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Abstract

Context—Oxidative balance score (OBS) is a composite measure of multiple pro- and
antioxidant exposures.

Objective—To investigate associations of OBS with F2-isoprostanes (FIP), mitochondrial DNA
copy number (mtDNA), and fluorescent oxidative products (FOP), and assess inter-relationships
among the biomarkers.

Methods—In a cross-sectional study, associations of a thirteen-component OBS with biomarker
levels were assessed using multivariable regression models.

Results—Association of OBS with FIP, but not with FOP, was in the hypothesized direction.
The results for mtDNA were unstable and analysis-dependent. The three biomarkers were not
inter-correlated.

Conclusions—Different biomarkers of oxidative stress may reflect different biological

processes.
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Introduction

Oxidative stress is defined as an imbalance between pro-oxidants and antioxidants, resulting
in macromolecular damage and disruption of redox signaling and control (Sies & Jones,
2007). Pro-oxidants are factors that help to generate reactive oxygen species (ROS), which
in turn interact with macromolecules and cause protein oxidation, lipid peroxidation, and
DNA damage (Wu & Cederbaum, 2003). By contrast, antioxidant factors act to counter or
reduce the effects of ROS thereby reducing oxidative stress (Valko et al., 2007).

Oxidative stress is affected by intrinsic factors, such as oxidative phosphorylation (Wallace,
1994), cellular antioxidant enzyme activity (Valko et al., 2007), and macromolecular
damage (Pascucci et al., 2011). In addition, various extrinsic and presumably modifiable
factors such as diet and medications also act as pro- and antioxidants. Although
experimental biology evidence has demonstrated that antioxidants can slow disease
pathogenesis (Padayatty et al., 2003; Pietta, 2000; Stahl & Sies, 2003), clinical trials of
antioxidant supplementation have not shown benefits (Goodman et al., 2011; Steinhubl,
2008).

Studies of diet and health have demonstrated that nutrients do not act in isolation, and a
combination of factors can be more strongly associated with disease risk than any single
nutrient considered individually (Duthie et al., 1996; Slattery et al., 1998; Trichopoulou et
al., 1995). By analogy, it appears possible that a combination of oxidative stress-related
factors may be more strongly associated with health outcomes than can any individual pro-
oxidant or antioxidant exposure.

To investigate this hypothesis, an oxidative balance score (OBS) that combines oxidative
stress-related exposures based on the summed intake of various pro- and antioxidants, with a
higher score indicating lower oxidative stress has been proposed in this work as well in other
studies. Previous studies found that a higher OBS was associated with lower risk of
colorectal adenoma (Goodman et al., 2008; Trichopoulou et al., 1995), colorectal cancer
(Dash, 2010), and mortality (Van Hoydonck et al., 2002). By contrast, an OBS was not
associated with prostate cancer risk (Agalliu et al., 2011), indicating that the role of
oxidative stress in human chronic disease pathophysiology may be organ or disease specific.

Many known pro- and antioxidants act through a variety of mechanisms that may be
independent of oxidative stress. For example, lycopene has anti-proliferative effects in vitro
(Heber & Lu, 2002). Other carotenoids were found to regulate gene expression (Bertram,
1999) and immune response (Chew & Park, 2004). Similarly, tobacco smoke, in addition to
its known pro-oxidant activity, has direct carcinogenic effects in many tissues and organ
systems (Pryor, 1997). These examples illustrate that associations between an OBS and
health outcomes may or may not be attributable to changes in oxidative stress. To resolve
this uncertainty it is important to assess the relation of an OBS to blood levels of various
biomarkers of oxidative stress, several of which have been used in population studies.

Fo-isoprostanes (FIP) are products of arachidonic acid peroxidation and a biomarker of
oxidative stress (Montuschi et al., 2004). Although FIP can be measured in plasma and
urine, plasma measurements are preferred because oxidative stress biomarkers in urine are
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influenced by renal metabolism (Catella et al., 1986; Morrow, 2000). High levels of FIP
have been associated with cardiovascular disease (Vassalle et al., 2003) and Alzheimer's
disease (Reich et al., 2001).

Another relatively new marker that may increase in response to oxidative stress is
mitochondrial DNA (mtDNA) copy number (Hosgood et al., 2010; Lee et al., 2000; Wang et
al., 2011). Mitochondria are organelles that contain their own circular genome lacking
introns. Their primary function is to generate adenine triphosphate through cellular
respiration, a process that also produces ROS (Wallace, 1994). Unlike nuclear DNA, which
is protected by elaborate repair mechanisms (Sancar et al., 2004), mtDNA responds to
damage by increasing the number of its copies. High levels of mtDNA copy number have
been linked to certain cancer outcomes (Hosgood et al., 2010; Lynch et al., 2011).

The use of florescent oxidation products (FOPs) as a measure of oxidative stress began in
the food industry, but is now being proposed for population-based human studies (Wu et al.,
2007a). FOPs are comprised primarily of fluorescent conjugated Schiff bases that are
formed when malonaldehyde, a byproduct of lipid peroxidation, reacts with amino groups
(Dillard & Tappel, 1984). In population-based studies FOP was directly associated with
hypertension (Wu et al., 2007b) and may serve as an independent predictor of coronary heart
disease (Wu et al., 2007a).

The use of each biomarker has distinct advantages and disadvantages. At present, FIP are
considered the “gold-standard” biomarker of oxidative stress, but an accurate and reliable
analysis of FIP requires careful handling of samples to prevent in vitro oxidation (Wu et al.,
2004). Wu et al. found FOPs to be a stable measure, with levels from blood specimens
remaining constant over 36 hours, whereas FIP in the same samples increased at each time
measured (Wu et al., 2004). The main disadvantage of FIP and FOP as biomarkers is that
they both represent short-term oxidative stress levels (Cracowski, 2006). By contrast,
mtDNA copy number is a stable biomarker that is presumed to indicate long-term,
cumulative, oxidative stress-induced damage.

This analysis is based on the cross-sectional Study of Race, Stress, and Hypertension
(SRSH), which provided data and samples from a racially and ethnically diverse group of
men and women residing in Georgia, USA. The primary goals of the present study were to
examine associations between an OBS and three biomarkers — FIP, mtDNA, and FOP — each
thought to reflect different aspects of oxidative stress, to compare the magnitude and the
direction of the OBS-biomarker associations in different racial/ethnic groups, and to assess
how the three biomarkers may relate to each other. The relation between OBS and two
oxidative stress markers (FIP and FOP) was examined previously only once — in a study of
colorectal adenoma that was limited to non-Hispanic whites (Kong et al., 2014). A notable
unexpected finding in that study was the opposite of the associations of OBS with FIP and
FOP. This observation requires confirmation in a different population, which is the
secondary aim of the present study.
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Study participants

SRSH was designed to assess racial disparities in dietary, lifestyle, and psychosocial
exposures in relation to blood pressure. The study includes participants from three groups —
US non-Hispanic Whites (NHW), African-Americans (AA), and native West Africans
(WA), all residing in Georgia at the time of data collection. The NHW and AA were
selected from 800 participants in a previously completed feasibility phase of the Georgia
Cohort Study (GCS). The WA subjects were recruited de novo using previously established
ties with Atlanta churches that include large proportions of West African immigrants. After
the recruitment of the WA was complete, the sample of GCS participants was selected with
frequency matching to the WA participants on age and sex. Study eligibility included 25-74
years of age, self-identification as NHW or AA (for those recruited from GCS) or as WA
(for those recruited de novo), and being a permanent Georgia resident. Subjects were
excluded if they did not give informed consent. All methods were approved by the
Institutional Review Board of the Emory University.

For the current analysis we excluded participants for whom no biomarker measurements of
interest were recorded (n = 14). Of the remaining 321 subjects, the numbers of participants
with measurements for each biomarker were as follows: FIP (n = 227), mtDNA copy
number (n = 182), and FOP (n = 272).

Data and blood sample collection procedures

Recruitment and data collection occurred after church services for WA participants and at
community events for NHW and AA participants. Following informed consent, blood was
drawn by a phlebotomist into five 10mL vacutainer tubes (2 sodium heparin tubes, 1 EDTA
tube, and 2 red top tubes) and immediately placed on ice. Plasma, serum, and buffy coats
were separated within 4-8 hours of sample collection by refrigerated (4°C) centrifuge,
aliquoted, and frozen at 80°C. The aliquots were then shipped overnight on dry ice for
analysis to the Molecular Epidemiology and Biomarker Research Laboratory (MEBRL) at
the University of Minnesota.

Study-specific questionnaires were used to elicit data on demographic, medical history and
lifestyle characteristics. Physical activity was assessed using a Paffenbarger questionnaire
(Paffenbarger et al., 1993). Other data elements were obtained using instruments from
previous studies (Potter et al., 1999).

Laboratory analysis

Plasma lycopene, a-carotene, 3-carotene, -cryptoxanthin, zeaxanthin, lutein, a-tocopherol,
and y-tocopherol were measured via high performance liquid chromatography (HPLC) as
originally described by Bieri et al. (1985) with several modifications for the analysis of
tocopherols, and using calibration methods described by Craft et al. (1988). The method and
its modifications were described previously by Gross et al. (1995). Serum ferritin was
measured by an antibody-based Roche immunoturbidimetric assay (Pfeiffer et al., 2007).

Biomarkers. Author manuscript; available in PMC 2015 March 20.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lakkur et al.

Page 5

Plasma free FIP were measured by gas chromatography-mass spectrometry (GCMS) as
described by Gross (Gross et al., 2005). This method, considered the gold standard for
measuring FIP, measures a distinct set of FIP isomers. FIP were extracted from the plasma
samples using deuterium (4)-labeled 8-iso-prostaglandin F, alpha as an internal standard.
Unlabeled, purified FIP was used as a calibration standard.

The details of the procedure to measure mtDNA copy number are described elsewhere (Shen
et al., 2010). Briefly DNA was extracted from venous white blood cells. Two pairs of
primers were used in the two steps of relative quantification for mtDNA content: one for
amplifying the mtDNA MT-ND1 gene, and another for amplifying the single-copy nuclear
gene human globulin (HGB). In the first step, the ratio of mtDNA copy number to HGB
copy number, which is also referred to as the mtDNA index, was determined for each
sample from standard curves. This ratio was proportional to the mtDNA copy number in
each cell and, for each sample, normalized to a calibrator DNA. All samples were assayed
using 96-well plates with an Applied Biosystems StepOne Plus System. The PCRs for ND-1
and HGB were performed on separate 96-well plates with the same samples in the same well
positions to avoid possible position effects. A standard curve of a diluted reference DNA,
one negative control, and one calibrator DNA were included in each run. For each standard
curve, one reference DNA sample was serially diluted 1:2 to produce a seven-point standard
curve between 0.3125 and 20 ng of DNA (Shen et al., 2010).

The method of measuring FOP was modified from Shimasaki (1994). The procedures were
described in detail previously (Wu et al., 2004). Briefly, plasma was extracted with ethanol-
ether (3/1, v/v) and mixed on a vortex mixer. The mixed solution was centrifuged for 10
minutes at 3000 rpm, 1.0 mL of supernatant was added to cuvettes for spectro-fluorometric
readings, and the readings were expressed as a relative fluorescence intensity units per
milliliter of plasma at 360/430 nm wavelength (excitation/emission) (Wu et al., 2004). The
wavelength we used is within the spectrum, but not the same as that used by Wu et al.
(2004). All samples were calculated against 1.0 ppm fluorescent reference standard quinine
in 0.1 NH,SOy4.

Using two different controls, the coefficients of variation (CVs) ranges were 10.3-12.4% for
zeaxanthin, 3.3-5.8% for -cryptoxanthin, 26.4-31.9% for lycopene, 1.1-3.0% for a-
carotene, 4.8-9.4% for p-carotene, 0.6-0.7% for a-tocopherol, 0.1-0.2% for y-tocopherol,
11.9-12.3% for FIP, and 5.4-5.6% for FOP. Using one control, the CVs were 7.2% for
ferritin and 5.9% for mtDNA copy number.

OBS components and their assessment

The OBS is comprised of 13 components that were selected based on a priori knowledge
about their relation to oxidative stress (Table 1). The score combined plasma micronutrient
measurements, serum ferritin measurements, and questionnaire derived information on
lifestyle/medical factors. Continuous variables were divided into categories based on fertile
values. Participants who had low exposure to a particular antioxidant (1st fertile) were
assigned zero points, and those in the medium (2nd fertile) or high (3rd tertile) exposure
category, received one or two points, respectively. Antioxidant OBS components expressed
as continuous variables included plasma lycopene, a-carotene, 3-carotene, B-cryptoxanthin,
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zeaxanthin, lutein, a-tocopherol, and y-tocopherol plus physical activity. For serum ferritin,
the only continuous variable reflecting pro-oxidant exposure, two points were given for low
exposure (1st tertile), one point for medium exposure (2nd tertile), and zero points for high

exposure (3rd tertile).

Categorical variables (all lifestyle/medical) were assigned scores from 0 to 2 to maintain
consistency with the continuous OBS components. For smoking and alcohol use non-
smokers and non-drinkers received 2 points, while current smokers and current drinkers
received zero points. For NSAID and aspirin use, zero points were assigned to participants
who reported never using any of these medications, and two points to those who reported
regular (at least once a week) use. The points assigned to each component were summed to
calculate the overall OBS.

Statistical analysis

Correlation coefficients were calculated for oxidative stress biomarkers and for plasma
levels of OBS components. Using median values as the cutoffs, high FIP, mtDNA copy
number, and FOP were defined as >48.37 pg/mL, =3.05 (relative copy number), and =0.04
(average standard reference adjusted units), respectively. Participants with high and low
levels of FIP, mtDNA copy number, and FOP were compared with respect to various
demographic and lifestyle characteristics using chi-square tests for categorical variables and
t-tests for continuous variables.

Multivariable linear regression models were constructed to examine associations between
the OBS and each biomarker. The results of the linear regression models were expressed as
regression coefficients and their corresponding 95% confidence intervals (Cls) adjusted for
age, sex, BMI, and race/origin. The biomarker measurements were not normally distributed,
and so were log transformed when used in the linear regression analyses. The OBS-
biomarker associations were examined both overall and separately for NHW, AA, and WA
participants.

Linear regression models for investigating continuous outcome variables may have greater
statistical power; however: (1) it cannot be used to identify a threshold or an asymptotic
dose-response relationship, and (2) the clinical or biological significance of results from
analyses in which exposures and outcomes are categorized may be more apparent because
they allow a quantitative comparison of risks (or prevalence estimates) in persons at
different ends of the exposure distribution. For these reasons, in a separate analysis, the OBS
was also divided into tertiles, and blood levels of oxidative stress biomarkers were
dichotomized as high versus low using median values as the cutoffs. Multivariable logistic
regression models were used to examine the association between OBS and high biomarker
levels, controlling for age, sex, BMI, and race/origin. The results of logistic regression
models were expressed as adjusted odds ratios (ORs) and 95% Cls. Potential confounders
were selected based on literature evidence and other a priori considerations. All models
were examined for collinearity among the independent variables and for interaction between
the OBS and each covariate. In all analyses the default approach was to calculate the
measures of association from the dataset restricted to participants with non-missing values
for all OBS components (Method 1). Sensitivity analyses were conducted to evaluate the
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impact of imputing missing values. Imputations for missing score components were
performed using two methods: first by assigning random values (Method 2); and then by
assigning the median estimates for the same age, sex, and race/ethnicity category (Method
3). Additional sensitivity analyses were conducted to examine the impact of individual OBS
components by removing each component from the score and controlling for it as a
covariate. Adjusted ORs and 95% Cls were also calculated for the individual OBS
components. All analyses were conducted using SAS statistical software version 9.2 (SAS
Institute, Cary, NC).

Distributions of biomarkers in the study population

The demographic and lifestyle characteristics of the study participants according to high and
low biomarker levels are summarized in Table 2. Participants with higher FIP levels had, on
average, a higher BMI, and were more likely to be NHW, AA, or non-drinkers. In the high
mtDNA copy number category, there was a lower proportion of males, and a higher
proportion of WA. In the high FOP category, there was a higher proportion of WA.

The dietary characteristics of the SRSH participants by high and low biomarker levels are
summarized in Table 3. Plasma levels of zeaxanthin, cryptoxanthin, lycopene, a-carotene,
and B-carotene were greater in the high FOP group than in the low FOP group. By contrast,
plasma levels of these nutrients were lower in the high FIP group than in the low FIP group.
Serum ferritin levels were greater in all three high biomarker groups than in the low
biomarker groups.

The two-way correlations involving the individual dietary OBS components and the
biomarkers of oxidative stress are presented in Table 4. The strongest positive Pearson
correlation was observed between a-carotene and p-carotene (r = 0.88), both of which were
negatively correlated with y-tocopherol (r = - 0.35 and -0.30, respectively). Spearman
correlation coefficients were somewhat larger. There was no evidence of a positive
correlation for biomarkers of oxidative stress, with Pearson coefficients ranging from —0.17
to 0.00 and Spearman coefficients ranging from —0.01 to —0.32.

Associations of OBS with biomarkers

Associations between the OBS and the oxidative stress biomarkers expressed as continuous
variables are shown in Table 5. Among participants with complete information on each of
the OBS components (Method 1), the associations were in the hypothesized direction for
FIP (inverse), but not for FOP (direct), and, among all participants combined, these
associations were statistically significant. The association for mtDNA copy number was not
statistically significant. The estimated associations did not substantially differ by race/
ethnicity, and the tests for interaction between race and each of the three biomarkers were
not statistically significant. Accordingly, all remaining results shown are for the combined
population, with race/ethnicity included in the models as a covariate. In the sensitivity
analyses (Methods 2 and 3), the measures of associations between the OBS and both FIP
and FOP obtained by imputing values for missing score components were not substantially
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different from the original results (Method 1). However, the positive association with
mtDNA copy number observed using the original approach was no longer evident after
imputation of the missing values, and the regression coefficients were in the opposite
direction (Table 5).

Associations between OBS tertiles and the oxidative stress biomarkers expressed as binary
(high versus low) variables are presented in Table 6. There was a statistically significant
inverse trend (p<0.01), indicating that the odds of having an elevated FIP level were
progressively lower with a progressive higher OBS. Using the lowest OBS fertile as
reference, the OR (95% CIs) for high FIP in the middle and upper OBS tertiles were 0.34
(0.11-1.08) and 0.04 (0.01-0.17), respectively. None of the tertile-specific ORs for high
mtDNA copy numbers was statistically significantly different from the null and there was no
evidence of a dose-response. There was a statistically significant trend for higher odds of
having a higher FOP level with a higher OBS (p<0.01), with a statistically significant OR of
5.64 (2.35-13.54) among those in the third (relative to the first) OBS fertile.

The results of the sensitivity analyses in which we examined the associations between OBS
tertiles and high levels of biomarkers are presented in Table 7, where missing OBS
components were either assigned random values (Method 2) or the median estimates for the
same age, sex, and race/ethnicity category (Method 3). For FIP and FOP, the results were
not substantially different from the original analysis (Method 1, Table 5). For mtDNA copy
number, the association changed the direction.

of individual OBS components with biomarkers

Associations between the individual OBS components and each oxidative stress biomarker
are shown in Table 8. For the most part, the estimated associations for FIP and mtDNA copy
number were inverse for both the antioxidant and pro-oxidant exposures, except that, for
FIP, the estimated associations were direct with a-tocopherol, y-tocopherol, aspirin and
other NSAID use, and for mtDNA copy number, the estimated associations with lycopene,
a-tocopherol, and physical activity were direct; the only statistically significant departures
from the null were the strong inverse associations of FIP with zeaxanthin, cryptoxanthin,
lycopene, a-carotene, and p-carotene. For most of the parts, the estimated associations of
FOP with the various exposures were opposite to those for FIP and mtDNA copy number;
only the direct associations with zeaxanthin, lycopene, a-carotene, 3-carotene, and a-
tocopherol were strong and statistically significant.

In additional sensitivity analyses the associations between high levels of the biomarkers and
the 13-component OBS (examined as a continuous variable) were compared to those from
alternative models in which each component was removed from the score one at a time and
included in the model as a covariate. For all alternative models, removing an OBS
component resulted in few meaningful differences from the ORs found using the original
model. The OR estimates in the alternative models were within 12% of the OR from the
original model (data not shown).

Biomarkers. Author manuscript; available in PMC 2015 March 20.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Lakkur et al. Page 9

Discussion

In this cross-sectional study, we examined associations between an OBS and biomarkers of
oxidative stress (FIP, mtDNA copy number, and FOP), hypothesizing that a high OBS
would be inversely associated with all biomarker levels. We found a strong, statistically
significant inverse association of the OBS with FIP, but the OBS-FOP association, which
was also statistically significant, was in the opposite direction than was hypothesized. While
these results for both FOP and FIP were essentially the same as were found in the sensitivity
analyses, the corresponding results for MtDNA copy number were unstable and the
association changed direction depending on the method of missing data handling. There was
no indication that our findings differed substantially across non-Hispanic whites, African-
Americans, and native West Africans. The three biomarkers were not inter-correlated.

Other studies reported associations between an OBS and these biomarkers in different
populations. Dash et al. (2013) observed a significant inverse association between a
questionnaire-derived OBS and FIP in a case-control study of colorectal adenoma. In the
same population, Kong et al. (2014) performed a separate analysis using an OBS comprised
of components measured by both food frequency questionnaires (FFQ) and blood markers.
As in our study, Kong et al. (2014) found that those in the lowest relative to those in the
highest interval category of the OBS had statistically significant lower levels of FIP but
higher levels of FOP.

FIP is considered the gold-standard measure of oxidative stress in population-based studies
(Yin et al., 2005). The results from several placebo-controlled, randomized clinical trials
(RCTs) of the effects of limited numbers of supplemental antioxidant micronutrients on FIP
have been inconsistent (Dietrich et al., 2002, Gokce et al., 1999, Patrignani et al., 2000).
However, when nutrients were examined in combination as a dietary score (similarly as for
the OBS) in observational studies, stronger associations with FIP were observed (Meyer et
al., 2013). In the Coronary Artery Risk Development in Young Adults (CARDIA) study, a
diet quality score was determined by assigning higher points to frequent consumption of
foods beneficial to health, and lower points to frequent consumption of foods believed to be
detrimental to health (all determined a priori) (Meyer et al., 2013). A significant inverse
association was observed between the dietary score and plasma FIP (Meyer et al., 2013).

Our findings for an OBS-mtDNA copy number association were not consistent, and mtDNA
copy number was not substantially or statistically significantly correlated with either FIP or
FOP. Liu et al. (2003) found mtDNA copy number to be correlated with thiobarbituric acid
reactive substances (TBARS), a marker of lipid peroxidation. In an in vitro study, exposure
of human lung fibroblasts to oxidative stress resulted in an increase in mtDNA copy number
(Lee et al., 2000). However, as shown in mouse models, oxidative stress may not be solely
responsible for increasing mtDNA copy number, since transcription factors also play a
regulatory role (Ekstrand et al., 2004).

A higher OBS in our study was associated with higher FOP levels. This observation appears
counterintuitive, but it is in agreement with the results previously reported by Kong (2013).
Moreover, we found that FOP was not correlated with FIP. In addition, the associations
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between many individual antioxidants and FOP were opposite in direction to those
hypothesized and those found for FIP. Since FOP is purported to be a non-specific measure
of global oxidative stress, it may also be comprised of non-oxidative products (Wu et al.,
2007b). Considering that FOP was previously directly associated with coronary heart
disease and hypertension, but inversely associated with colorectal adenoma (Kong et al.,
2014; Wu et al., 2007a,b) future studies should be conducted to understand exactly what
FOP is measuring in humans and what role(s) its specific components may play in human
pathophysiology.

One of the strengths of this study was the diverse population that included similar numbers
of non-Hispanic white, African-American, and native West African participants. This
allowed us to better examine possible interactions between the OBS and race/ethnicity,
although none was observed. Another distinguishing feature of the present study was the use
of plasma measures of dietary OBS components. Circulating levels of nutrients more
accurately represent their current intake and availability for metabolism than do FFQ-
derived measures (Potischman, 2003).

A major limitation of this study was missing information in a substantial proportion of
participants. In a sensitivity analysis conducted to examine the impact of missing
information, the results for FIP and FOP were similar to the original ones, but the direction
of the association for mtDNA copy number (for which there were more missing data)
reversed. Thus, the results for FIP and FOP appear to be reasonably robust, but the
interpretation of the findings for mtDNA copy number is problematic at this time.

In conclusion, we found that a higher oxidative balance score (OBS) — a composite measure
that reflects predominantly antioxidant exposures — was strongly inversely associated with
the currently most accepted biomarker of oxidative stress, F2-isoprostanes, thus, providing
further support for the validity of the OBS. Also, as we found in a separate study (Kong et
al., 2014), fluorescent oxidation products (FOP) were directly associated with the OBS and
with circulating antioxidant micronutrient levels, thus raising serious questions about
whether or not FOP is a true indicator of oxidative balance in humans. The observation that
the three biomarkers measured in the current study were not inter-correlated suggests that
they are unlikely to measure the same or similar biological processes.
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Table 1

Oxidative balance score (OBS) assignment scheme.

OBS components  Score assignment scheme

Zeaxanthin O=low (st tertile), 1=medium (2nd tertile);
2=high (3rd tertile)

Cryptoxanthin® O=low (1st tertile), 1=medium (2nd tertile);
vp 2=high (3rd tertile)

Lycopene@ O=low (1st tertile), 1=medium (2nd tertile);
yeop 2=high (3rd tertile)
a-carotene@ O=low (1st tertile), 1=medium (2nd tertile);
2=high (3rd tertile)
_carotene@ 0O=low (1st tertile), 1=medium (2nd tertile);
b 2=high (3rd tertile)
a-tocopherol@ O=low (1st tertile), 1=medium (2nd tertile);
2=high (3rd tertile)
-tocopherol O=low (1st tertile), 1=medium (2nd tertile);
v-tocop 2=high (3rd tertile)
FerritinP 0O=high (3rd tertile), 1=medium (2nd tertile);

2=low (1st tertile)

Physical activity O=low (1st tertile), 1=medium (2nd tertile);
2=high (3rd tertile)

Smoking history O=current smoker, 2=never smoker

Aspirin 0O=never, 2=regular user
Other NSAID 0O=never, 2=regular user
Alcohol O=current drinker, 2=never drinker

NSAID = non-steroidal anti-inflammatory drug (not including aspirin); PUFA = polyunsaturated fatty acids.
aPlasma derived measurement.

b .
Serum derived measurement.
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Table 6

Association between OBS and biomarkers of oxidative stress.

Page 20

Biomarker Low biomarker levels High biomarker levels OR (95% CI)d p Trend®
Flpa
OBS Tertile
4-11 11 38 1.0 <0.01
12-14 23 21 0.34(0.11-1.08)
15-22 33 7 0.04(0.01-0.17)
MtDNA count?
OBS Tertile
5-10 19 14 10 0.44
11-15 18 14 1.60 (0.39-6.65)
16-21 8 17 6.09 (1.09-34.02)
FopC
OBS Tertile
4-12 44 18 1.0 <0.01
13-15 16 21  2.06 (0.78-5.44)
16-23 14 46  5.64 (2.35-13.54)

OBS = oxidative balance score; OR = odds ratio; Cl = confidence interval; FOP = florescent oxidation product; FIP = F2-isoprostanes; mtDNA =
mitochondrial DNA relative copy number.

aFIP cutoffs: Low FIP, <46.44 pg/mL (n = 67); High FIP, > 48.34 pg/mL (n = 66).

bMtDNA count: Low MtDNA count, >=3.19 (n = 45); High MtDNA count, <3.19 (n = 45).

CFOP cutoffs: Low FOP, <0.04 average standard reference adjusted (n = 74); High FOP, =0.04 average standard reference adjusted (n = 85).

dAdjusted for age, sex, origin, and BMI.

e .
X2 test for linear trend.

fIncluded participants with complete information on OBS components (Method 1).
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Table 8

Associations between individual OBS components and biomarkers.

Variables FIP OR (95% CI)2 mtDNA OR (95% CI)2 FOP OR (95% CI)&

1duosnue Joyiny 1duosnuen Joyiny 1duasnuen Joyiny

1duasnuen Joyiny

Zeaxanthin?

Cryptoxanthinb

Lycopeneb

q-caroteneb

[3—caroteneb

ou—tocopherolb
«/-tocopherolb
Ferritin®

Smoking
Alcohol
Aspirin
Other NSAID
Physical activity

1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
1 point relative to 0
2 points relative to 0
2 points relative to 0
2 points relative to 0
2 points relative to 0
2 points relative to 0
1 point relative to 0

2 points relative to 0

0.35 (0.15-0.84)
0.22 (0.09-0.53)
0.24 (0.10-0.56)
0.14 (0.06-0.36)
0.56 (0.26-1.36)
0.20 (0.08-0.52)
0.14 (0.14-0.77)
0.04 (0.01-0.14)
0.22 (0.09-0.57)
0.03 (0.02-0.17)
0.94 (0.40-2.12)
1.12 (0.45-2.76)
0.82 (0.36-1.83)
3.13 (1.25-7.83)
1.01 (0.43-2.38)
0.67 (0.26-1.76)
0.15 (0.02-1.32)
0.31 (0.14-0.70)
1.71 (0.59-1.93)
1.54 (0.66-3.58)
0.84 (0.33-2.12)
0.65 (0.25-1.71)

053 (0.19-1.50)
050 (0.18-1.37)
0.81 (0.30-2.21)
0.86 (0.32-2.33)
0.82 (0.30-2.28)
1.23 (0.38-3.92)
0.75 (0.22-2.55)
0.82 (0.20-3.37)
0.72 (0.25-2.05)
0.71 (0.38-3.84)
0.25 (0.19-1.32)
1.10 (0.37-3.27)
0.71 (0.26-1.93)
0.81 (0.26-2.52)
0.79 (0.32-1.97)
0.80 (0.25-2.51)
0.63 (0.09-1.22)
0.44 (0.17-1.16)
0.80 (0.27-2.36)
053 (0.19-1.50)
2.49 (0.76-8.23)
2.86 (0.74-10.98)

1.79 (0.88-3.65)
3.19 (1.56-6.51)
1.61 (0.80-3.24)
1.70 (0.83-3.48)
2.49 (1.20-5.14)
11.72 (4.43-25.95)
3.09 (1.53-6.24)
8.87 (3.44-22.85)
3.12 (1.54-6.33)
5.34 (2.33-12.23)
2.09 (1.00-4.34)
3.44 (1.56-7.58)
1.75 (0.85-3.60)
0.87 (0.40-1.87)
0.91 (0.45-1.82)
0.97 (0.45-2.09)
1.12 (0.31-4.09)
0.89 (0.47-1.70)
0.48 (0.23-1.00)
2.00 (0.86-4.66)
1.10 (0.57-2.14)
1.68 (0.73-3.89)

OBS = oxidative balance score; OR = odds ratio; Cl = confidence interval; NSAID = non-steroidal anti-inflammatory drug; FOP = florescent

oxidation product; FIP = F2-isoprostanes; mtDNA = mitochondrial DNA copy number.

aAII results adjusted for age, sex, race/ethnicity, and BMI.

b .
Plasma derived measurement.

c .
Serum derived measurement.
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