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Abstract: Since the knee joint bears the full weight load of the human body and the 

highest pressure loads while providing flexible movement, it is the body part most 

vulnerable and susceptible to osteoarthritis. In exercise therapy, the early rehabilitation 

stages last for approximately six weeks, during which the patient works with the physical 

therapist several times each week. The patient is afterwards given instructions for 

continuing rehabilitation exercise by him/herself at home. This study develops a 

rehabilitation exercise assessment mechanism using three wearable sensors mounted on the 

chest, thigh and shank of the working leg in order to enable the patients with knee 

osteoarthritis to manage their own rehabilitation progress. In this work, time-domain, 

frequency-domain features and angle information of the motion sensor signals are used to 

classify the exercise type and identify whether their postures are proper or not. Three types 

of rehabilitation exercise commonly prescribed to knee osteoarthritis patients are:  

Short-Arc Exercise, Straight Leg Raise, and Quadriceps Strengthening Mini-squats. After 

ten subjects performed the three kinds of rehabilitation activities, three validation techniques 

including 10-fold cross-validation, within subject cross validation, and leave-one-subject 

cross validation are utilized to confirm the proposed mechanism. The overall recognition 

accuracy for exercise type classification is 97.29% and for exercise posture identification it 

is 88.26%. The experimental results demonstrate the feasibility of the proposed mechanism 
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which can help patients perform rehabilitation movements and progress effectively. 

Moreover, the proposed mechanism is able to detect multiple errors at once, fulfilling the 

requirements for rehabilitation assessment. 

Keywords: knee joint rehabilitation exercise; wearable sensor; rehabilitation  

assessment system 

 

1. Introduction 

Since the knee joint bears the full weight of the human body and the highest pressure loads  

while providing flexible movement, it is the body part most vulnerable and susceptible to osteoarthritis 

(OA) [1]. According to the annual medical census in 2010 published by the Taiwan Department of 

Health, the number of patients with arthropathies and related disorders is about 14% of the total 

number of outpatients and inpatients in Taiwan; and 80% of patients with knee OA are above 50 years 

old. Furthermore, the number of people above the age of 50 makes up 30.6% of the total Taiwanese 

population in 2011, and this ratio will become higher in the future. In the United States, approximately 

9.29% of the US population is diagnosed with symptomatic knee OA by the age of 60. According to the 

2012 census of the U.S. Department of Commerce [2], the number of U.S. residents above the age of 50 

made up 32.08% of the total resident population in 2010. Therefore, the study of issues related to knee 

OA are becoming more important for both the current and the future society. 

Treatments for knee OA include medication, exercise therapy and surgery. Above all, exercise 

therapy is an important interventional treatment for mild to moderate stages of knee OA [3]. Although 

exercise therapy may improve symptoms, it does not reduce the knee adduction moment, a key 

indicator of OA disease progression [4]. Patients with knee OA receive exercise therapy through a 

series of rehabilitation programs that are beneficial to joint mobility and body metabolism. The early 

rehabilitation stages last for approximately six weeks, during which the patient works with the physical 

therapist several times a week. The patient is afterwards given instructions for continuing exercise at 

home [5]. An appropriate rehabilitation exercise can relax joint capsules and ligaments, prevent 

osteoporosis, strengthen muscles around the knee and increase active weight-bearing ability. However, 

improper rehabilitation exercises not only put patients on risk of slower recovery, but also may cause 

more damage by adding stress to the injured parts of the knee. Therefore, developing a rehabilitation 

exercise assessment system that monitors patients’ quality and accuracy of rehabilitation movements at 

home can play an important role in the success of a patient’s recovery process. Recently, a tri-axial 

accelerometer was widely adapted to recognize daily human activities in several well-known research 

projects [5–7]. In the research published by Taylor [5], the authors used a peak detection method to 

divide signals into time segments, and then extracted features of both the frequency and time domain 

from each time segment to detect improper movements through a classification algorithm. During the 

first set of each exercise, the subject performed the exercise as interpreted from the instructions. The 

video was captured for data of offline labeling. The expert was asked to score the labels for exercises by 

occurrence in real world observation and by severity of the error. The improper movement labels were 

defined by both high occurrence and severity. A non-expert labeled the remaining data using guidance 
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from the expert. Their system was applied in the three knee OA rehabilitation exercises, and was able 

to let their users know how to modify their movements. However, their system was unable to detect 

multiple errors at once, and the accuracy was affected by labeling inconsistency. 

In our work, three wearable sensors, tri-axial accelerometers, are mounted on the chest, thigh and 

shank of the working leg. The proposed mechanism uses the angle information and both the time-

domain and frequency-domain features of the sensor signals to identify the type of rehabilitation exercise 

by a decision tree and detects improper exercise movement by hierarchical methods. The rehabilitation 

exercise assessment system for knee OA can help patients self-manage their rehabilitation progress at 

home, and when the improper exercise posture is detected, an error alarm can be provided for the patients 

to verify their movements in real-time. Moreover, during the follow-ups at outpatient clinics or medical 

departments, the physicians can assess the patients’ progress and how effectively the rehabilitation 

activities were carried out through the recording of the system. The rest of this paper is organized as 

follows: Section 2 introduces a literature review of rehabilitation assessment systems. The materials 

and methods are described in Section 3. Section 4 presents the experimental results; Section 5 

concludes our work. 

2. Related Work 

Over the past decade, several well-known research projects have studied physical activity  

recognition [6,7]. The methods for physical activity recognition can be used in body movement 

classification, which can help users manage their exercise progress, and also be used to assess the 

effectiveness of rehabilitation and physical functional performance. 

2.1. Physical Activity Recognition 

Home telecare services are a trend of the future because of the aging population and limited funding 

for public health care. The ability to record and classify humans’ motions are essential when 

attempting to assess their functional ability and general level of activity. Karantonis et al. [8] proposed 

a system that could classify in real-time the types of human movement associated with data acquired 

from a single tri-axial accelerometer unit worn at the hip. The major function of their system was 

discriminating between periods of activity and rest, recognizing the orientation of the posture, 

detecting events such as walking and falls to a reasonable degree, and estimating of metabolic energy 

expenditure. Ermes et al. [9] used Global Positioning System (GPS) and information from tri-axial 

accelerometers mounted on the waist and hip to recognize daily activity. Their study drew a comparison 

between unsupervised settings and supervised settings, focusing on how well the subjects’ daily activities 

could be recognized. Yang et al. [10] used the signal of a tri-axial accelerometer worn on the lower 

back of the subjects to assess whether the subjects were victims of complex regional pain syndrome. 

The proposed classification mechanism extracted the discriminative features and used artificial neural 

network to recognize gait patterns. The proposed system could provide objective assessments of 

patients’ physical functional performance to evaluate the outcome of therapy. 

Miniature body-worn sensors are suitable for collecting data on activity patterns over extended 

periods of time. Preece et al. [7] reviewed the different techniques which have been used for activity 

recognition or fall detection using body-mounted sensor data. There are four steps to approach activity 
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recognition, which include sensor signal acquisition, windowing techniques, feature generation and 

classifying algorithms. Wearable sensors include accelerometers, gyroscopes, magnetometers, etc. 

Accelerometers respond to gravity as well as to their acceleration, and it can be used to estimate the 

inclination of a body segment, body sway, or for measuring activity levels, however accelerometers 

have some limitations such as noisy signals and difficulties in estimating the gravity vector accurately 

during dynamic movements because the movement itself also contributes to the acceleration measurement, 

not just gravity. A gyroscope is sensitive to electronic noise and temperature effects [11], and it suffers 

from increased errors while integrating signals to estimate orientation information. Some researchers 

have focused on sensor fusion to combine and leverage the strengths of different sensors together, e.g., 

accelerometers and gyroscopes [12]. For windowing techniques, there are three different approaches: 

sliding window, event-defined window and activity defined window. The sliding window divides the 

signal into segments of fixed length, and it does not require preprocessing of the sensor signals, which 

is well suited for real-time applications. With event-defined windows, pre-processing is required to 

locate specific events, such as heel strike or toe-off. The size of each window is not fixed. Activity 

defined windows divide time segments depending on determining the times at which the activity 

changes. Feature generation methods contain heuristic, time domain, frequency domain and  

time-frequency features. There are many algorithms for classification techniques, such as hierarchical 

methods, Bayesian classifier, K-nearest neighbor, decision tree, etc. 

Hierarchical methods are similar to binary decision trees. A binary decision is made at each node 

based on the input features. Each node maybe generates a definite result or is a transition to another 

node, where a further decision is made. The decisions made at each node are based on manual 

inspection and analysis of the training data. Fahrenberg et al. [13,14] used a hierarchical approach to 

classify four activities. They extracted time domain features from accelerometers mounted on the 

chest, wrist, shank and thigh [15]. However, they were unable to discriminate between level walking 

and stair walking in the between-subject design. The Bayesian classifier is a statistical approach based 

on the estimated conditional probabilities or likelihoods of the signal features available from each 

class. Given such likelihood, the Bayesian approach can estimate the probability of a new unknown 

pattern having been generated by a specific activity. With the assumption of features independent with 

each other, the likelihood function for each activity can be expressed as the product of n simple 

probability density function, where n is the number of features. Further details can be found in the work 

of Duda et al. [15] and Theodoridis et al. [16–18]. To implement K-nearest neighbor, a multi-dimensional 

feature space will be constructed. Each dimension corresponds to a different feature. Firstly, all 

training data points locate within the feature space, where each point represents a specific activity. A 

testing data point will be classified by the majority of the K-nearest points of identified training data 

which correspond to a given activity. The value of K typically ranges from 1 to a small percentage of 

the training data and is selected using trial and error. Foerster et al. [19] were the first one to use  

K-nearest neighbor for activity recognition. They extracted time domain features from four 

accelerometers mounted on the sternum, wrist, thigh and lower leg. Their system was able to classify 

between nine common activities (sitting, standing, lying supine, sitting and talking, sitting and 

operating a PC keyboard, walking, stairs up, stairs down and cycling) using a within-subject design. In 

their subsequent work [20], the proposed method used the time domain and frequency domain features 

to improve activity classification. It combined a K-nearest neighbor classifier and hierarchical decision 
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structure as classification method to discriminate a wider range of activities. The decision tree method 

is similar to the hierarchical method. In comparison with hierarchical models constructed manually by 

the user, decision trees can automate the process and create a complex set of rules. The decision  

tree algorithm works by examining the discriminatory ability of the features one at a time to create a 

set of rules which finally leads to a complete classification structure. Further details can be found in  

Godfrey et al. [21], Quinlan [22] and Bao and Intille [23]. 

2.2. Rehabilitation and Physical Functional Performance Assessment 

Wearable sensing and feedback can be used for a variety of other clinical applications such as 

identifying movement disorders, assessing surgical outcomes, improving walking stability, and 

reducing joint loading [24]. The rehabilitation process of stroke patients is guided by clinical 

assessments of motor abilities. Best therapy selection for stroke patients is based on accurate 

assessment of motor abilities. The accuracy of observational assessments may vary greatly across 

clinicians. Wearable sensors can be used to assess motor ability more accurately or can be used in 

addition to observational clinical score. Hester et al. [25] proposed the use of a wearable sensor system to 

assess the motor ability of stroke patients. The proposed system used features extracted from each time 

segments for linear regression to predict clinical scores of motor abilities. Through this system, users 

could understand their progress of recovery while they were doing rehabilitation exercises at home. 

Various rehabilitation exercises and protocols are used in a rehabilitation process for improving 

patients’ health status. However, the patients should repeatedly visit clinicians in a rehabilitation center 

during the rehabilitation process. Brutovsky et al. [26] proposed a system which can let users perform 

the rehabilitation program at home, and provided real-time biofeedback during the rehabilitation 

process and informing patient about achieved results and further goals to succeed. Users can download 

appropriate rehabilitation protocols according to their own conditions, thus enabling this system to be 

used in a wide spectrum of scenarios. The system consisted of sensorial unit, visualization and 

communication unit and virtual clinical revision server. Sensor unit consisted of 3D acceleration 

sensor, microprocessor and Bluetooth module. It calculated the tilt angle of rehabilitation movement and 

sent it to visualization unit. The visualization unit, which was a Personal Digital Assistant (PDA), works 

as a guideline of rehabilitation exercises providing biofeedback. Finally, progress report was shown at 

the end of each exercise recapitulating achieved results in comparison to the past performance history, 

which allowed clinicians to monitor patients’ rehabilitation progress through telecommunication  

on PDA. 

Tseng et al. [27] demonstrated a system that used a tri-axial accelerometer and compass to capture 

human motion for home rehabilitation. The system consisted of a wireless sensing platform, a motion 

analysis module, and a game interface, which helped patients to conduct their rehabilitation program. 

The major parameters of motion were the joint angle information, angle between sensor node, and 

gravity direction. The game interface could motivate patients to complete the rehabilitation progress, 

and enabled to check if patients’ performances were acceptable. 
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3. Materials and Methods 

The system architecture is proposed in order to provide a reliable rehabilitation exercise assessment,  

as shown on Figure 1. The system consists of three main components: data acquisition, feature 

extraction, and classifier. The details of each are described in the following sections. 

 

Figure 1. The architecture of the proposed rehabilitation exercise assessment system. 

3.1. Data Acquisition 

Several researchers have used vision-based devices such as the Kinect [28–30] and VICON [31] to 

approach related applications. The advantage of vision-based motion tracking devices is their accurate 

position information [32]. However, those devices must be placed in a fixed environment, limiting the 

range of users’ movement. An alternative choice is a wearable sensor which allows subjects to wear it 

on the body and is not limited by the position and the capabilities of the camera(s). We choose OPAL 

produced by APDM (Portland, OR, US) as a wearable sensor to record the movements of subjects. The 

OPAL sensor includes an accelerometer, gyroscope, and magnetometer. This work collected data using 

the accelerometer and gyroscope since the magnetometer can easily suffer interference from the 

environment, and therefore was excluded from this study. Three OPALs are mounted on the anterior 

surface of the user’s chest, thigh (close to the knee) and shank (close to the ankle) of the working leg, 

with the y-axis of the sensors well-aligned to the long axis of the body segment. The sensor on the 

chest recognizes the direction of the trunk movement, and the sensors on the thigh and shank recognize 

the leg movement parameters such as knee flexion angle and thigh raising angle. Each wearable sensor 

is 48.5 × 36.5 × 13.5 mm, weighs 22 grams, and has a sampling rate of 40 Hz. 

Regarding the segmentation of time windows, the rehabilitation exercises of knee OA in this work 

involve periodic angle variations of the shank, so the system utilizes a peak detection method on shank 

angle variation to define the start and end point of every movement. Figure 2 shows the shank angle 

variations during SAE movement, and the red points represent signal valleys. Then time windows are 

divided based on the signal valley points. Through this method, each window will accurately contain 

each movement repetition, unaffected by the different time it takes by users to complete each 

movement. This will allow users to perform rehabilitation exercises at their own comfortable speed 

instead of a fixed time. 

The hardware architecture is shown in Figure 3. The access point receives signal of accelerometers 

wirelessly from the sensor nodes and transmits those raw data to the workstation through a USB 

connection. Finally, the accelerations are processed on the working station using MATLAB. The 

wireless transmission protocol between the accelerometers and access point is robust synchronized 

streaming mode, which has a typical latency of about 300–400 ms. 
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Figure 2. Peak detection for defining start and end point of movement. 

 

Figure 3. Hardware Setup. 

For this study, data is collected from 10 healthy subjects (five males and five females, height  

163.9 ± 8.9 cm, weight 56 ± 10.11 kg). The sensors placement is executed by the subject. Three types 

of rehabilitation exercise commonly prescribed to OA knee patients are Short-Arc Exercise (SAE), 

Straight Leg Raise (SLR), and Quadriceps Strengthening Mini-squats (QSM), as shown in Figure 4. 

These exercises are majorly in strengthening quadriceps. Strong muscle surrounding the knee can 

absorb impact force of weight bearing, protecting the knee joint. Moreover, it can prevent deterioration 

for the patients who suffered from knee pathological change [31]. SAE is a basic and important 

exercise in clinics, SLR is the most secure exercise for knee joint rehabilitation [31], and QSM is a 

weight training exercise for quadriceps, which can strengthen the muscle effectively. We label several 

improper alternations of those three rehabilitation exercises based on the suggestion of a physical 

therapist, as shown in Table 1. Each subject performs each altered movement 10 times. “Raise angle 

not approx. 45°” for SLR was performed 20 times because it includes both beyond and below 45°. 
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Figure 4. (a) Short-Arc Exercise (SAE); (b) Straight Leg Raise (SLR); (c) Quadriceps 

Strengthening Mini-squats (QSM). 

Table 1. Alternations of three rehabilitation exercises. 

Rehabilitation Exercise Label Times 

Short-Arc Exercise 
(SAE) 

1. Normal 10 
2. Initial knee flexion angle >25° 10 
3. Knee not fully extended 10 
4. Both 2 and 3 10 

Straight Leg Raise 
(SLR) 

1. Normal 10 
2. Knee not fully extended 10 
3. Hip joint external rotation 10 
4. Raise angle not approx. 45° 20 
5. Both 2 and 3 10 

Quadriceps  1. Normal 10 
Strengthening 2. Trunk bent forward 10 
Mini-squats 3. Knee angle not approx. 45° 10 

(QSM) 4. Both 2 and 3 10 

Total  140 

3.2. Feature Extraction 

The system selects accelerometer and gyroscope signals as system input data to record subject 

movement. The input data might extract unsuitable features that may mislead the classifier and end up 

degrading the accuracy. Signal filters are a typically method to eliminate noise and outliers in data 

preprocessing [8]. This work utilizes high pass and low pass filters to preprocess the data. In the 

beginning the accelerations are filtered by a median filter (MF) with n = 3 (third order), which removes 

abnormal noise spikes produced by the accelerometer. Then a low pass filter (LPF) with a cut off 

frequency at 0.5 Hz is applied to filter the results of the median filtered signal. In the low pass filter, 

the gravity force components of the three axes are kept and acceleration components are filtered out, as 

shown in Figure 5. 
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Figure 5. Raw accelerometer signal filtered by MF and LPF. 

In this work, the features we use include joint range of motion, frequency-domain feature set, and 

mean value. There are two approaches for joint range of motion utilized in this work that in the first 

approach only use an accelerometer as sensor. The signals of tri-axial accelerometers are used to 

calculate the joint range of motion including the angle of thigh raise, knee flexion, hip external rotation 

and trunk forward bending to evaluate whether rehabilitation exercises will be properly carried out. 

The gravity force components in the three axes of the accelerometer are converted into a tilt angle. 

These angles can be calculated by Equations (1)–(3): 

ρ = tanିଵ ۇۉ A୶ටA୷ଶ + Aଶ(1) ۊی

φ = tanିଵ ቌ ౯ට౮మାమቍ, and (2)

θ = tanିଵ ۇۉ AටA୶ଶ + A୷ଶ(3) ۊی

where Ax, Ay, and Az represent gravity force components in x, y and z-axial respectively. The angles, ρ, 

φ, and θ, are the tilt angles between x, y, z axis and the ground. Given the example of the QSM related 

angles, through the calculation of the x-axial tilt angle on the chest to get the forward-bending angle of 

the trunk, and z-axial tilt angle on thigh to get squat angle, as shown in Figure 6a. Given another 

example of the SLR-related angles, the calculation of the tilt angle of x-axis to get the raise angle of 

the thigh and shank, tilt angle of y-axis to get the hip external rotation angle, and subtract the angle of 

shank from the angle of thigh to get the knee flexion angle, as shown in Figure 6b. 
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Figure 6. Direction of tri-axial accelerometers. 

Another approach based on Takeda et al. [33] is utilized to eliminate the acceleration components 

and keep gravity components to calculate the inclination angles variation during movement. Gyroscope 

signals are utilized to estimate the rotational acceleration in each movement considering the orientation 

of the segments is essential for the exercise assessment. The calculations for the thigh segment can be 

divided into translational motion and rotational motion. Based on the accelerometer and gyroscope 

signal, the rotational acceleration for the thigh can be expressed as: rሷୌ = wሶ  ൈ rୌ + w ൈ ሺw ൈ rୌሻ (4)

where 
..

H Tr  is the rotational acceleration of the thigh segment, 
.

Tω  is the angular acceleration of thigh 

segment, HTr  is the distance from hip to sensor worn on thigh segment, and Tω  is the angular velocity 

output of sensor worn on thigh segment. 

The gravitational acceleration can be obtained by: g = rሷୌ െ O (5)

where TO  is the output of acceleration sensor mounted on the thigh. 

A tri-axial acceleration sensor is utilized as an inclination sensor, as it can measure the gravitational 

acceleration, and the output of an acceleration sensor Oi can be expressed as: 

ܱ = ܽ െ ݃ (6)

where ܽ is the translational acceleration and ݃ is the gravitational acceleration. Both are measured 

along with the i axis of the acceleration sensor. 

If the acceleration sensor is static the ܽ is 0, which means that the gravitational acceleration is the 

only output. Then, the inclination angles for the three axes of an accelerometer against the gravitational 

acceleration orientation can be expressed as: θ = cosିଵ O୧݃  (7)

where θＴ  is the inclination angle of thigh. 

On the method of feature extraction, Preece et al. [7] compared time-domain, frequency-domain, 

and time-frequency domain features based on the same classifier and experimental environment. In 

order to derive frequency-domain features during exercise, the sensor data must first be transformed 
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into the frequency domain, normally using a fast Fourier transform (FFT). The frequency-domain 

feature set in this work is defined as the magnitude of the first five components of the FFT power 

spectrum, which can get the best performance [7]. Therefore, we adopt the approach as our feature 

extraction method to classify exercise type. 

3.3. Classifier 

In exercise classification stage, we choose decision tree for its high accuracy and minimal 

computational complexity in activity recognition [9]. Then exercise rules would be extracted based on 

the results of exercise classification. Finally, the improper movement is identified by exercise rules we 

defined in Table 1. As shown in Figure 7, it’s the shank angle variation graph during the SLR exercise, 

including “standard movement” and “raising angle not approximately 45 degree”. 

 

Figure 7. Angle information for improper movement detection of shank angle during the 

SLR exercise, from left to right: standard normal movement, below 45 degree, and exceed 

45 degree. 

The calculated angles may contain deviations because sensors are placed on the human body instead 

of a flat platform. In order to calculate the variation of angles more accurately and compensate for the 

deviations caused by noises and initial sensor position angles, we calculate the difference between the 

medians of a fixed proportion of the largest and smallest values, and use this difference as an indicator 

of angle variation. In other words, we obtain the best angle variation by subtraction between the 

median of X% largest value and the median of X% smallest value on each time window. Figure 8 is 

the result that we use some subjects’ angle information to determine the X value to get the best 

accuracy of improper movement detection. 

Using angle information to identify improper rehabilitation movements is more intuitive. It is 

flexible when it comes to modify exercising rules. In order to avoid signal deviation and artificial 

error, some subjects’ angle information is used to define error-tolerance for each exercise, as shown  

in Table 2. 
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Figure 8. Angle information for improper movement detection. 

Table 2. Error tolerance threshold (angle). 

Angle Parameter Threshold (°)

Shank terminal angle (SAE) 7 
Knee joint initial flexion angle (SAE) 7 

Thigh raising angle (SLR) 10 
Trunk bent forward angle (QSM) 15 

Squat angle (QSM) 15 
Knee flexion angle (SLR) 20 

Hip external rotation angle (SLR) 20 

4. Results and Discussion 

Goniometers are widely used in clinical applications. In this study, a goniometer is used to assist 

subjects in achieving the desired posture in the experiment. For example, we perform an experiment to 

illustrate the calculated angle which was accomplished by an experienced orthopedic surgeon who 

measured the angle between the anterior thigh and anterior shank with the goniometer. A subject is asked 

to perform a standard movement of SLR for ten times with the goniometer properly applied. The angle 

variation is obtained by subtraction between the median of the 10% largest value and median of 10% 

smallest value on each time window. The result shows that only one of the movements exceed 45° ± 5°, 

and none of the movements exceeded 45° ± 10° (10° is the threshold value, as shown in Table 2) , as 

shown in Figure 9. 

We use another method based on Takeda et al. [33] to make a comparison with our angle 

calculation. The same data are used to compare the two calculation methods. The results show that 

three of the movements exceed 45° ± 5°, and none of the movements exceeded 45° ± 10°, as shown  

in Figure 10. 
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Figure 9. Angle verification with goniometer (thigh raised at 45 degree). (a) the raising 

angle of the thigh while asked to perform a standard movement of SLR for ten times;  

(b) the angle information is obtained by subtraction between median of 10% largest value 

and median of 10% smallest value on each time window. 

 

Figure 10. Another method proposed by Takeda [33] to calculate inclination angles.  

(a) the raising angle of the thigh while asked to perform a standard movement of SLR for 

ten times; (b) the angle information is obtained by subtraction between the median of the 

10% largest value and median of the 10% smallest value in each time window. 

We performed an experiment to investigate the effect of muscular activity on the calculation of 

thigh raising angle during rehabilitation exercises. We performed seven repetitions of isometric 

quadriceps exercises and calculated the angle variation of the thigh. The results show that all the 

variationds were within 3 degree, as shown in Figure 11. 
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Figure 11. The effect of muscular activity for raising angle of the thigh. 

The wearing position of the sensor is a key factor in angle calculation. The sensors are all set at 

fixed positions in our experimental design, but there must be some deviation in the sensor position. We 

have performed 40 repetitions of SLR with two different positions of the thigh sensor. One is on 

anterior surface of the thigh, the same as in our experimental design, and the other is on the lateral 

surface of the thigh. The differences between the average angles in two different settings were 1.3° for 

raising angle, 1.0° for joint angle, and 7.6° for external rotation angle. The difference of external 

rotation angle is larger than others, so it shows that the position of the sensor really has an impact on 

the angle calculation. 

The generated decision tree is shown in Figure 12a. “Mean_xT” represents the mean value of the 

thigh sensor accelerometry on the x axis; “AngT” represents the highest thigh raising angle of each 

movement; “S4” represent the fourth component of FFT on the shank; “T2” and “T3” are the second and 

third component of FFT of the accelerometer attached on thigh. According to the training results of the 

decision tree, we can perceive that “Mean_xT” is the most discriminating feature since QSM is a 

standing movement; and “AngT” is the second most discriminating feature because the biggest 

difference between SLR and SAE is the thigh-raising angle. The time domain feature, frequency 

domain feature and angle information can be used as discriminating features of the decision tree in the 

exercise classification algorithm. We use hierarchical method to identify the improper rehabilitation 

exercises based on exercise rules. For example, the hierarchical method for QSM is shown in Figure 13. 

Ten subjects participated in our experiment. We used 10-fold cross-validation (CV), within-subject 

CV and leave-one-subject-out CV as methods to confirm the proposed rehabilitation exercise 

assessment system. 10-fold CV partitions data into 10 subsets, nine for training and one for validating, 

and 10 rounds of cross-validation are performed using different partitions. Validation results are 

averaged over all rounds. For within-subject CV, a portion of the samples for a specific subject is used 

for training, while the remaining samples of the same subject is used for validation. This process is then 

repeated, each time using a different portion of the subject samples for validation. The overall accuracy is 

determined by the average of all the cycles for all available subjects. In leave-one-subject-out CV, only one 

subject is used for validation and the remaining ones are used for training. 
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Figure 12. (a) Decision tree; (b) Number of terminal nodes and CV error curve diagram. 

 

Figure 13. Hierarchical method for QSM. 

The exercise type classification accuracy derived from the three CV methods were 99.29% ± 1.06%, 

95.29% ± 8.31%, and 96.86% ± 9.51%, as shown in Tables 3–5. The error would be minimized while 

the tree has six terminal nodes. The accuracy of improper exercise detection achieves 90.14% ± 8.70%, 

88% ± 10.62%, and 88% ± 12.03%. The improper identification accuracy considers the misclassified 

exercise types so that the improper identification accuracy is lower than the exercise type classification 

accuracy. This result will be affected by the accuracy of exercise type classification and the artificial 

errors that occurred while the user couldn’t meet the movement requirements. 

Table 3. 10-fold cross-validation. 

Exercise Type Classification Accuracy Improper Identification Accuracy 

SAE 99.25% ± 1.05% 93.00% ± 8.34% 
SLR 98.83% ± 1.58% 86.17% ± 9.03% 
QSM 99.79% ± 0.04% 93.25% ± 8.70% 
All 99.29% ± 1.16% 90.14% ± 8.70% 
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Table 4. Within-subject cross-validation. 

Exercise Type Classification Accuracy Improper Identification Accuracy 

SAE 97.75% ± 3.22% 82.00% ± 12.19% 
SLR 91.17% ± 12.67% 85.17% ± 9.46% 
QSM 98.25% ± 4.09% 92.00% ± 8.70% 
All 95.72% ± 8.31% 86.39.00% ± 10.62% 

Table 5. Leave-one-subject-out cross-validation. 

Exercise Type Classification Accuracy Improper Identification Accuracy 

SAE 92.75% ± 15.57% 86.25% ± 16.12% 
SLR 97.83% ± 4.31% 86.50% ± 9.24% 
QSM 100% ± 0% 92.00% ± 8.70% 
All 96.86% ± 9.51% 88.25% ± 12.03% 

We also implement a Bayesian classifier and K-nearest neighbor classifier to compare with decision 

tree for exercise type classification. 10-fold CV is used to measure the accuracy of those classifiers. 

The result is shown in Figure 14. The classification results shows that the decision tree has the best 

accuracy compared with other classifiers. The impact might indicate that some differences between these 

classifier. The Bayesian and KNN classifier need a large dataset to train the recognition model. The 

decision tree classified by examining the discriminatory ability of the features one at a time to create a 

set of rules, which make decision tree classifier outperform others. 

 

Figure 14. Comparison among classifiers. 

5. Conclusions 

In order to enable the physician and knee OA patients to manage the rehabilitation progress, we 

have developed a system that can identify the type of exercise movement the user performed and 

detect deviations from the correct exercise movement, which can allows knee OA patients to take the 

full benefit of rehabilitation exercises. This system use three wearable accelerometers as signal source, 
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and extracts the signals’ time domain feature, frequency domain feature and angle information to 

identify the type of exercise movement. In the improper identification stage, we use angle information 

to detect improper rehabilitation movements that can avoid the possible damage caused by 

inappropriate stress on the injured part. The experimental results have demonstrated that the proposed 

method provides high exercise type classification and improper movement detection accuracy. It 

fulfills the requirements of rehabilitation exercise assessment systems. In the setting of home-based 

rehabilitation for knee OA patients, this system can provide the physician the ability to telemonitor the 

accuracy of rehabilitation the patient performed, and also provide the patient the ability to self-evaluate 

whether his/her rehabilitation behavior is correct or not. 

In our future work, we will including not only healthy subjects but also knee OA patients of  

different stages to confirm the proposed mechanism in a clinical situation. Furthermore, we will 

investigate how the wearing positions of the sensors affect the system performance and the issues on 

privacy and its invasion. 
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