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Abstract: Compressive sensing-based synthetic aperture radar (SAR) imaging has shown 

its superior capability in high-resolution image formation. However, most of those works 

focus on the scenes that can be sparsely represented in fixed spaces. When dealing with 

complicated scenes, these fixed spaces lack adaptivity in characterizing varied image 

contents. To solve this problem, a new compressive sensing-based radar imaging approach 

with adaptive sparse representation is proposed. Specifically, an autoregressive model is 

introduced to adaptively exploit the structural sparsity of an image. In addition, similarity 

among pixels is integrated into the autoregressive model to further promote the capability 

and thus an adaptive sparse representation facilitated by a weighted autoregressive model is 

derived. Since the weighted autoregressive model is inherently determined by the unknown 

image, we propose a joint optimization scheme by iterative SAR imaging and updating of 

the weighted autoregressive model to solve this problem. Eventually, experimental results 

demonstrated the validity and generality of the proposed approach. 

Keywords: SAR; compressive sensing; adaptive sparse representation; random  

sensing measurements 

 
  

OPEN ACCESS



Sensors 2015, 15 4177 

 

 

1. Introduction 

Due to its day/night and all weather performance capabilities, synthetic aperture radar (SAR) has become 

one of the most promising remote sensing tools in military and civilian fields, including target recognition, 

topographic mapping, and environmental monitoring. SAR is capable of producing high-resolution 

images of stationary surface targets and terrain reflectivity. In general, to achieve high-resolution 

performance, a wideband transmitted signal as well as a large synthetic aperture size are required. 

However, such requirements lead to a high sampling rate in both the range and azimuth dimensions, which 

poses a challenge to the analog-to-digital (AD) converter at the receiver and makes the consequent 

processing complex. 

Based on the assumption that SAR images can be sparsely represented in some spaces, such as 

wavelet, discrete cosine transform (DCT), or Fourier domain, the recently emerged Compressed Sensing 

(CS) [1,2] theory demonstrates that the SAR image can be exactly recovered with high probability from 

very limited measurements by solving a convex optimization. Motivated by this, many works [3–6] have 

applied the CS theory into the SAR imaging and developed a new compressive SAR imaging approach  

(CS-SAR for short), in which a series of advantages, such as high resolution and low sidelobes, are 

provided. In addition, considering that SAR imaging is inevitably disturbed by uncertain phase errors in 

practice, sparsity-driven approaches [7,8] are proposed for joint SAR imaging and phase error correction. 

Though the superior capability of the compressive SAR imaging approach has been extensively studied, 

only simple scenes with isolated scatterers existing in a low-reflectivity surrounding are considered. 

Previous studies [9,10] were capable of dealing with more general cases and demonstrated that a 

satisfactory imaging performance can be achieved when a SAR image can be sparsely represented in an 

elaborately selected space. However, a fixed space lacks adaptivity in characterizing the varying 

structure of the scene. Especially when the waveforms vary significantly across the whole image, 

reconstruction with some fixed space may suffer from an unsatisfactory performance. 

In this paper, an adaptive sparse representation scheme derived from the weighted autoregressive 

(AR) model is introduced in compressive SAR imaging. The work is inspired by [11], where the AR 

model is integrated into the compressive image recovery for exploiting the structural sparsity of natural 

images. The premise of the work is that the piecewise statistical stationary assumption holds. However, a 

more general case, which statistically in a local window is non-stationary, is considered in our paper. 

Specifically, considering the local non-stationary property within the SAR image, the similarity between 

any two pixels, evaluated via the structural similarity probability (SSP), is incorporated into the AR 

model to further promote the capability of the structural sparsity exploration. With this weighted AR 

model, a new approach of compressive SAR imaging with adaptive sparse representation (ASR-CS-SAR 

for short) is developed. Since the parameters of the weighted AR model are inherently determined by 

the unknown SAR image, an alternative optimization scheme is introduced to join SAR imaging and 

parameters estimation. In the end, experimental results demonstrate that the proposed ASR-CS-SAR 

approach outperforms general CS-SAR approaches with fixed spaces in terms of both visual quality and 

other metrics. 

The remainder of this paper is organized as follows. Section 2 gives a brief review of the spotlight 

model SAR. The general CS-SAR approach is presented in Section 3 and the proposed ASR-CS-SAR 
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approach is given in Section 4. In Section 5, simulation results are presented to demonstrate the validity 

of the proposed approach. Finally, conclusions are made in Section 6. 

2. SAR Imaging Model 

In this section, we give a brief review of the spotlight mode SAR. The radar traverses along a straight 

path with a constant speed, and continuously steers the antenna beam to a fixed ground patch of interest. 

At each location, radar transmits electromagnetic pulses and records the return signal from the ground 

patch. Then, the collected SAR echoes from multiple observation locations are processed to image the 

reflectivity profile. In spotlight mode SAR, the most commonly used pulse is 

( ) ( ) 0j tt p t e ω=s  (1)

where p(t) is the transmitted waveform, t represents the signal time, and ω0 is the carrier frequency. 

Usually, chirp signal is adopted as transmitted waveform 

( ) 2

rect j tt
p t e

T
πγ =  

 
 (2)

where rect(·) denotes a rectangular window, γ is the chirp rate, and T represents the signal duration. 

Supposing the whole scene consists of a series of point scatterers on a grid, the scattering response can be 

approximated as a sum of the responses from individual point scatterers. As a consequence, the 

corresponding echo signal at an aspect angle θ after demodulation can be described as 

( ) ( ) ( )( ) ( )

( )

02 , , /

,

, 2 , , / j R x y c

x y

t x y p t R x y c e dxdy− ω θ
θ

∈

= − θr Q
S

 
(3)

where S denotes the illuminated scene, Q(x,y) represents the reflectivity coefficient of the point scatterer 

at coordinates (x,y), R(θ,x,y) is the distance between the radar and the point scatterer, and c is the speed 

of light. Note that the SAR image process is usually operated in the discrete domain, which includes two 

aspects. On the one hand, the illuminated scene is discretized into a Na × Nr grid. Let q be a lexicographic 

ordered vector of an unknown sampled reflectivity image Q(x,y) of length N = Na × Nr. On the other hand, 

temporal samplings in both range and azimuth are also discrete. Let rθ(ts) be the s-th sample of rθ(t),  
we have 

( ) ( )( ) ( )02 , /

1

2 , / , 1, 2,..., ,
N

j R i c
s i s

i

t p t R i c e s S− ω θ
θ

=

= − θ =r q      (4)

where R(θ,i) corresponds to the two-way distance between the radar and the i-th point scatterer, and S is 

the sampling number in range dimension. Considering that SAR imaging is normally synthesized via 

multiple aspect angles and the real echoes are contaminated by the additive Gaussian noise, the practical 

SAR echoes can be expressed as 

1 1

2 2 , ,
... ...

L L

or

   
   
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=

r C

r C
q+       r Cq+
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where ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 21 1 1, , , , , , , , ,

L L

T

S S St t t t t t   θ θ θ θ θ θ  r= r r r r r r  and L is the total number of aspect angle. C  

serves as the SAR observation matrix with its element ( ) ( ) ( )1 2, , ,
l l l l

T

St t tθ θ θ θ =  C C C C , in which  
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( )
l stθ =C ( ) ( ) ( ),1 , ,2 , , ,

l l ls s st t t Nθ θ θ  C C C  and ( ) ( )( ) ( )02 , /, 2 , / l

l

j R i c
s s lt i p t R i c e− ω θ

θ = − θC . ε denotes the additive noise. 

The procedure to obtain the unknown reflectivity q from the echo r is referred to as SAR imaging [12]. 

3. CS-SAR Approach 

In this section, a brief review of CS theory is given, and then both an efficient undersampling scheme 

and the mathematical formation of the CS-SAR approach are presented. 

3.1. Review of CS Theory 

Suppose a signal x of size N × 1 is K-sparse in a basis Ψ, then it can be described as 

ϑx =Ψ  (6)

where ϑ  is the associated coefficient vector and the number of nonzero in ϑ  is K with K << N. The 

recently emerged CS theory indicates that such a signal can be exactly recovered with high probability 

from M (M < N) linear measurements, and the related observation procedure can be expressed as 

ϑ ϑy =Φx =ΦΨ =Θ  (7)

where Φ is an M × N measurement matrix and y is the measurement vector of length M. Since M < N, 

solving Equation (7) is highly underdetermined. CS provides a feasible way to solve this problem by 

exploiting the sparsity of the signal. According to [1,2], provided that the number of measurements 

satisfies ( )( )logM O K N K= , CS is capable of recovering the sparse signal x (via its coefficient vector 

ϑ ) from the measurements y by solving the following constrained optimization problem: 

1
min     . . s t

ϑ
ϑ ϑy = Θ  (8)

Where 
1

ϑ  is the l1 norm of the vector ϑ . The minimization problem of Equation (8) is often referred to 

as Basis Pursuit (BP), which can be solved by linear programming. 

3.2. CS-SAR Imaging Approach 

To apply the CS framework into the SAR imaging, the random undersampling scheme is implemented 

in both range and azimuth dimensions firstly. Specifically, a pseudorandom sequence {cl, l = 1, 2, ···, L} 

is randomly generated for undersampling in azimuth. Note that for the case when cl=1, temporal samplers 

are available for SAR imaging, while for cl = 0, the samplers are discarded. For each cl=1, a similar 

pseudorandom sequence {cls, s = 1, 2, ···, S} is produced to reduce the sampler number in range. 

Obviously for any two indices in {cl}, the corresponding range sampling sequence {cls} varies randomly. 

To reduce the sampling number, the numbers of the nonzero elements in {cl} and {cls} are much smaller 

than L and S. By representing the pseudorandom sequences in matrix form, we have 

{ } { } { }{ }1 1 2 2, , ,s s L Lsdiag c diag c c diag c c diag c=           Φ
 (9)

With Φ, some of the samplers for SAR imaging are discarded, which reduces the sampling rate. By 

incorporating the sparsity constraint on the scene q, SAR imaging can be transformed into the following 

minimization problem 
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1
ˆ arg min ,   . . s t

= +
=  =q

y Cq
q q

q
Φ ε
Ψϑ

 (10)

Obviously, SAR imaging quality largely depends on the space Ψ. When Ψ is an identity matrix, the 

point-like features of the unknown scene can be enhanced. When Ψ is a fixed basis, such as DCT or 

wavelet, different features of the scene can be enhanced [9]. Choosing a fixed and known basis is 

appealing due to its easy implementation. However, in most cases, local structure features vary across 

the scene and usually appear irregularly. For instance, different segments of a SAR image have different 

waveforms, and such varying second-order statistics exhibit varied sparsity in spatial domain. In such 

cases, the above fixed bases lack adaptivity to characterize the varied image structures and will suffer 

from limited representation of the signal. 

4. ASR-CS-SAR Approach 

In this section, by exploring the structural similarity among pixels, a weighted AR model is obtained. 

Based on it, a novel compressive SAR imaging approach with adaptive sparse representation is proposed. 

Finally, the computational complexity of the proposed approach is discussed. 

4.1. AR Model and Image Structural Similarity 

Based on the fact that an image is a non-stationary random Markov field of a modest order, the AR 

model [11] has shown to be effective in depicting local image structure. Specifically, the pixel qi can be 

represented as 

i

i i i k i
i k∈

= + ο
ο

q ζ q ω
Ω

 
(11)

where Ωi is a local neighborhood around the pixel qi, ζi stands for the associated AR parameter, and ωi 

is a random perturbation independent of spatial location and the image pixel. The subscript iοk denotes  

the k-th neighbor of pixel qi in the Ωi stored in a raster scan. Generally speaking, using a large Ω is more 

efficient to characterize image local waveform. However, considering that the AR model is based on the 

local stationary assumption, using a large Ω may lead to an over-fitting problem. Thus an empirical  

3 × 3 local neighbor is used here to achieve the optimum balance between efficiency and robustness. 

Normally, the calculation of ζi is implemented in a local window Wi where the statistical stationary 

assumption holds. Therefore, by adjusting ζi to fit the variant local waveform, the local image structure 

can be illustrated by spatial contiguous pixels.  

The AR model performs well in a local stationary window. However, in practice, the waveforms vary 

significantly across the whole SAR image, and the statistical stationary assumption does not always  

hold [13]. Especially when the scale of a local structure feature is smaller than the selected local window 

size, the piecewise stationary assumption is violated. Take Figure 1 for example, where Figure 1b is the 

close-up view of the selected local area in the green window in Figure 1a. Although the statistical 

property keeps stationary within each ellipse region, it varies significantly across various ellipses. To be 

specific, to estimate the pixel qi on the edge, samples within the red region (e.g., pixel qa) can provide 

more reasonable local structure information than those in the yellow (e.g., pixel qb) and blue (e.g.,  
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pixel qc) regions. If pixels in the yellow and blue regions are engaged with the same weights, using the 

AR model in Equation (11) will lead to a degraded description of the local image structure. 

 

Figure 1. (a) SAR image; (b) non-stationary patch; (c) distribution of the SSP. 

Considering that any two pixels share similarity, we introduce the structural similarity probability 

(SSP) as weight into the AR model to further promote its capability of characterizing the local image 

structure. Specifically, to achieve an adaptive representation of the pixel qi in Figure 1, we prefer to 

impose large weight on the pixel that shares a similar local structure (e.g., qa), while small weight or 

nearly zero on the pixel that has large disparity (e.g., pixels qb and qc). Mathematically, the SSP between 

any two pixels qi and qj is quantitatively evaluated by the local structure vector Zi and Zj, where Zi denotes 

a square 8-connected neighborhood centered at pixel qi. To be specific, the SSP between pixels qi and qj 

is modeled as the Gaussian function of the Euclidean distance between their local structure vectors: 

( )2 2

2
expij i j h

 
χ = − −Ζ Ζ  (12)

where h acts as a degree of filtering that controls the shape of the exponential function. To make the 
structural similarity independent of the image intensity field, the normalized ( ) ( )( )i i imax


= + η + ηΖ Ζ Ζ  is 

presented, in which ( )max ⋅  returns the maximum value. For more details, one can refer to [14]. To facilitate 

understanding, the SSP between any pixel and the center pixel qi in the local window Figure 1b is 

calculated based on Equation (12) and the associated result is shown in Figure 1c, where the darker 

intensity grid means significantly lower weight, and vice versa. It is evident that the weights along the 

edge are nonzero while most of the others in the local window are zero or nearly zero, which indicates 

that the pixels along the edge can provide more efficient local structure information compared with other 

pixels. Thus, the profile characterized by the SSP distribution is consistent with the local image structure. 

4.2. Adaptive Sparse Representation Scheme 

To circumvent the risk of data overfitting, the AR model in Equation (11) is normally split into two 

lower order models as 

1 4

1 4

i i m i m i
m

i i m i m i
m

+ +
 

≤ ≤

× ×
 

≤ ≤

= α + ω

= β + ω





q q

q q
 (13)

where i m
+
q  and i m

×
q  refer to m-th neighbors of the pixel qi in the axial and diagonal directions, 

respectively, as shown in Figure 2. Naturally, the associated parameter ζi in Equation (11) reduces to 
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two sets of parameters αi and βi, where { }, 1, 2,3,4i i m mα =α =  and { }, 1, 2,3,4i i m mβ =β =  characterize the 

correlation in the axial and diagonal directions, respectively. 

 

Figure 2. The spatial configuration of the weighted AR model. 

Remembering that similarity among pixels can be used to further promote the capability of describing 

the structural property, we incorporate the SSP distribution into the AR model, then a weighted AR 

model can be obtained. Specifically, for a given local window Wi, the parameters αi and βi corresponding 

to the center pixel qi can be estimated via 
2

1 4

2

1 4

ˆ arg min

ˆ arg min

i
i

i
i

i ij j i m j m
j W m

i ij j i m j m
j W m

+
 

∈ ≤ ≤

×
 

∈ ≤ ≤

 = χ − α 
 

 = χ − β 
 

 

 

α

β

α

β

q q

q q

 (14)

where χij is calculated by Equation (12). When αi and βi are determined, each pixel qi can be formulated as 

,

,

,

0 ,

i i i

i m j i

i j i m j i

if is the m th axial neighbor of

d if is the m th diagonal neighbor of

others





= + ω
α −
= β −



          

          

        

q d q
q q
q q  (15)

where di is a vector of length N × 1 and the matrix form of Equation (15) can be expressed as 

= +q Dq ω  (16)

where  and  accounts for the residual. As di is determined by the AR parameters, 

and only 8 entries are nonzero at most, di is a sparse vector.  

4.3. The Proposed Approach 

By imposing the sparsity constraint on each di, a novel compressive SAR image framework with 

adaptive sparse representation (ASR-CS-SAR for short) can be obtained as 

1
min . .i

i

 ,   s t
= +

 = +
D,q

y Cq
d

q Dq ω
Φ ε

 (17)
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As the structure described by D is intrinsic to the real physical one, the sparse representation derived 

from the modified AR model is more adaptive than that with a fixed basis. Though the problem in 

Equation (17) is convex, such a combinational optimization problem still cannot be easily solved since a 

better estimation of D returns a more accurate representation of the SAR image, which in turn leads to a 
smaller residual ω. Motivated by this, we replace the regularized term 

1i
i

  d  with the sparsity 

constraint on ω, and then a relaxed version of Equation (17) can be obtained as 

( )1,
min . .i

i

,   s t  
= +

 = −
D ω,q

y Cq
ω

ω I D q
Φ ε

 (18)

Since D greatly depends on the prior information of the image, SAR imaging as well as the estimation 

of D should be jointly optimized. Thus, an optimization approach for iterative SAR imaging and 

updating of D is proposed. Specifically, for a given image q, D can be calculated according to  

Equations (14) and (15). When given D, Equation (18) reduces to a conventional SAR imaging problem. 

For convenience of expression, let = −A I D , and the Augmented Lagrange Multiplier (ALM) 

technique is adopted to convert the constrained minimization problem Equation (18) into an 

unconstrained optimization problem 

( ) ( )

( )
, ,

2 2

1 2 2

ˆ ˆ, arg min , ,

, , ( )
2 2

A

T

L

ν τ
L λ

=

= − − + − + −

q ω
q ω q ω A

q ω A ω Aq ω Aq ω y CqΦ
 (19)

where λ is the Lagrangian multiplier, and ν and τ are positive scalar parameters. Since q and ω are unknown, 

the above minimization problem can be solved by alternatively optimizing the following sub-problems, i.e., 

2

1 2

ν
ˆ arg min

2
T = + λ + − 

 ω
ω ω ω Aq ω  (20)

2 2

2 2
ˆ arg min

2 2
T ν τ
λ

 = − + − + − 
 q

q Aq Aq ω y ΦCq  (21)

Clearly, the minimizing of the sub-problems has a close-form formula and thus can be solved 

effectively. For a fixed image q, we take the gradient of Equation (20) with respect to ω, and yield the 

following shrinkage formula 

1
1

1
ˆ max ,0

  κ= κ − β κ 
ω  (22)

where /λ νκ = −Aq , while for a fixed ω, Equation (21) is a quadratic minimization problem and q can 

be given by  

( ) ( )
1

ˆ T TT T Tτ ν τ ν λ
−

   = + × + +   q C C A A C y A ω AΦ Φ Φ  (23)

Due to the large computation of Equation (23), in our implementation, conjugate gradient (CG) algorithm 

is adopted to estimate q. During the iterative process, parameters including λ, νand τ should be updated 

and the detailed updated formulas at l-th iteration can be expressed as [15,16] 
( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )

1 1

1

1

l l l l l

l l

l l

− −

−

−

λ = λ − ν −

τ = ςτ

ν = ςν

Aq ω

 (24)
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where ς is a constant. In general, the reconstruction of the image q is implemented iteratively. The initial 

image is estimated roughly, then the estimated one is used to update ω and D, which are in turn used to 

improve the reconstruction of q. Such an iterative minimization process terminates until the stopping 

criterion is satisfied. Specifically, the overall algorithm of the proposed ASR-CS-SAR approach is 

outlined in Table 1. 

Table 1. The proposed ASR-CS-SAR approach. 

1． Initialization: 

(a) Compute an initial image q(0) by solving Equation (10) with the wavelet basis selected; 
(b) Suppose l = 1, ω(0) = 0, λ(0) = 1.5, δe = 10−6, and let Imax be the maximum iterations; 

2． Updating the parameter matrix D(l) 

(a) Compute the SSR of the image according to Equation (12); 
(b) Update the matrix D(l) according to Equations (14) and (16); 

3． SAR imaging with fixed A(l) = I − D(l) 

(a) Update ω(l) according to Equation (22) with fixed q(l); 
(b) Update q(l) according to Equation (23) with fixed ω(l); 
(c) Update the related parameters according to Equation (24); 

4． If ( ) ( ) ( )
221 1

2 2

l l l
e

− −− < δq q q  or l ≥ Imax, output the image q(l); otherwise let l = l + 1 and jump to 2. 

4.4. Computational Complexity 

The computational complexity of the proposed approach mainly stems from three parts: the initial 

reconstruction, the estimation of the weighted AR parameters, and SAR imaging with the adaptive sparse 

representation. First, a BP algorithm is applied to solve Equation (10) for an initial image, which requires 

O(NlogN) operations. Next, the computational complexity in the second part includes the calculation of 

SSP among pixels and the estimation of α and β. The former is solved by Equation (12), which needs 

O(NU)operations, where U is the order of the AR model, while the latter is obtained by solving a least 

square problem in Equation (14) thatneeds O(NWU2) operations, where W  is the width of the local 

window. Thus total O(NU + NWU2) operations are needed in this part. Finally, SAR imaging with the 

adaptive sparse representation refers to two steps: updating ω according to Equation (22), and updating q 

according to Equation (23). The former requires O(N2)operations, while directly solving Equation (23) 

requires O(N3 + MN2 + MN)operations. In our manuscript, a conjugate gradient (CG) algorithm is 

adopted to compute Equation (23) to reduce the computer complexity. In fact, matrix-vector 

multiplication is the dominating operation in the CG algorithm, which can be executed in parallel to 

speed up the algorithm by taking advantage of the multi-core CPU and GPU structure. In addition, the 

multiplication ATA can be implemented by fast FFT.As [17] mentioned, if the CG solver converges in k 

iterations, then the associated computation complexity can be reduced to O(4Nk). Thus the cost of  

SAR imaging with adaptive sparse representation is O(Nw(4Nk + N2)), where Nw denotes the whole  

iteration number. 
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5. Experiments 

In this section, experiments over various scenarios are carried out to demonstrate the effectiveness  

of the proposed approach. In Section 5.1, a visual comparison is conducted between synthetic SAR data. 

In Section 5.2, quantitative comparisons between our approach and the conventional one using fixed sparse 

spaces are conducted. In Section 5.3, the application of the proposed approach in real SAR is given. 

In our approach, the window size for the estimation of the weighted AR model is empirically set as 

11 × 11. During these experiments, the proposed approach is compared with conventional CS-SAR 

imaging approaches with sparse representation in wavelet [9], DCT [10], and TV [4]. Furthermore, two 

image quality metrics, including the peak signal to noise ratio (PSNR) and structural similarity (SSIM) [18], 

are introduced for image quality evaluation, defined as follows: 

(a) Peak signal-to-noise ratio (PSNR) stands for the ratio between the maximum possible power of a 

signal and the power of corrupting noise that affects the fidelity of its representation: 

( ) ( ) 2

0 0

10
max

1
ˆMSE , ,

MSE
PSNR 10log

N M

i j

i j i j
MN = =

= −  

 
= −  ρ 

 q q
 

(25)

where q  and q̂  denote the original image and the reconstructed image, respectively. MN is the 

total number of pixels inq. ρmax is the maximum energy of the noisyimage. 

(b) Structural Similarity (SSIM) is a metric for measuring the similarity between two images, 

different from PSNR, which is dependent on the average luminance and contrast only. The 

structural information in an image is defined as those attributes representing an object’s structures 

within the scene; this metric has been proven to be inconsistent with human eye perception. 

Mathematically, SSIM can be expressed as 

( )( )
( )( )

ˆ ˆ1 2

2 2 2 2
ˆ ˆ1 2

2μ μ 2σ
SSIM

μ 2σ σ

V V

V V

+ +
=

+ +
q q qq

q q q qμ
 (26)

where μq  and ˆμq  represent the mean of the image q  and q̂ , respectively. 2σq  and 2σq  stand for the 

corresponding variance. ˆσqq  is the covariance between q  and q̂ . V1 and V2 are two variables to 

stabilize the division with weak denominator. The range of values for SSIM lies between 1 and −1. 

Note that a higher SSIM value corresponds to a better restoration, and vice versa. 

5.1. Visual Comparison 

In this experiment, a visual comparison is presented to show the feasibility of the proposed  

ASR-CS-SAR imaging approach. The primary radar parameters are enumerated in Table 2. By applying 

the random undersampling scheme mentioned in Section 2, 33% of Nyquist rate samples in range as well 

as 25% in azimuth are adopted, which implies that only 1/12 full aperture data is used for reconstruction. 

Figure 3a,b depict the full echo data and the associated undersampled return, respectively. To facilitate 

comparison, SAR imaging with full aperture data is displayed in Figure 4. 
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Table 2. Radar Parameters. 

Center Frequency 12 GHz 
Pulse width 30 μs 
Bandwidth 350 MHz 

Coherent accumulation angle 2.3° 
Signal-to-noise-ratio 15 dB 

 
(a)     (b) 

Figure 3. (a) Full SAR echo; (b) Undersampled return. 

 

Figure 4. Image recovered from full data. 

Figure 5a–c present the reconstructed images by the conventional CS-SAR approaches, and Figure 5d 

is the image reconstructed by the proposed ASR-CS-SAR approach. From these figures, we can see that 

most information on the SAR images is preserved. However, for the conventional CS-SAR approaches, 

they still suffer from a series of artifacts. Specifically, the textures of the roads in the red rectangle window 

are seriously merged and it is hard distinguish them from the terraced fields. Similarly, the terrace in the 

pink rectangle window has been blurred. However, those artifacts are suppressed in Figure 5d and a 

sharper and clearer visual result can be obtained by the proposed approach. The superior performance 

of the ASR-CS-SAR is also demonstrated by the values of image quality metrics, i.e., PSNR and SSIM, 

for the maximum gap in PSNR between our approach and the competing methods is up to 7.15 dB. 
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To further test the stability of the proposed algorithm, we change the sampling rates in azimuth or 

range with another fixed, and compare the images reconstructed by our proposed algorithm and other 

algorithms. Figure 6 presents the comparison results. 

Figure 6a shows that all the PSNR curves rise sharply as the sampling rate in azimuth increases. 

However, our proposed approach outperforms others for each sampling rate; furthermore, the advantage 

becomes more and more apparent with the increase of the sampling rate. Similar conclusions can also 

be drawn from the results in Figure 6b. 

 
(a) (b) 

 
(c) (d) 

Figure 5. Reconstruction comparison from undersampled SAR echoes. (a) Imaging by [9]; 

(b) Imaging by [10]; (c) Imagingby [4]; (d) Imaging by ASR-CS-SAR. 

 
(a) (b) 

Figure 6. Comparison of the reconstruction performance. (a)33% sampling rate in range; 

(b) 25% sampling rate in azimuth. 
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5.2. Quantitative Comparison and Universality Analysis 

To demonstrate the universality of the proposed approach, simulations over a variety of SAR images 

under different sampling rates (including a low sampling mode and a high sampling mode) were carried 

out. More specifically, in the low sampling mode, 33% of Nyquist rate samples in range and 25% in 

azimuth were adopted, while in the high sampling mode, the sampling numbers in range and azimuth 

increased to 38% and 30%, respectively. All the other radar parameters were the same as in the first 

experiment. In Figure 7, we list all the SAR images. 

  
(a) (b) (c) (d) 

  

 

(e) (f) (g)  

Figure 7. Test images. (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5;  

(f) Image 6; (g) Image 7. 

Table 3 illustrates the quantitative performance metrics, including PSNR and SSIM, vs. the number 

of samples for different CS SAR imaging approaches. 

It turns out that, for all test images, the proposed approach significantly outperforms other competing 

approaches in PSNR and SSIM. Especially for the images with rich texture and sharp edges (e.g., mountains 

and terraced fields), the average gain of proposed approach over other competing approaches can be up 

to 4 dB in PSNR and 0.02 in SSIM for the low sampling mode. When the sampling number increases, 

the superiority is enlarged for most complex images. The superiority is mainly due to the capability of 

the adaptive sparse representation in exploiting the inherent structure of the image. In conclusion, all 

these quantitative results manifest the fact that the proposed approach is highly competitive and 

applicable to various types of SAR images. 
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Table 3. Quality metrics for reconstructed images. 

Image Method 
PSNR SSIM 

Low-Sampling Mode High-Sampling Mode Low-Sampling Mode High-Sampling Mode 

Image 1 

[9] 29.96 33.72 0.8463 0.9516 

[10] 30.39 33.74 0.8633 0.9517 

[4] 30.43 34.94 0.8643 0.9568 

ASR-CS-SAR 34.07 37.97 0.9491 0.9734 

Image 2 

[9] 29.94 31.48 0.9495 0.9605 

[10] 29.91 31.35 0.9500 0.9612 

[4] 29.92 31.72 0.9494 0.9625 

ASR-CS-SAR 32.50 35.28 0.9701 0.9820 

Image 3 

[9] 32.45 36.69 0.9766 0.9905 

[10] 32.49 36.71 0.9766 0.9905 

[4] 32.53 36.74 0.9769 0.9907 

ASR-CS-SAR 35.02 39.95 0.9845 0.9926 

Image 4 

[9] 28.51 36.67 0.9810 0.9961 

[10] 28.77 36.70 0.9817 0.9961 

[4] 28.96 36.74 0.9821 0.9961 

ASR-CS-SAR 32.77 40.01 0.9922 0.9984 

Image 5 

[9] 26.27 31.48 0.9738 0.9887 

[10] 26.28 31.53 0.9739 0.9984 

[4] 26.30 31.59 0.9743 0.9887 

ASR-CS-SAR 31.34 36.03 0.9906 0.9953 

Image 6 

[9] 26.46 33.06 0.9370 0.9722 

[10] 26.63 33.08 0.9379 0.9723 

[4] 26.86 33.13 0.9395 0.9724 

ASR-CS-SAR 31.86 38.43 0.9634 0.9920 

Image 7 

[9] 28.87 34.08 0.9396 0.9895 

[10] 28.89 34.21 0.9370 0.9899 

[4] 28.93 34.28 0.9379 0.9900 

ASR-CS-SAR 33.89 40.26 0.9436 0.9965 

5.3. Application to Real SAR Data 

In this experiment, the proposed ASR-CS-SAR imaging approach is applied to real SAR data. The 

data were acquired by an airborne SAR, and the associated radar parameters are listed in Table 4. In 

practice, due to the slight deviation of the platform from the nominal trajectory, the inaccuracy of the 

observation model caused by the additional uncertain factor results in inevitable phase error in the SAR 

data. Hence, the conventional reconstruction of SAR images suffers from degradation due to the phase 

error. As shown in Figure 8a, the defocused SAR image has been blurred and is hard to distinguish. To 

achieve a well-focused SAR image, the unknown phase error should be compensated for first. In our 

experiment, we adopt the strategy in [19], where the phase error correction and the compressive SAR 

imaging are iteratively operated. In this strategy, the imaging quality directly influences the estimation 

accuracy of the phase error, which in turn affects the image reconstruction. To be fair, the same autofocus 

scheme is carried out in our proposed approach. In this experiment, SAR echoes are undersampled in 

the azimuth dimension, and only 30% of the original raw data in azimuth is available. For better 

comparison, the perfectly focused image recovered from full echo data is shown in Figure 8b. 
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Table 4. Radar Parameters. 

Center Frequency 9.55 GHz 

Pulse width 15 μs 
Bandwidth 508 MHz 

Pulse Repetition Frequency 1000 Hz 
Δθ 2.5° 

The images reconstructed by the CS-SAR imaging approach with motion compensation [19] and our 

proposed approach are shown in Figure 8c,d, respectively. Compared with the focused image in  

Figure 8b, most of the image contents have been preserved in Figure 8c, while some regions are still 

defocused. Specifically, the road marked in the red rectangle has nearly disappeared. In addition, the 

structure of the target as well as the edge of the lake (in the pink rectangles) is also blurred with the 

surrounding region. In contrast, all these problems are solved by our proposed approach, and a clearer 

and sharper image is obtained in Figure 8d. This is due to the fact that a more precise image can be 

reconstructed by the proposed approach, and thus the unknown phase error can be removed  

more completely. 

 
(a) (b) 

 
(c) (d) 

Figure 8. Comparison of the reconstructed images: (a) The defocus image; (b) RD imaging 

with motion compensation; (c) CS-SAR imaging with motion compensation [18]; and  

(d) ASR-CS-SAR imaging with motion compensation. 

6. Conclusions 

By integrating similarity among pixels into the AR model, we propose a weighted AR model to exploit 

the structural sparsity in a local non-stationary window. A novel compressive SAR imaging approach 

with adaptive sparse representation was developed. Experimental results over synthetic and real SAR 

echo data demonstrated the effectiveness and universality of the proposed approach. 
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