley DV. 1961. Dynamic-programming and decision-theory. Appl
Statist. 10:39–51.

Lo CC, Wang XJ. 2006. Cortico-basal ganglia circuit mechanism for a
decision threshold in reaction time tasks. Nat Neurosci. 9:956–963.

Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in
parietal cortex. Nature. 400:233–238.

Puterman ML. 1994. Markov decision processes: discrete stochastic
dynamic programming. New York: Wiley.

Ratcliff R. 1978. A theory of memory retrieval. Psychol Rev. 85:59–108.
Roitman JD, Shadlen MN. 2002. Response of neurons in the lateral in-

traparietal area during a combined visual discrimination reaction
time task. J Neurosci. 22:9475–9489.

Seo H, Barraclough DJ, Lee D. 2009. Lateral intraparietal cortex and
reinforcement learning during a mixed-strategy game. J Neurosci.
29:7278–7289.

Seo M, Lee E, Averbeck BB. 2012. Action selection and action value in
frontal-striatal circuits. Neuron. 74:947–960.

Shadlen MN, Newsome WT. 1996. Motion perception: seeing and de-
ciding. Proc Natl Acad Sci USA. 93:628–633.

982 Optimal Stopping and fMRI • Costa and Averbeck



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


