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Abstract

Normal usage of total joint replacements results in the production of wear debris and other 

byproducts. In particular, polyethylene (PE) particles are heavily involved in the stimulation of 

local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone 

resorption (osteolysis), and, eventually, implant loosening. As sentinels of the innate immune 

system, cells of the monocyte/macrophage lineage initiate the inflammatory cascade that lead to 

osteolysis. The biological processes involved are complex, based on the unique properties of the 

monocytes/macrophages, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. 

The interaction with wear debris triggers the release of pro-inflammatory factors, such as TNF-α, 

IL-1, and others, pro-osteoclastic factors such as RANKL, and chemokines, such as MCP-1 and 

MIP-1, all being crucial to the recruitment, migration, differentiation and ultimately activation of 

bone resorbing osteoclasts. In parallel, other distinct macrophage populations inhibit inflammation 

and mitigate its consequences on the bone-implant interface. Here, the role of the monocyte/

macrophage cell lineage in the initiation and maintenance of the host inflammatory response to 

wear debris and subsequent periprosthetic osteolysis is presented.

Keywords

total joint replacement; aseptic loosening; osteolysis; monocyte/macrophage; wear debris; 
inflammation

I. INTRODUCTION

Aseptic loosening (AL) is one of the leading causes of total joint replacement (TJR) revision 

procedures, especially in patients with a total hip (THA) or knee arthroplasty (TKA). In 

most cases, AL is secondary to periprosthetic osteolysis. The latter refers to periprosthetic 

bone destruction as seen on radiographs and corresponds to bone defects. Recently, it was 

reported that osteolysis was present in up to 24% of cases in the decade after a THA 
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procedure, with more active patients at increased risk for developing osteolytic lesions.1 As 

a result, up to 15% patients are likely to be revised for aseptic loosening in the decade 

following a total joint arthroplasty.

The development of periprosthetic osteolysis is highly related to wear debris generated 

continuously from an articulating surface of a TJR. In a metal-on-polyethylene bearing, the 

periprosthetic tissues are exposed to a large amount of wear debris, specifically polyethylene 

(PE) particles. The relationship between PE wear and the degree of osteolysis has been well 

supported by clinical data.2,3 Analyses of periprosthetic tissues retrieved during revision of 

failed TJRs showed that ultra-high molecular weight polyethylene (UHMWPE) wear debris 

is the most frequent type of debris around failed hip, knee and shoulder TJRs.4

While there is strong evidence that the process of osteolysis involves different cell types, 

including osteoblasts, fibroblasts, lymphocytes etc., cells of the monocyte/macrophage 

lineage predominantly drive the inflammatory response to prosthetic wear debris.5,6

In this paper, the basic facts of the cellular reaction and biologic response to debris 

generated by an artificial joint will be presented, with special focus on the central role of 

macrophages in this context.

II. THE MONOCYTE-MACROPHAGE LINEAGE

Macrophages are multifunctional cells of the innate immune system. Their primary role is 

maintaining tissue homeostasis. Hence, they may be viewed as the scavenger cells of the 

immune system. Macrophages are considered as innate effector cells, since they do not 

require previous exposure to a given antigen to initiate a response. They phagocytose 

microbes and debris, and protect the host from adverse noxious stimuli. A major role for the 

innate immunity is the ‘‘front-line’’ protection of organisms from invasion by pathogenic 

microbes.

All cells from the monocyte-macrophage lineage appear to derive from a same progenitor 

multipotent cell, the hematopoietic stem cell (HSC).7 The HSC, located in the bone marrow, 

may differentiate either into a myeloid or a lymphoid precursor, giving rise to the divergence 

between the myeloid and plasmacytoid lineage. The myeloid precursor is then able to 

migrate into the blood stream and to differentiate into a monocyte. Monocyte migration to 

specific tissues and their differentiation occur upon stimulation by different cytokines, 

chemokines and other pro-inflammatory factors. Depending on the location, the monocytes 

become either Kuppfer cells (liver), alveolar macrophages (lung), interstitial dendritic cells, 

osteoclasts, macrophages etc. Lymphoid precursors develop in a parallel way, but can 

directly differentiate into another type of dendritic cell, the plasmacytoid dendritic cell. 

Migration to tissues and differentiation occur with the help of a survival signal, the 

macrophage-colony stimulating factor (M-CSF), and the presence of adverse stimuli from 

the local microenvironment such as acute infection, injury etc.

The hallmarks of resident macrophage function include effective phagocytosis of apoptotic 

cells and cellular debris, host response to infectious/tumor diseases, induction/regulation of 
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inflammation and subsequent tissue healing. Macrophages perform these roles via four basic 

innate functions: phagocytosis, sensing, chemotaxis, and adaptive stimulation.

III. THE RECOGNITION OF WEAR DEBRIS BY MACROPHAGES

Macrophages play a pivotal role in wear particle recognition and in the cascade of biological 

events leading to implant failure. The biologic response to wear debris is complex. At the 

heart of this concept is that very small prosthetic particles stimulate periprosthetic 

monocyte/macrophages to express pro-inflammatory/pro-osteoclastic cytokines, surface 

receptors and other substances that orchestrate increased formation, accumulation, activity, 

and survival of osteoclasts, and inhibit the osteogenic activity of osteoblasts. As a result, 

bone resorption predominates over osteogenesis at the bone-implant interface.8,9 In addition, 

it has been recently suggested that the macrophage response in particle-induced osteolysis 

could be polarized, with M1 pro-inflammatory macrophages activated in response to wear 

particulate debris dominating the M2 anti-inflammatory response that normally promote 

wound healing and debris scavenging.10–12

Wear particle recognition by macrophages involves scavenger receptors. Their most 

commonly described function is to act as phagocytic receptors mediating direct non-opsonic 

phagocytosis of pathogenic microbes by macrophages. Scavenger Receptors (SRs) have 

been shown to act as pattern recognition receptors (PRRs), which are required for the host 

response to pathogens.

Tissue resident macrophages are equipped with a broad-range of pattern recognition 

receptors (PRRs). Pattern recognition receptors are important in innate immunity as a first-

line defense for recognition of microbial patterns (pathogen-associated molecular patterns or 

PAMPs). Globally, the PRRs promote the production and release of pro-inflammatory 

signals including cytokines such as IL-6, TNF-α, and IL-12. Pattern recognition receptors 

are described as trans-membrane receptors or cytoplasmic receptors (Table).

Toll-like receptors (TLRs) were the first PRRs to be identified. Toll-like receptors recognize 

a wide spectrum of exogenous danger signals (PAMPs) and endogenous (alarmins) danger 

signals (also called danger-associated molecular patterns or DAMPS). In 2007, Takagi et 

al.13 reported that toll-like receptors were detected in the tissues around aseptically loosened 

implants. TLR-deficient mice displayed decreased osteolysis. There is increasing evidence 

that TLRs play a critical role in initiating cellular interaction with particles and the 

subsequent inflammatory cascade.14,15

A. Wear Particle Phagocytosis

Prosthetic particles can influence processes leading to periprosthetic bone resorption via two 

basic macrophage functions. First, wear particles may be phagocytosed by monocyte/

macrophages with or without endogenous proteins. It is of note that particles with attached 

proteins such as PAMPs, specifically lipopolysaccharides (LPS), stimulate inflammatory 

foreign body reactions to wear debris more effectively than uncoated particles. This 

observation supports the hypothesis that subclinical bacterial film on the prosthetic surfaces 
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can contribute to osteolysis.16 Subsequently, macrophages produce pro-inflammatory 

cytokines, such as TNF-α, IL-1, IL-6, IFN-gamma, and others.

Among various surface receptors involved in wear particle phagocytosis, the macrophage 

receptor with collagenous structure (MARCO) is of interest.17 It is not normally found in 

human monocytes, and is only expressed in a very restricted manner such as in chronic 

foreign body inflammation.18 It is a distinct member of the class A surface receptor family 

and is implicated as a PRR. Its expression is strongly upregulated in macrophages by various 

microbial stimuli in a TLR-dependent manner. MARCO binds soluble LPS and intact Gram

+ and Gram– bacteria.19 MARCO expression is induced by wear debris in vitro and in 

vivo.20,21 MARCO enhances the expression of IL-12 and nitric oxide (NO) production. 

Implant-derived wear particles may lead to harmful over-expression of MARCO.22 This 

could play an important role in the first line of host defense against unopsonized and 

opsonized particles in macrophages in periprosthetic tissues.20

B. PRR-Mediated Sensing

The response to wear particles is not only due to their phagocytosis by monocyte/

macrophages, but also due to PRR-mediated sensing. Hence, implanted biomaterials are 

coated with proteins from blood and interstitial fluids, and through this adsorbed layer of 

proteins, cells sense and respond to foreign surfaces. As seen formerly, PAMPs could also 

contribute to peri-prosthetic particle-induced osteolysis via this mechanism.23

Therefore, TLRs are thought to play an important role. TLRs -1 to -9 were detected in 

synovial-like membranes surrounding loose implants in monocyte/macrophages and some 

fibroblast-like cells by immunohistochemistry, immunofluorescence and reverse 

transcription polymerase chain reaction.13,24–27 Toll-like receptors, among various PRRs, 

such as C-type lectin receptors (CLRs), NOD-like receptors (NLRs) and RIG-I-like 

receptors (RLRs) have been shown to activate the production of pro-inflammatory 

cytokines. Of note, wear particles activate the NALP3 inflammasome pathway so that the 

pro-inflammatory cytokine precursors pro-IL-1-β and pro-IL-18 are proteolytically activated 

by caspase-1.

As a receptor for LPS, TLR4 has received the most attention in aseptic loosening, supported 

by the observations that TLR4 deficient mice displayed decreased particle-associated 

osteolysis. There was noted to be a significant increase of TLR4 in the tissues around 

loosened replacement implants.13,26 There are two options for signal-transduction, the 

MyD88 one resulting in the production of pro-inflammatory proteins.28 Interestingly, 

disruption of MyD88 signaling diminished particle-induced production of TNF-α.15 These 

findings support the hypothesis that TLR4 plays a key role in the pathogenesis of aseptic 

loosening.
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IV. THE BIOLOGICAL FACTORS INVOLVED IN WEAR DEBRIS–INDUCED 

OSTEOLYSIS

A. Pro-inflammatory Factors

In response to wear debris, bone resorption is mediated via cytokines such as TNF-α, which 

induce expression of receptor activator of NF-κB (RANK) ligand (RANKL) by osteoblasts 

and stromal cells.29 RANKL is the key factor regulating the differentiation and activation of 

osteoclasts.30 Macrophages exposed to prosthetic particles of different origin (PMMA, 

UHMWPE, metal) increase the expression of TNF-α predominantly via the NF-κΒ pathway. 

TNF-α expression can be suppressed in macrophages by TNF-α inhibiting factor (TIF) and 

also by several cytokines (IL-4, IL-10, TGF-β).31

IL-1 possesses multiple and diverse properties mediating especially the acute phase response 

to endogenous and exogenous stimuli acting on macrophages. As previously mentioned, 

before release from the cell in a biologically active form, precursors of IL-1β and IL-18 

(pro-IL-1β and pro-IL-18) must be cleaved by caspase-1 activated by the 

inflammasome.25,32

IL-6 is a multifunctional cytokine strongly involved in the regulation of inflammation and 

bone metabolism. Several studies demonstrated increased expression of IL-6 after 

stimulation of monocyte/macrophage populations with prosthetic particles 33 and also in 

periprosthetic tissues from failed THAs.34 Shanbhag et al.35 found that IL-6 and IL-8 could 

be the primary drivers of end-stage osteolysis, as opposed to TNF-α and IL-1β.

Osteopontin (OPN) is a pleiotropic cytokine expressed by activated T cells, dendritic cells, 

and macrophages. Osteopontin is involved in chronic inflammation and osteolysis.36 

Increased expression of OPN has been found in macrophages, regardless of their site, in 

interfacial membranes retrieved from patients with aseptically loosened implants. In the 

absence of OPN, wear debris induced osteolysis was found to be diminished.37

B. THE RANK/RANKL/OPG Pathway

The essential signaling for osteoclastogenesis is the interaction of RANKL and RANK. 

RANK (receptor activator of NF-κΒ) is a membrane-bound receptor expressed on osteoclast 

precursors and mature osteoclasts. RANK activates NF-κΒ, a transcription factor that 

regulates numerous pro-inflammatory and anti-inflammatory pathways, including TNF-α 

and IL-1β. RANK signaling was shown to be essential for PE particle-induced 

osteoclastogenesis in the murine calvarial model, although its disruption in knockout mice 

did not seem to alter particle-induced inflammation. The expression of RANK is upregulated 

in tissues around failed total joint replacements.38–40

RANKL (receptor activator of nuclear factor κΒ ligand) is a receptor ligand expressed on 

the cell surface of osteoblasts, bone marrow stromal cells, and other activated cells, 

including T cells, in the inflammatory process. RANKL is also active as a soluble factor.9 

Following RANK-RANKL interaction, numerous signaling molecules are activated, 

regulating osteoclast activity. RANKL, together with Macrophage Colony-Stimulating 
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Factor (M-CSF), is essential for the differentiation, maturation and survival of bone-

resorbing osteoclasts. RANKL is inhibited by the soluble decoy protein receptor antagonist 

osteoprotegerin (OPG). Disruption of RANK signaling prevented experimental particle-

induced osteolysis.41 Therefore, the molecular ratio of RANK/RANKL/OPG expression 

appears to be a key indicator for assessing bone remodeling.42

C. Chemokines

Chemokines are a group of small proteins with a central role in leukocyte migration and 

activation. The chemokines are classified into four groups (CXC, CC, CX3C and XC). 

About 50 chemokines and 25 chemokine receptors have been identified in humans.

The role of chemokines in particle-induced osteolysis is supported by the observation that 

they are upregulated in periprosthetic tissues retrieved from patients with failed total joint 

arthroplasties, and that wear particles can induce chemokine expression in macrophages.

MCP-1, also known as CCL2, can attract macrophages to the sites of inflammation through 

the activation of CCR2 or CCR4. In a recent work, Gibon et al.43 injected MCP-1 into the 

femur in a murine femoral implant model. They found that MCP-1 recruited exogenous 

genetically marked reporter macrophages (RAW 264.7 cells) to the femur; infusion of 

UHMWPE particles into the femur via a diffusion pump and tubing also lead to the 

recruitment of reporter macrophages and osteolysis. Blocking the interaction of MCP-1 with 

its receptor, CCR2 resulted in decreased migration of the reporter macrophages and 

diminished the particle-induced osteolysis.

MIP-1 includes MIP-1α (CCL3) and MIP-1β (CCL4). Neutralizing antibody to MIP-1α also 

mitigated wear particle induced migration.44

Production of inflammatory chemokines, such as CCL2 and CCL3, among others, is 

characteristic of “M1” macrophage phenotype, promoting the inflammatory response.45,46 

Taken together, these findings strongly suggest that macrophage migration mediated by 

chemokines is important in wear particle-induced inflammatory reaction.

V. CONCLUSIONS

Wear particles stimulate chronic inflammation and bone destruction, that may ultimately 

result in implant loosening. Macrophages, as sentinels of the innate immunity system, are 

central to the initiation of this inflammatory cascade via the release of pro-inflammatory and 

pro-osteoclastic factors. The current scheme includes numerous biological steps that have 

been clarified in part, such as sensing by pattern recognition receptors. Recent developments 

indicate that wear particles initiate systemic migration of monocyte/macrophage precursors 

to the local site of particle generation. With a better understanding of the biologic response 

to wear debris, new concepts have emerged, such as the role of individual biological and 

genetic factors in the modulation of particle-induced osteolysis. Taken together, these new 

insights should result in potential strategies to mitigate the adverse events related to wear 

particles.
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Table

Pattern Recognition Receptors are presented according to their localization

Pattern Recognition Receptors

Membrane-bound PRRs Cytoplasmic PRRs

Toll-like Receptors (TLRs) NOD-like receptors

• NOD

• NALPs

C-type lectin Receptors (CLRs)

• Mannose receptors

• Asialoglycoprotein receptor family

RIG-I-like receptors (RLRs)

Four different classes of pattern recognition receptor (PRR) families have been identified. These PRRs are expressed in macrophages and dendritic 
cells and also in various immune cells. They include transmembrane proteins such as the Toll-like receptors (TLRs), and C-type lectin receptors 
(CLRs). Cytoplasmic proteins are the NOD-like receptors (NLRs), and Retinoic acid inducible gene (RIG)-I-like receptors (RLRs).
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