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Summary

A fundamental challenge in studying the frontal lobe is to parcellate this cortex into ‘natural’ 

functional modules despite the absence of topographic maps, which are so helpful in primary 

sensory areas. Here we show that unsupervised clustering algorithms, applied to 96-channel array 

recordings from prearcuate gyrus, reveal spatially segregated sub-networks that remain stable 

across behavioral contexts. Looking for natural groupings of neurons based on response 

similarities, we discovered that the recorded area includes at least two spatially segregated sub-

networks that differentially represent behavioral choice and reaction time. Importantly, these sub-

networks are detectable during different behavioral states, and surprisingly, are defined better by 

‘common noise’ than task-evoked responses. Our parcellation process works well on 

‘spontaneous’ neural activity, and thus bears strong resemblance to the identification of ‘resting 

state’ networks in fMRI datasets. Our results demonstrate a powerful new tool for identifying 

cortical sub-networks by objective classification of simultaneously recorded electrophysiological 

activity.

Introduction

Sensory and motor cortices of the primate brain are often characterized by the presence of 

topographic maps. For example, primary visual cortex (V1) contains maps of retinotopic 

space, orientation preference, and ocular dominance (Engel et al., 1994; Katz et al., 1989; 

LeVay et al., 1975; Van Essen et al., 1984; Wiesel and Hubel, 1974). The boundaries of V1 

defined by each of these maps coincide precisely with each other and with architectonic 

borders as well, reinforcing the notion that V1 is a distinct cortical area with a specific set of 
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functions. Historically, topographies of this nature have been crucial in advancing our 

understanding of the organization and function of the cerebral cortex (e.g. Felleman and Van 

Essen, 1991; Hubel and Livingstone, 1987; Mishkin et al., 1983; Zeki and Shipp, 1988).

In contrast, parcellation of the cortex into functional modules is more challenging in 

association areas where spatial topography may be indistinct or missing altogether. Some 

areas of the prefrontal cortex (PFC) can be broadly defined by zones of anatomical 

projections (Carmichael and Price, 1994; Petrides and Pandya, 1999; Preuss, 2007) or 

general trends in physiological properties. For example, studies in monkeys and humans 

suggest localization trends within PFC based on sensory input modality (Romanski and 

Goldman-Rakic, 2002), responses to reward vs. punishment (Monosov and Hikosaka, 2012), 

actual vs. hypothetical reward outcomes (Abe and Lee, 2011), and a hierarchy of cognitive 

control (Badre and D'Esposito, 2009). But outside the frontal eye fields (Bruce et al., 1985), 

and possibly the frontal lobe ‘face patches’ (O. Scalaidhe et al., 1997; Tsao et al., 2008), 

sharp boundaries and salient physiological distinctions are rare in PFC. In general, single 

units recorded in PFC exhibit multiplexed signals of great variety, and neighboring neurons 

show little evidence of common physiological features that are characteristic of columnar 

organization in more primary sensory and motor areas.

Here we take a fundamentally different approach to detecting topographic boundaries in 

prefrontal cortex. We hypothesized that our limited knowledge concerning topographic 

organization in frontal cortex may arise from several related limitations of traditional 

methods for characterizing neuronal activity. First, previous studies have largely relied on a 

small number of electrodes (usually one), leading investigators to focus on the response 

properties of individual neurons rather than the population. Second, neural responses are 

usually characterized by their mean—the first statistical moment of a distribution. Higher 

moments, especially trial-to-trial fluctuations and response correlations across the 

population, are frequently not studied, primarily due to lack of simultaneous recordings. And 

third, neural responses are typically characterized only with respect to task events that are of 

interest to the experimenter. By breaking these conventional boundaries, it may be possible 

to discover organizational principles and topographies that have been unknown heretofore.

We approached this problem from a somewhat agnostic perspective. We bypassed some 

basic limitations of single unit recording by employing multi-electrode (Utah) arrays to 

record simultaneously from tens-to-hundreds of units at regularly spaced intervals across a 

specific region of prefrontal cortex. Second, we used unsupervised algorithms to identify 

natural groupings of neurons based on their response covariation, both task-driven and task-

independent. Finally, we projected the objectively identified groupings of neurons back onto 

the arrays to determine whether they were spatially segregated in a topographic manner.

We report recordings from the prearcuate gyrus, a region of prefrontal cortex that carries 

visual, cognitive, and eye movement related signals in a variety of behavioral tasks 

(Constantinidis and Goldman-Rakic, 2002; Hussar and Pasternak, 2009; Kiani et al., 2014; 

Kim and Shadlen, 1999; Lennert and Martinez-Trujillo, 2013; Mante et al., 2013). The 

prearcuate gyrus is traditionally divided into the ‘core’ frontal eye field (FEF), located in the 

rostral bank and lip of the arcuate sulcus, and area 8Ar, located between the arcuate sulcus 

Kiani et al. Page 2

Neuron. Author manuscript; available in PMC 2016 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the posterior tip of principal sulcus (Gerbella et al., 2007; Schall, 1997; Stanton et al., 

1989). Area 8Ar offers a convenient target for dense multi-electrode arrays because it is 

relatively flat. It is unknown if area 8Ar is a homogenous piece of cortex or divides further 

into smaller sub-regions. Moreover, electrophysiological recordings are generally 

considered insufficient to detect the boundary between FEF and 8Ar or to explore 

subdivisions of area 8Ar because the neurons appear to have similar response properties 

across the prearcuate gyrus (Constantinidis and Goldman-Rakic, 2002; Hussar and 

Pasternak, 2010; Kim and Shadlen, 1999).

Here we show that the recorded population in area 8Ar is not homogenous and can be 

divided into smaller sub-networks based on task-independent covariation of neural 

responses. The sub-networks are spatially segregated within the prearcuate gyrus, revealing 

a topography that is defined at the population level by measurements of large-scale, 

simultaneous recordings. The prearcuate sub-networks may reflect novel areal boundaries 

within area 8Ar or pronounced interanimal variation of known boundaries (see Discussion). 

Our new approach will be valuable for detecting boundaries of both kinds as large-scale 

array and optical recordings become increasingly common in the future.

Results

We used 96-channel multi-electrode arrays to record from neural populations in area 8Ar of 

the prearcuate gyrus (Fig. 1) while our subjects, three macaque monkeys, performed a 

direction discrimination task (Britten et al., 1992; Kiani et al., 2008). On each trial the 

monkey viewed a patch of randomly moving dots for 800 ms. After a delay period of 

variable length the monkey reported the perceived motion direction by making a saccadic 

eye movement to one of the two available targets. All monkeys were trained on the task 

before implantation of the recording arrays and showed stable performance throughout the 

experiments.

The multi-electrode array covered 4×4 mm of the cortical surface and enabled us to record 

simultaneously from multiple single- and multi-neuron units in a significant portion of the 

prearcuate gyrus. Consistent with previous studies (Constantinidis and Goldman-Rakic, 

2002; Hussar and Pasternak, 2009; Kiani et al., 2014; Kim and Shadlen, 1999; Lennert and 

Martinez-Trujillo, 2013; Mante et al., 2013; Robinson and Fuchs, 1969), we observed a 

variety of response properties in different epochs of the direction discrimination task, 

including visual, decision-related, and peri-saccadic signals (Fig. S1).

To explore the presence of functionally specialized circuits within the population of 

recorded units, we searched for natural groupings of neurons based on temporal covariation 

of activity over the entire course of an experiment. To do so, we first quantified the 

responses of each unit as a vector of time-varying firing rates in 30 ms bins from the 

beginning to the end of the recording session as described in Experimental Procedures (note 

that we ignore task events in this first-pass analysis). Then we measured the dissimilarity of 

physiological activity for each possible pair of units as one minus the Pearson’s correlation 

(r) of their firing rate vectors (Eq. 2). Thus our dissimilarity index (1−r) varies between 0 

and 2 for perfectly correlated and perfectly anti-correlated units, respectively. We will use 
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the term ‘dissimilarity matrix’ to refer to the set of dissimilarity indices for all possible pairs 

of units on a given array. Compatible with previous studies in visual cortex (Smith and 

Kohn, 2008) and prefrontal cortex (Constantinidis and Goldman-Rakic, 2002; Leavitt et al., 

2013) response dissimilarity increased with distance between recording electrodes and 

decreased with the duration of the spike count measurement window (Fig. S2).

Having calculated the dissimilarity matrix for a given experiment, we visualized the 

dissimilarities between units using multi-dimensional scaling (MDS). Figure 2A shows a 

MDS map for an example session from monkey T. Each point in the map represents one 

unit, and the Euclidean distance between any two units represents the pairwise response 

dissimilarity of those two units—as well as possible for a 2D projection. Thus, neighboring 

units in a map are more strongly correlated than distant units. Figures 2C–E illustrate one 

MDS map from each monkey, with each unit colored according to a 2D color map that will 

be used in subsequent analyses. Plotting the unexplained variance of the dissimilarity matrix 

as a function of the number of MDS dimensions showed that four dimensions were often 

adequate to explain the dissimilarity matrix (Fig. 2B). The 2D projections captured a large 

portion of the variance (61.2%) and are highly informative about the structure of the 

dissimilarity matrix.

The distribution of units in the MDS maps does not appear homogeneous, suggesting that 

the units can be divided into physiologically distinct clusters (SigClust, p<10−8 for each 

illustrated experiment). We will refer to these clusters as sub-networks, or ‘subnets’ for 

short. For 14 of the 25 recording sessions (56%), the neural data clustered into two 

statistically distinct subnets (SigClust, p<0.05). The remaining 11 sessions showed the same 

trends, even though they were not individually significant (MDS maps not shown, but see 

spatial maps for all sessions, Fig. S3).

Interestingly, the subnets appear to occupy distinct regions of the recording array (Fig 2F–

H). Note that the physical location of the units on the array played no role in our calculation 

of the dissimilarity index; note also that a spatial map cannot be directly inferred from the 

mere presence of clusters in Fig. 2C–E. Projecting the units back onto the recording arrays, 

however, reveals that the units that clustered together in the MDS maps also tended to form 

spatial clusters on the array. Furthermore, the locations of the clusters were highly consistent 

from one session to another in each monkey (Fig. S3), revealing a characteristic spatial 

topography based on response covariation among prearcuate units.

Subnet identity is driven by correlated noise, not by task-related activity

A potential explanation of the subnets is that they are driven solely by task-related events. 

The response vectors used for our first-pass calculation of dissimilarity indices are a 

continuous function of time across the entire experiment, including all trial epochs as well as 

the inter-trial interval. Thus units that respond strongly to onset of the targets might cluster 

in one subnet, while neurons that are more active before and after saccades might form a 

different subnet. Even if we restrict our analysis to a particular trial epoch, correlated 

responsiveness (and thus subnet clusters) might still emerge due to differential tuning of 

units to visual motion direction or to saccade direction and amplitude. We therefore 
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conducted two further analyses to explore the effect of task-related events on our subnet 

classifications.

In the first analysis, we recalculated response dissimilarities as described above, restricting 

the analysis to single time epochs during the trial. To analyze the motion-viewing interval, 

for example, we created a new response vector for each unit by concatenating responses 

from the motion-viewing interval across the entire experiment, excising all other intervals. 

We performed this analysis separately for six non-overlapping time epochs (see 

Experimental Procedures) which capture different aspects of neural activity in the direction 

discrimination task, including responsiveness to visual target onset, motion stimulus, 

decision formation, saccade-related activity, and spontaneous activity during the inter-trial 

interval. Despite these differences, the structure evident in the MDS plots was consistent 

across all epochs, including the intertrial interval (example experiment, Fig. 3A–F), and was 

consistent with the dissimilarity structure calculated for the entire session (Fig. 2C). 

Consequently, the spatial topography on the arrays was also replicated independently for 

each epoch (Fig. S4). These data suggest that subnet clustering does not derive primarily 

from task-related signals such as visual input, motor output, decision-making, or motor 

planning.

To quantitatively assess the consistency of response dissimilarities across trial epochs, we 

calculated an ‘alignment score’, which is simply the correlation coefficient of the 

dissimilarity matrix for a particular epoch with the dissimilarity matrix for the entire session. 

Figure 3G shows that the alignment scores were consistently high for all temporal epochs, 

confirming the impression gleaned from visual inspection of the MDS plots. The high 

alignment scores did not result simply from overlap of data for the individual epochs with 

whole session data. We obtained similarly high alignment scores from dissimilarity matrices 

calculated for non-overlapping trial epochs (data not shown). Also, the consistency of 

response dissimilarities was not due simply to a lack of neural responses. Visual target 

onset, motion viewing, saccade preparation and execution significantly modulated the 

activity of the prearcuate population (Constantinidis and Goldman-Rakic, 2002; Hussar and 

Pasternak, 2010; Kim and Shadlen, 1999). Importantly, the analyses in Figure 3 confirm that 

task-related changes in activity exert little effect on the subnets defined by the structure in 

response covariation.

In the second analysis, we further explored task-driven effects by breaking the responses of 

individual neurons into task-evoked and residual components. The task-evoked responses 

for individual neurons are defined as the expectation of response magnitude (average 

response) for each unique combination of motion strength, motion direction and saccade, 

which are the task parameters that are controlled or monitored by the experimenter. The 

residual responses of individual neurons are the trial-to-trial fluctuations around the 

corresponding means. In essence, we composed two new response vectors for each unit in 

each experiment, one composed of the response expectation (the average response) in each 

time bin with trial-to-trial variability removed, and the other composed only of the trial-to-

trial residual activity following subtraction of the mean from each time bin. We then 

recalculated response dissimilarities for each component—task-evoked and residuals.
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The response dissimilarities based on residuals align closely with the whole-session 

response dissimilarities, both qualitatively for individual experiments (Fig. 4A, upper row—

recall that the color of each data point is maintained from the whole-session analysis) and 

quantitatively across all experiments (Fig. 4B). Using the residual responses of individual 

epochs establishes statistically significant subnets in 9–12 sessions (36%–48%), depending 

on task epoch. The slight drop compared to whole session maps is due to the reduced data 

available for the analysis. Because the MDS maps for all temporal epochs are well aligned 

to the whole-session maps, the spatial topography obtained by projecting units back onto the 

array is maintained as well (Fig. S5, upper row). In contrast, response dissimilarities based 

on task-evoked components (the expectation) are poorly aligned with whole-session data 

(Fig. 4A, lower row; Fig. 4C), although the alignment scores are significantly above zero, 

p<0.05). Unsurprisingly given the MDS plots, task-evoked average responses also fail to 

fully replicate the spatial topography on the array (Fig. S5, lower row).

Thus, it is highly unlikely that task-evoked responses in individual neurons underlie the 

existence of spatially topographic subnets. Rather, the subnets exist mainly because of what 

is commonly termed ‘correlated noise’ in traditional electrophysiology experiments. The 

consistency of the noise structure suggests that it can be informative about network 

connectivity (Kohn et al., 2009; Ringach, 2009; Tsodyks et al., 1999) even though the 

functional benefit is not obvious. We revisit this issue in Discussion.

The signal that underlies subnets is temporally broadband

To better characterize the nature of the residual noise signals that underlie the subnets, we 

recalculated the dissimilarities of the residual signals within nine temporal frequency bands, 

from 0.01 Hz to 16.7 Hz (see Supplemental Information), and measured their alignment to 

whole-session response dissimilarities. MDS plots for all temporal frequency bands exhibit 

clustering that is similar to whole-session clustering (Fig. S6A), an impression that is 

confirmed quantitatively by the alignment scores (Fig. S6B). Although the best alignment 

with whole-session data was obtained for 1–4 Hz (roughly delta-band), the alignments were 

generally good across all frequencies.

Subnets and response dissimilarities are stable across different tasks

Because task-related effects were minimal in the analyses presented above, we hypothesized 

that the subnets for a particular array would be stable across behavioral tasks. We tested this 

hypothesis by analyzing data obtained from the same arrays in a visually-guided, delayed 

saccade task (Fig. 5A, see Experimental Procedures). This task differed from the direction 

discrimination task in several ways: only one target was presented on the screen on each 

trial; the location of the target varied substantially from trial to trial; the monkey never 

viewed the random dot stimulus; and at the time of saccade, there was no uncertainty about 

reward. Figure 5B depicts the MDS plot and spatial topography map for an example 

experiment in monkey T, which are qualitatively similar to equivalent data from the 

direction discrimination task in monkey T (Fig. 2C,F). Figure 5C shows quantitatively that 

the dissimilarity matrices calculated from the delayed saccade task are highly aligned with 

those obtained from the direction discrimination task, across multiple experiments in each 

animal (Mantel’s test, Monkey T, r=0.73, p<0.001; Monkey V, r=0.54, p<0.001; Monkey C, 
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r=0.62, p<0.001). Moreover, the dissimilarities in the delayed saccade task, like those in the 

discrimination task, were driven largely by correlated noise (residuals) as opposed to task-

evoked responses (Fig. S8B–D) and were substantially independent of task epoch (Fig. S8B, 

upper row).

The subnets exhibit different physiological properties

The existence of spatially segregated neural clusters in our study raises the possibility that 

neurons in different parts of prearcuate cortex have physiologically distinct signatures. 

Previous recordings, as well as our own data, suggest that neurons of the prearcuate gyrus 

reflect formation of decision variables and representation of visual stimuli in the direction 

discrimination task (Hussar and Pasternak, 2010; Kiani et al., 2014; Kim and Shadlen, 1999; 

Mante et al., 2013). To determine whether these properties are distributed differentially 

across prearcuate subnets, we used K-means analysis of the response dissimilarities to divide 

the recorded units into two mutually exclusive populations, and we projected these 

populations onto the arrays to visualize their spatial topography (Fig. 6A–C, one example 

session for each monkey). We then used a logistic model to assess how well population 

activity within each subnet predicted trial-to-trial variation in the monkey’s upcoming 

choice and reaction time (see Supplemental Experimental Procedures). On average, units in 

subnet-1, the subnet closest to the arcuate sulcus, were more predictive of the monkey’s 

upcoming choice throughout the motion-viewing and delay periods (Fig. 6D; t-test, p=0.004 

in the 150 ms window before the Go cue), and thus provided a better representation of the 

growing decision variable (Shadlen and Newsome, 1996). The subnets were also 

differentially informative about the monkey’s reaction time (RT) (Fig. 6E). Although the 

task was not a reaction time task, we still observed variation in the monkey’s RT following 

the Go cue. Interestingly, subnet-1, which was a better predictor of the monkey’s choices, 

was also a better predictor of RT (ANOVA, p=0.006 in the 150 ms window before the Go 

cue).

The differential representation of the decision-making process by the subnets may appear at 

odds with our finding above that common noise rather than task-evoked responses underlies 

the observed topography (Fig. 4). We note, however, that the matrix of task-evoked response 

dissimilarities was weakly but significantly correlated with the matrix of residual response 

dissimilarities, averaged across all monkeys and sessions (alignment score, ranging from 

0.11±0.02 in the post-saccadic epoch to 0.26±0.02 in the motion-viewing epoch; data not 

shown). That is, pairs of units that show stronger noise correlation also tend to have stronger 

signal correlation. Thus, knowing the noise correlation of a pair of units offers a weak 

indication of how the neurons will cooperate in task-related computations (Kenet et al., 

2003).

Task-induced variations of response dissimilarities

Previous studies have shown that noise correlation can be modulated by spatial attention, 

context or adaptation (Cohen and Maunsell, 2010; Cohen and Newsome, 2008; Mitchell et 

al., 2009; Muller et al., 1999), and that response variance is reduced by engagement in a task 

(Churchland et al., 2010; Purcell et al., 2012). It is important to realize that our findings do 

not contradict these previous studies. We have shown that structure in dissimilarity matrices 
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is largely independent of temporal epoch, including the inter-trial interval, but this finding is 

consistent with modulation in the overall level of dissimilarity across trial epochs, as long as 

the structure is not disturbed. Figure 7A, for example, depicts the complete dissimilarity 

matrix for each temporal epoch of the experiment illustrated in Figure 2C. The units are 

segregated by subnet along both the ordinate and the abscissa to facilitate visual comparison 

of dissimilarity within subnets (upper right and lower left quadrants) and across subnets 

(upper left and lower right). The overall level of dissimilarity did not change much during 

the task-related epochs (Constantinidis and Goldman-Rakic, 2002) but varied notably 

between the inter-trial interval (the colors are cooler overall for the intertrial interval) and 

the five task-related epochs (warm colors). Nevertheless, the structure in the dissimilarity 

matrices—higher dissimilarity across subnets compared to within subnets—is evident for 

each epoch (Fig. 7B) as well as for the whole-session matrix, and all temporal frequencies 

(Fig. S10). It is this structure that is captured by the MDS plots.

Results from motor cortex are consistent with those from prearcuate cortex

To extend the scope of our findings, we performed a dissimilarity analysis on data obtained 

from two multi-electrode arrays in a fourth monkey, one placed in the primary motor cortex 

(M1) and another in the dorsal premotor cortex (PMd) (Fig. 8A). The monkey was trained to 

perform the same direction discrimination task, but reported its choices with reaching 

movements instead of eye movements. The monkey held its left hand on the fixation point 

throughout the trial, and the random dot patch was presented above the fixation point to 

avoid occlusion by the hand. The task sequence was similar to that illustrated in Figure 1A. 

We recorded neural activity during task performance as usual (task-engaged period), but we 

also recorded during extended periods between task blocks (rest periods, 15–60 min). The 

animal rested calmly in the primate chair in the semi-dark test room during these periods, 

but without engagement in any behavioral task.

For each recording day, and for all possible pairs of recorded units, we calculated the 

response dissimilarity matrices separately for the task-engaged periods and the resting 

periods. The MDS maps from an example experiment (Fig. 8B) show clear segregation 

between the PMd and M1 populations during both periods. For all seven experiments, the 

response dissimilarity matrices were highly aligned between the task-engaged and rest 

periods (left-most bar, Fig. 8C), confirming the qualitative impression from the example 

MDS plots. Thus subnet identification is not dependent on attention, arousal states, or 

specific behavioral events associated with task performance.

Furthermore, three key features of dissimilarity structure in prearcuate cortex were largely 

preserved in M1 and PMd. First, dissimilarity structure was temporally broadband, 

persisting across three orders of magnitude of temporal frequency (right bars, Fig. 8C). 

Second, the dissimilarity structure was mainly driven by residual fluctuations of neural 

activity around the task-evoked mean responses (Fig. 8D, left panel) rather than by the 

means themselves (Fig. 8D, right panel). The alignments are generally lower than those for 

the prearcuate gyrus (Fig. 4B,C), suggesting a difference across areas. Nonetheless, the 

difference in the alignment of the residual and task-evoked dissimilarity matrices with the 

resting period dissimilarity is evident qualitatively and highly significant statistically 

Kiani et al. Page 8

Neuron. Author manuscript; available in PMC 2016 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(p<10−8, 3-way ANOVA with response type, session, and epoch as the main factors). 

Finally, the structure of the dissimilarity matrix was largely preserved across all task epochs 

especially around the time of hand movement and during the inter-trial interval (data not 

shown).

Somewhat surprisingly, the resting state maps were in fact more effective at segregating M1 

and PMd, emphasizing our observations that task-related events are not the primary driver of 

dissimilarity structure and subnet identification (Fig. S11). Unfortunately, the number of 

functional electrodes in these experiments was too low to investigate the spatial topography 

of potential subnets within a single array, but the parcellation of the cortex into M1 and PMd 

was clear.

Discussion

We have shown that the recorded neural population in prearcuate gyrus is inhomogeneous 

and consists of at least two subnets. The responses of neurons within each subnet are more 

positively correlated with each other and less so with neurons in the other subnet. For each 

animal, the pattern of correlations across the neural population was largely stable and easily 

detectable in different tasks and all task epochs, including the inter-trial interval. This 

pattern was consistent despite significant variation in the amplitude of response correlations 

across epochs. We also discovered that the functionally defined subnets are spatially 

segregated in the cortex and are mainly segregated by what is traditionally considered 

‘noise’ rather than by the commonly studied task-evoked responses. These properties hold 

for motor cortex (M1/PMd) recordings as well.

The basic properties revealed by our subnet analysis—spatial segregation, invariance across 

behavioral tasks, and adequate definition by spontaneous and task-independent neural 

response fluctuations—make our technique an appealing tool for objective parcellation of 

cortex. It is particularly advantageous in association cortices for two reasons. First, it 

provides an objective way to group neurons for subsequent analyses; it avoids the ‘double-

dipping’ bias caused by emphasizing differences in task-evoked responses following 

selection of neurons based on the same task-evoked responses (Kriegeskorte et al., 2009). 

Second, our technique provides easy demarcation of cortical regions of interest in awake, 

behaving animals. Traditionally, parcellation of cortex has depended heavily on anatomical 

techniques that cannot be applied in live subjects: cyto-, myelo-, and chemoarchitectonic 

markers, anterograde and retrograde tracers, and electron microscopy (Amir et al., 1993; 

Gerbella et al., 2007; Levitt et al., 1993; Rockland and Lund, 1983). More recently, 

technical advances have enabled cortical parcellation based on fMRI BOLD responses 

(Power et al., 2011; Vincent et al., 2007), optical imaging, diffusion weighted imaging, and 

electrocorticography (ECoG) (Hacker et al., 2012; He et al., 2008) in living subjects. To our 

knowledge, however, our study is first to do so based on spiking activity in association 

cortex.

Possible origins of correlated subnet activity

In the human MRI literature, long-range interareal anatomical connections are emphasized 

as a source of correlated variability that defines resting state networks (reviewed by Van 
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Dijk et al., 2010), a view that is consistent with the ubiquitous feedforward and feedback 

pathways connecting cortical areas with each other and with subcortical structures (Felleman 

and Van Essen, 1991; Markov et al., 2013; Markov et al., 2014). Interareal coordination is 

particularly striking in the case of cerebro-cerebellar resting state circuits for which 

correlated variability is likely to depend on polysynaptic connections through intermediate 

structures such as the pons (Habas et al., 2009; Krienen and Buckner, 2009; O'Reilly et al., 

2010).

For several reasons, however, we suggest that intrinsic connectivity, especially intra-areal 

lateral connections, plays a crucial role in defining the subnets described in this paper. First, 

stability across tasks and task epochs indicates that the subnets are substantially independent 

of sensory (or other task-dependent) inputs to the prearcuate gyrus. Although shared input 

driven by visual stimuli has been shown to modulate the magnitude of pairwise correlations 

between visual areas (e.g. Jia et al., 2013), our data show that the basic structure of the 

prearcuate correlation matrix is independent of task epoch and task-evoked responses, and, 

therefore, unlikely to originate from shared task-related inputs. Similarly, the subnets are 

independent of motor and decision-related outputs. Among possible task-independent 

factors, we can rule out slow hemodynamic and neuromodulatory factors as sole causes of 

correlation structure since the subnets are well defined across a wide range of temporal 

frequencies (Fig. S6, S7, and S10).

The second line of evidence is anatomical. A large portion of synapses within a local area of 

cortex arises from neurons within the same area (intrinsic), not from projections from 

outside the area (extrinsic). Local horizontal axons and collaterals provide more than half of 

the excitatory synapses onto pyramidal neurons (Boucsein et al., 2011; Stepanyants et al., 

2009), and are thought to coordinate information processing and response dynamics across 

cortical columns (e.g., Stettler et al., 2002). To the best of our knowledge, lateral 

connections in 8Ar have not yet been studied, but in the neighboring dorsolateral prefrontal 

cortex (areas 46 and 9), lateral connections are organized in patches with dimensions of a 

few hundred microns to a few millimeters, roughly consistent with the dimensions of the 

subnets in our study (Levitt et al., 1993).

Finally, modeling studies suggest a prominent role for intrinsic connections in shaping 

subnets. The topology of connections within a neural circuit molds emergent network 

dynamics (Buzsaki et al., 2004; Larremore et al., 2011; Ringach, 2009), especially in the 

absence of external inputs (Galan, 2008). In general, knowledge of network connectivity 

enables predictions about the correlational structure of the neural responses (Pernice et al., 

2012; Trousdale et al., 2012), even though the converse is not true (Kispersky et al., 2011; 

Sporns, 2012; Trong and Rieke, 2008). Networks that exhibit approximate balance between 

excitation and inhibition are particularly straightforward in this respect because response 

correlations are shaped primarily by the first order connections between neurons rather than 

by higher order, polysynaptic chains of intrinsic connections (Trousdale et al., 2012). 

Networks with balanced excitation and inhibition are likely to be a dominant feature of 

cortical architecture: they account well for computations known to be carried out in the 

cortex (Isaacson and Scanziani, 2011), and they produce response variability statistics that 

correspond closely to those of cortical neurons (Shadlen et al., 1996; van Vreeswijk and 
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Sompolinsky, 1996). Considered together, our current data, coupled with prior anatomical 

and modeling results, support the role of intrinsic connections as a key determinant of 

functional subnets defined by dynamic patterns of activity correlation.

Relation of the subnets to previous studies of area 8Ar

At first glance, the spatial boundary detected by our subnet analysis appears reminiscent of 

the traditionally defined boundary between the ‘core’ FEF and area 8Ar (Gerbella et al., 

2007; Stanton et al., 1989). The FEF lies mostly on the anterior bank of the arcuate sulcus, 

but can sometimes emerge from the sulcus onto the lip of the prearcuate gyrus (Bruce and 

Goldberg, 1985; Seidemann et al., 2002), consistent with the close spatial association 

between subnet 1 and the arcuate sulcus in monkeys T and C (Fig. 2F–H; Fig. 6A–C). This 

potential association between subnet 1 and the FEF is further suggested by the stronger 

saccade- and decision-related signals in subnet 1 (Fig. 6D).

Arguing against this association, however, are the electrophysiological results from monkey 

V. For this subject, the functional boundary between the subnets lies directly atop the 

prearcuate gyrus, and is oriented roughly orthogonally to the nearest point in the arcuate 

sulcus (Fig. 2G, Fig. S3). This boundary cannot be reconciled with the standard conceptions 

of FEF/8Ar. Considering the data as a whole, we suspect that the prearcuate subnets are 

revealing a functional subdivision separate from the core FEF. With data from only three 

monkeys, however, this conclusion is tentative and must be considered further in future 

studies.

Possible relation of the subnets to resting state fMRI measurements

The methodology employed in this paper is closely related to the techniques that led to the 

discovery of resting state networks in functional imaging studies of the human and monkey 

brain (Greicius et al., 2003; Vincent et al., 2007), and more recently to large-scale 

parcellation of the cortex based on ‘functional connectivity’ (e.g. Power et al., 2011). 

Functional connectivity of two brain voxels is defined as the correlation (or a closely related 

function) of blood oxygen-level dependent (BOLD) responses of the voxels. The 

parcellation techniques, which group together the voxels with covarying BOLD responses, 

reveal a series of large-scale modules—visual, somatosensory, motor, etc—consistent with 

the known large-scale anatomical divisions of the cortex (Honey et al., 2009; Vincent et al., 

2007). Interestingly, this large-scale parcellation based on BOLD seems to reflect large-

scale electrophysiological properties as well, since the BOLD response fluctuations are 

closely related to local field potentials and spiking activity within each voxel (Logothetis et 

al., 2001; Scholvinck et al., 2010). Moreover, the BOLD response correlations across voxels 

can be mapped to the correlation of the slow cortical potentials in the corresponding 

locations, as evidenced by electrocorticography (ECoG) (Hacker et al., 2012; He et al., 

2008).

Our results extend these findings in two ways. First, we show that at a small spatial scale, 

closer to that of cortical columns and intrinsic functional modules, the application of 

functional connectivity techniques leads to a parcellation similar in robustness and 

consistency to those observed at much larger spatial scales in functional imaging and ECoG 

Kiani et al. Page 11

Neuron. Author manuscript; available in PMC 2016 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies. Recall that our recordings were made at 400 micron intervals within a 4×4 mm 

patch of prearcuate gyrus, which roughly corresponds to a single PET or fMRI voxel and is 

significantly smaller than the spacing of ECoG electrodes. The similarity of results across 

different techniques hints at shared fundamental principles and a repeated hierarchical 

organization across different spatial scales (Ganmor et al., 2011).

The second extension relates to the underlying neural events. The fMRI and ECoG signals 

originate from multiple neural (and possibly non-neural) sources that are difficult to separate 

from each other (Leopold and Maier, 2012; Logothetis et al., 2001; Moore and Cao, 2008). 

In contrast, we directly recorded the spiking activity of neurons and avoided the ‘inverse 

problem’ of decomposing the recorded signal into its constituent events. The underlying 

neural events in our recordings are thus unitary (spikes) and unambiguous in their location. 

Our ability to identify a functional boundary from unsupervised analysis of spiking activity

—even during the inter-trial interval (Fig. 3 and 8) and during extensive periods of rest from 

any aspect of task performance (Fig. 8 and S11)—suggests a potential neural substrate for 

the resting state networks identified in functional imaging studies. Networks and 

parcellation schemes proposed from neuroimaging data will be most compelling if they can 

be linked definitively to spiking activity of cortical neurons. More definitive links, however, 

will require simultaneous recordings from a broader expanse of cortex, which can be 

obtained by implanting multiple microelectrode arrays.

Experimental Procedures

We recorded from populations of neurons in the prearcuate gyrus of three macaque monkeys 

performing two different tasks: a direction discrimination task and a delayed saccade task. 

We also recorded from M1 and PMd of a monkey performing a direction discrimination task 

with reaching responses. All training, surgery, and recording procedures conformed to the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by Stanford University Animal Care and Use Committee.

Behavioral tasks

Direction discrimination—Figure 1A illustrates the sequence of events in a single trial 

of the direction discrimination task for prearcuate recordings. Each trial began with the 

appearance of a central fixation point (FP; 0.3° diameter) at the center of the monitor. The 

monkey was required to maintain gaze within ±1.5° of FP so long as it was visible on the 

screen. Eye position was measured with a scleral search coil (CNC Engineering, Seattle). 

After a short delay, two targets appeared on the monitor. In 21 of 25 sessions the two targets 

were placed on opposite sides of the screen. In the remaining sessions both targets were 

placed contralateral to the recorded cortex. After a brief delay the random dots appeared on 

the screen. The difficulty of the task was controlled by changing the percentage of dots 

moving coherently in the same direction (motion strength) (Britten et al., 1992; Kiani et al., 

2008). The motion strength was chosen randomly on each trial from a set of values that was 

tailored for each monkey to obtain the full range of performance accuracy from chance (0.5) 

to nearly perfect (~1.0) (Fig. 1B). The motion stimulus stayed on the screen for 800 ms and 

was followed by a variable length delay period (300–1500 ms, median=677 ms). The FP 
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disappeared at the end of the delay period (Go cue), signaling the monkey to report the 

perceived direction of motion with a saccadic eye movement to the corresponding target. 

The monkey maintained gaze on the target (Fig. 1A – “Hold”) until the outcome of the trial 

was revealed (reward or not, 500–1000 ms following the operant saccade in most sessions).

Delayed saccade—After the monkey fixated the FP, a single target appeared on the 

screen. The location of the target varied from trial to trial and spanned eccentricit ies up to 

25° in each of several directions. The FP disappeared after a variable delay (280–1300 ms, 

median=808 ms), signaling the monkey to make a saccadic eye movement to the target 

location.

Neural recording

Multi-channel microelectrode arrays (Blackrock Microsystems, Salt Lake City) with 96 

electrodes (length=1.5 mm; spacing=0.4 mm; impedance ~0.5 MOhm) were implanted in 

the prearcuate gyrus (Fig. 1C). The array was positioned between the anterior bank of the 

concavity of the arcuate sulcus and the posterior tip of principal sulcus in monkeys T and V 

(Fig. 1D). In monkey C the array was placed between the superior branch of arcuate sulcus 

and dorsal bank of principal sulcus due to anatomical constraints. Neural spike waveforms 

were saved online (sampling rate, 30 kHz) and sorted offline (Plexon Inc., Dallas). We used 

customized algorithms to remove recording artifacts that were registered by a large number 

of electrodes. Also, we merged spike waveform clusters that were judged to be redundant 

based on waveform shapes, firing rates and inter-spike intervals. We identified 100–250 

single- and multi-units in each session (median = 219). The spacing of the electrodes was 

large enough to make recording of the same unit by neighboring electrodes unlikely (Egert 

et al., 2002). Throughout the paper we use the term ‘units’ to refer to both isolated single 

neurons and multi-units. All units were retained in our analyses to maximize the spatial 

coverage of the recorded area and increase the chance of revealing spatial topography.

The direction-discrimination dataset included 8, 7, and 11 recording sessions from monkeys 

T, V, and C, respectively. The delayed-saccade dataset included 4, 3, and 2 sessions from 

the three monkeys. The sessions were chosen based on three factors: large number of trials 

per session (>1000), high quality of recordings, and large number of units to provide 

maximal coverage of the array surface. Relaxing these criteria to increase the number of 

sessions did not change the results. Although the electrode array remained in a nominally 

fixed position after surgical insertion, the recorded units frequently changed from one 

session to another due, presumably, to small movements of cortex relative to the array.

Behavioral data analysis

We fit a cumulative Weibull distribution function to the monkey’s choices:

Eq. 1
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where P(cor) is probability correct, C is motion strength, α is psychophysical threshold (the 

value of C that confers 82% correct responses), and β is a parameter that governs the shape 

of the function, especially its steepness.

The monkey’s reaction time was calculated as the delay between the Go cue and saccade 

initiation. We defined saccade initiation as the time when eye velocity exceeded 15 deg/sec.

Neural data analysis

For each session, we identified natural physiological groupings of the recorded units based 

on the dissimilarity of their responses. The response dissimilarity of a pair of units is defined 

as:

Eq. 2

where r⃗i and r⃗j are the response vectors of units i and j, and ρ(r⃗i,r⃗j) is Pearson’s correlation. 

The response dissimilarity, therefore, reflects covariation of neural responses and can take 

any value between 0 (perfect correlation) and 2 (perfect anti-correlation). For the whole-

session analyses (e.g., Fig. 2) we defined the neural response vector for each unit in 30 ms 

non-overlapping bins from the beginning of the session to its end, independent of task 

epochs, visual stimuli, and the monkey’s behavior. The neural response vector varied in 

other analyses, as explained below. Using Eq. 2, we calculated dissimilarity for all possible 

pairs of units in a given experiment; throughout the paper, we refer to this set of metrics as 

the dissimilarity matrix for the corresponding experiment.

To visualize the relationship between units and investigate their grouping we applied multi-

dimensional scaling (MDS) to the dissimilarity matrix. MDS creates a low dimensional 

representation that retains the pairwise relationships as much as possible. Each point on our 

MDS maps (Fig. 2A) represents a recorded unit. All units were included in the analysis to 

maximize the coverage of the recording array. The Euclidean distance between units on the 

MDS map reflects how the neural responses of those units covary—shorter distances 

suggest higher correlations. We used a nonlinear MDS technique (Isomap), (De'ath, 1999; 

Tenenbaum and Freeman, 2000), but we obtained similar results with other MDS methods. 

Our two-dimensional MDS maps captured 49.2%–82.9% of variance of the dissimilarity 

matrix (mean=61.2%). Figure 2B illustrates the average Scree plot across sessions.

To explore the spatial relationships of units on the cortical surface we chose a unique color 

for each unit based on its location in the 2-dimensional MDS map and a spatially smooth 2D 

color map (Fig. 2C–E). This color was then assigned to the location of the electrode that 

recorded the unit (Fig. 2F–H and S3). The locations with similar colors, therefore, recorded 

units that were close to each other on the MDS map. When more than one unit was recorded 

on a single electrode, the colors for the individual units were averaged, and the color 

corresponding to the average was assigned to that electrode location.

For the epoch-based analysis (Fig. 3 and S4) we only used the neural responses coming from 

a single trial epoch. Six different epochs are used in this paper: target onset (50–300 ms after 

target onset), motion viewing (300–800 ms after motion onset), delay period (50–250 ms 
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after motion offset), pre-saccadic period (250–50 ms before the saccade), post-saccadic 

period (50–250 ms after the saccade), and inter-trial interval (150–400 ms after the eye left 

the target window). The response intervals were chosen to be representative of the response 

dynamics of the recorded units; our results do not depend strongly on the exact temporal 

boundaries of these intervals. Within each epoch the responses could be measured as the 

total spike count or as a vector of spike counts in successive 30-ms windows that tile the 

epoch window. The results do not critically depend on which option was used. To calculate 

epoch-specific dissimilarity metrics, data from a particular epoch were concatenated 

together across all trials of a session, omitting data from all other epochs. Dissimilarity was 

then calculated on the concatenated data using Eq. 2.

To visualize the match of the spatial topographies across epochs, we created MDS maps 

independently for each epoch (Fig. 3), but borrowed the color of the units from the whole-

session MDS map for that monkey (Fig 2C). Thus, clustering of units with similar colors in 

the new maps indicates a good match of an epoch map to the original whole-session map. 

MDS maps were created only for visualization of the data. To quantify the alignment of 

dissimilarity matrices we calculated their correlation (alignment score) and used Mantel’s 

test (Mantel, 1967) to assess the significance of the correlation. Exclusion of the aborted 

and/or error trials did not significantly influence the conclusions.

The high correlation of dissimilarity matrices across epochs (Results) suggests minimal 

influence of task parameters on response dissimilarities. We looked for the source of these 

effects by breaking the responses of individual units into two components: a task-evoked 

component calculated as the average response across all trials with similar motion direction, 

motion strength and choice; and a residual component calculated as the fluctuation of the 

response around that mean on each trial. Similar results were obtained if the residual 

responses were normalized by the standard deviation of responses of the trials with similar 

choice, motion direction, and strength (Bair et al., 2001). Task-evoked and residual 

responses were calculated for the epoch durations explained above. To ensure reliability we 

excluded conditions with less than 30 trials. The excluded conditions consisted mainly of 

erroneous choices on medium- and high-coherence trials. We recalculated the epoch-based 

dissimilarity matrices for each response component (task-evoked and residual) and 

measured their alignments to the whole-session dissimilarity matrix (Fig. 4).

To test whether the dissimilarity matrices (and thus potential physiological groupings) were 

consistent across tasks, we measured the alignment between response dissimilarity matrices 

in the direction discrimination and delayed saccade tasks (Fig. 5). The datasets for the two 

tasks were collected in different recording sessions in order to maximize the trial counts per 

dataset. Because the recorded units could change from one session to the next, our 

comparison of dissimilarity across the two tasks was limited in accuracy. To make the 

comparison as accurate as possible, we reduced between-session variation by first 

calculating an average dissimilarity matrix across all sessions of a particular task before 

measuring the alignment of dissimilarity matrices between tasks. Specifically, we first 

calculated the average response dissimilarity of all pairs of units recorded by each pair of 

electrodes in a given session. For each monkey, each task and each pair of electrodes, we 

then averaged these response dissimilarities across all sessions to provide the best estimate 
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for the dissimilarity of the neural population recorded by each pair of electrodes. Finally, we 

measured the alignment of these average response dissimilarities between the two tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Large-scale multi-electrode recording from the prearcuate gyrus during a direction 

discrimination task. A) Behavioral task. Monkeys viewed the random dot motion for 800 ms 

and, after a variable delay, reported the perceived motion direction with a saccadic eye 

movement. Correct responses were rewarded with juice after a short hold period. The 

strength and direction of motion varied randomly from trial to trial. B) Behavioral 

performance. The three psychometric functions depict performance for the three monkeys 

(T, V, and C), averaged across all sessions. Psychophysical thresholds were 9.3% coherence 

for monkey T, 17.9% coherence for V, and 51% coherence for C. Monkey C’s perceptual 

sensitivity was poor relative to most animals; thresholds remained high despite months of 

training. The results in this paper, however, do not depend upon perceptual sensitivity. Our 

only requirement is that the animal was under behavioral control during task performance, 

which is demonstrated by the regular psychometric function. C) Target area (blue box) for 

implantation of the multi-channel electrode array on the prearcuate gyrus. Arcuate (as) and 

principal (ps) sulci are marked with red dashed lines on the surface of a typical macaque 

brain (University of Wisconsin Brain Collection). D) The actual location of each array with 

respect to arcuate and principal sulci. The white squares show the ground pins. In monkey 

C, the array could not be placed at the concavity of arcuate sulcus due to the unusually short 

distance between the arcuate and the posterior termination of the principal sulcus. Dashed 

lines at the end of a sulcus indicate the sulcus extends in this direction beyond our 

craniotomy.
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Figure 2. 
Spatial topography in prearcuate gyrus. A) Two-dimensional depiction of recorded units 

based on response correlations in an example session. In this depiction, each point represents 

one unit, and the Euclidean distances between units represent the dissimilarity of their 

responses (1 – correlation coefficient) across the session. Isomap multi-dimensional scaling 

(MDS) was used to create this map. B) Unexplained variance as a function of the number of 

MDS dimensions suggests that the dissimilarity matrix is low dimensional. Two dimensions 

capture a large fraction of variance across sessions (mean=61.2%). Gray lines represent 
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individual sessions. The thick black line is the average. The red line represents the example 

session in A. C) The units of the example session in A are colored according to a 2D color 

map in which hue represents radial angle and saturation represents eccentricity. D–E) Two-

dimensional depictions of example sessions in the other monkeys. F–H) Projection of the 

unit colors onto the recording electrodes reveals spatial topography (clustering of colors) 

within the recording area. White squares correspond to ground pins or to electrodes that 

failed to record a unit in the depicted session. If an electrode recorded from more than one 

unit, the average color of the units is projected onto that electrode.
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Figure 3. 
Topography in the MDS plots, and thus spatial topography on the arrays, is stable across 

task epochs. Same experiment as in Fig. 2C. A–F) MDS plots calculated independently for 

six temporal epochs in the task (see Experimental Procedures). Each unit inherited the same 

color assigned to it in the whole-session MDS map in Fig. 2C. Thus, clustering of units with 

similar colors indicates that the observed topography is preserved across task epochs. G) To 

quantify the preservation of topography, we calculated the correlation of the whole-session 

dissimilarity matrix with epoch-based dissimilarity matrices (alignment score). The bars 

show the average alignment scores across sessions. Error bars represent 95% confidence 

interval.
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Figure 4. 
Common noise is the main underlying factor for the topography. A) Two-dimensional plots 

of units based on task-evoked and residual responses for the example session in Fig. 2C. The 

measured neural responses in each trial epoch consisted of a task-evoked component (the 

mean across trials with similar motion direction, motion strength, and choice) and a residual 

component (the variation around the mean). We recomputed dissimilarities for all six 

temporal epochs based on the task-evoked and residual components. MDS plots are shown 

for three epochs. The unit colors are inherited from Fig. 2C. MDS maps are largely 
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preserved for residual responses, but not for task-evoked responses. B) Alignment scores of 

dissimilarity matrices for the residual responses with those for the whole-session responses 

in six temporal epochs. The bars show average alignments across sessions. C) Alignment 

scores of dissimilarity matrices for the task-evoked responses with those for whole-session 

response across the same sessions. Error bars represent 95% confidence intervals.
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Figure 5. 
MDS maps and spatial topography is invariant to task modifications. A) We recorded neural 

responses while the monkey performed a second task: visually guided delayed saccade. In 

this task, after the acquisition of the fixation point by the monkey, a single target was 

presented on the screen. The monkey made a saccadic eye movement to the target after the 

Go cue. B) The two-dimensional MDS plot and the projected topography on the array for an 

example session in monkey T. The topography is very similar to that observed in other 

sessions where the monkey performed a direction discrimination task (e.g. Fig. 2F). C) The 

alignment score of the average ‘electrode-based’ dissimilarity matrices (see Experimental 

Procedures) across the two tasks. The bars show the alignment score for each monkey. Error 

bars represent 95% confidence intervals for the alignment between the two dissimilarity 

matrices.
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Figure 6. 
Differential physiological properties of the two subnets. A–C) Average layout of the two 

subnets across the sessions for each monkey. We used K-means clustering to objectively 

divide the recorded units into two subnets in each session. The subnets were assigned 

magenta (subnet-1) and green colors (subnet-2) and projected back onto the arrays. The 

average maps across the sessions are shown for each monkey. The electrodes with in-

between colors contributed to different subnets across experiments. D) Choice prediction 

accuracy based on a logistic regression analysis (see Supplemental Experimental 
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Procedures) of the population responses of subnet-1 and subnet-2. E) RT prediction 

accuracy based on a linear Ridge regression analysis of the population responses of the two 

subnets. Subnet-1 is a better predictor of both choice and reaction time. RTs were measured 

from the Go cue. F) Choice predictive responses were more distributed in subnet-1. In each 

session we ranked individual units of subnet-1 and subnet-2 based on their choice prediction 

accuracy and then measured the effect of the exclusion of best units on the choice prediction 

accuracy of the population response. The arrow indicates prediction accuracy of subnet-1 

after exclusion of its 10 best units. The analysis focuses on the 150 ms window immediately 

before the Go cue. The shaded areas represent SEM across sessions.
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Figure 7. 
Overall response dissimilarity levels vary across task epochs, but the structure of the 

dissimilarity matrix is stable. A) The pairwise dissimilarity matrices for all recorded pairs of 

units in the example session of Fig. 2C. Response dissimilarities are measured separately for 

different task epochs. To facilitate visualization, the units are ordered based on the subnet 

membership. Arrows indicate the border between the two subnets for this session. The 

cooler colors during the inter-trial interval indicate that dissimilarity is overall lower 

(response correlation is higher). B) Average response dissimilarities within and between the 

subnets in different task epochs across sessions. Error bars indicate SEM across sessions.
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Figure 8. 
Motor cortex data are similar to the pre-arcuate data, and extend our results to the resting 

state. A) Two multi-electrode arrays were implanted in the left primary motor cortex (M1) 

and dorsal premotor cortex (PMd) of a monkey trained for a direction discrimination task 

with reaching movements as the operant response. The gray squares show the array 

locations with respect to major sulci (as, arcuate sulcus; cs, central sulcus; spcd, superior 

precentral dimple). B) MDS plots of an example session. M1 and PMd are well segregated 

both during the direction discrimination task and in rest periods between the task-engaged 

blocks of trials. C) Alignment score of the resting and task-engaged dissimilarity matrices. 
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Response dissimilarity matrices were calculated for the combined population across the two 

arrays. Alignment scores were calculated for the broadband data (unfiltered, leftmost bar) 

and for same frequency bands depicted in Fig. S6 for the prearcuate data. The matrices are 

well aligned for the resting and task-engaged periods (left bar), and the signals underlying 

the alignment are distributed across temporal frequency bands spanning three orders of 

magnitude (right bars). D) Common noise is the main factor underlying the structure of 

dissimilarity matrices and segregation of M1 and PMd subnets in this analysis. Alignment 

scores show the correlation between the resting period dissimilarity matrix and the task-

evoked (right) and residual dissimilarity matrices (left). Conventions are similar to Fig. 4B–

C.
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