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Cue-induced methamphetamine seeking progressively increases after withdrawal but mechanisms underlying this ‘incubation of

methamphetamine craving’ are unknown. Here we studied the role of central amygdala (CeA), ventral medial prefrontal cortex (vmPFC),

and orbitofrontal cortex (OFC), brain regions implicated in incubation of cocaine and heroin craving, in incubation of methamphetamine

craving. We also assessed the role of basolateral amygdala (BLA) and dorsal medial prefrontal cortex (dmPFC). We trained rats to self-

administer methamphetamine (10 days; 9 h/day, 0.1 mg/kg/infusion) and tested them for cue-induced methamphetamine seeking under

extinction conditions during early (2 days) or late (4–5 weeks) withdrawal. We first confirmed that ‘incubation of methamphetamine

craving’ occurs under our experimental conditions. Next, we assessed the effect of reversible inactivation of CeA or BLA by

GABAAþGABAB receptor agonists (muscimolþ baclofen, 0.03þ 0.3 nmol) on cue-induced methamphetamine seeking during early

and late withdrawal. We also assessed the effect of muscimolþ baclofen reversible inactivation of vmPFC, dmPFC, and OFC on

‘incubated’ cue-induced methamphetamine seeking during late withdrawal. Lever presses in the cue-induced methamphetamine

extinction tests were higher during late withdrawal than during early withdrawal (incubation of methamphetamine craving). Muscimolþ
baclofen injections into CeA but not BLA decreased cue-induced methamphetamine seeking during late but not early withdrawal.

Muscimolþ baclofen injections into dmPFC, vmPFC, or OFC during late withdrawal had no effect on incubated cue-induced

methamphetamine seeking. Together with previous studies, results indicate that the CeA has a critical role in incubation of both drug and

non-drug reward craving and demonstrate an unexpected dissociation in mechanisms of incubation of methamphetamine vs cocaine

craving.
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INTRODUCTION

Drug addiction is associated with high rates of relapse
during abstinence (Jaffe, 1990; Wikler, 1973). Exposure to
drug-associated cues and contexts is a common trigger for
drug relapse, even during prolonged abstinence periods
(O’Brien et al, 1992). We and other investigators previously
demonstrated that cue-induced cocaine and heroin seeking
progressively increases after withdrawal from drug self-
administration in rats (Grimm et al, 2001; Neisewander
et al, 2000; Shalev et al, 2001). We termed this phenomenon
as incubation of drug craving (Grimm et al, 2001; Lu et al,
2004b). Subsequently, we showed that incubation of drug
craving also occurs in rats with a history of methamphe-
tamine self-administration (Shepard et al, 2004; Theberge
et al, 2013). During the past decade, a number of studies
have identified neurobiological and pharmacological me-
chanisms of incubation of cocaine craving and, to a lesser

degree, incubation of heroin craving (Loweth et al, 2014;
Marchant et al, 2013; Pickens et al, 2011; Wolf and Ferrario,
2010). In contrast, the mechanisms underlying incubation
of methamphetamine craving have not been explored.

Based on previous findings with heroin and cocaine, in
the present study we assessed the roles of central and
basolateral amygdala (CeA and BLA, respectively), ventral
and dorsal medial prefrontal cortex (vmPFC and dmPFC,
respectively), and orbitofrontal cortex (OFC) in incubation
of methamphetamine craving. We chose CeA because
previous studies showed that inhibition of CeA neuronal
activity decreases incubation of cocaine and sucrose craving
in the self-administration procedure (Lu et al, 2005; Lu et al,
2007; Uejima et al, 2007), as well as incubation of morphine
craving in the conditioned place preference procedure
(Li et al, 2008). We studied the role of BLA because of its
established role in conditioned drug effects and cue-
induced reinstatement of drug seeking (Everitt et al, 1999;
See, 2002). Recent evidence also implicates BLA-to-nucleus
accumbens (NAc) projections in incubation of cocaine
craving (Lee et al, 2013). In addition, we previously
demonstrated that reversible inactivation of vmPFC (com-
prised of infralimbic and ventral part of prelimbic cortices)
and lateral OFC decreases incubation of cocaine and heroin
craving, respectively (Fanous et al, 2012; Koya et al, 2009).
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Furthermore, the dmPFC (comprised of anterior cingulate
and dorsal part of prelimbic cortices) has been established
as a critical brain region for cue-induced reinstatement of
drug seeking (Bossert et al, 2013; Feltenstein and See, 2008).
Recent studies also implicate the projection from this brain
area to NAc in incubation of cocaine craving (Ma et al,
2014).

Here we used the GABAA and GABAB receptor agonists
muscimolþ baclofen (McFarland and Kalivas, 2001) to rever-
sibly inactivate CeA, BLA, vmPFC, dmPFC, or OFC to deter-
mine their causal roles in incubation of methamphetamine
craving. We first determined whether reversible inactivation
of a given brain area decreases the ‘incubated’ cue-induced
drug seeking in the extinction tests during late withdrawal
(4–5 weeks, herein termed 1 month). Then we followed up on
positive findings by determining the effect of reversible
inactivation of the brain area on ‘non-incubated’ cue-induced
drug seeking during early withdrawal (day 2). We found that
reversible inactivation of the CeA (but not the other brain
areas) during late but not early withdrawal decreased cue-
induced methamphetamine seeking, indicating a critical role
of the CeA in incubation of methamphetamine craving.

MATERIALS AND METHODS

Subjects

We used Male Sprague-Dawley rats (Charles River, total
n¼ 199), weighing 300–350 g prior to surgery and 325–375 g
at the start of the drug self-administration procedure; we
maintained the rats under a reverse 12:12-h light/dark cycle
with food and water freely available. We kept the rats two
per cage prior to surgery and then housed them individually
after surgery. We performed the experiments in accordance
with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals (eighth edition), under the
protocols approved by the Animal Care and Use Committee.
We excluded 59 rats due to failure of catheter patency,
health-related issues, failure to acquire stable methamphe-
tamine self-administration, or cannula misplacement. The
number of rats reported herein refers to rats included in the
statistical analyses.

Intravenous Surgery

See Supplementary Online Material.

Intracranial Surgery

See Supplementary Online Material.

Intracranial Injections

See Supplementary Online Material.

Apparatus

See Supplementary Online Material.

Methamphetamine Self-Administration Training

We used a training procedure previously described
by Theberge et al (2013) and Krasnova et al (2014). We

brought the rats to the self-administration room on their
first day of training and housed them chronically in the
self-administration chambers. We trained the rats to
self-administer methamphetamine 9 h per day (three 3-h
sessions, separated by 1 h between sessions) under a fixed-
ratio-1 with a 20-s timeout reinforcement schedule. We
dissolved methamphetamine in saline, and the rats self-
administered methamphetamine at a dose of 0.1 mg/kg/
infusion over 3.5 s (0.10 ml/infusion). We trained the rats
for 10 sessions over a 14-day period (off day every third
day) in order to prevent loss of body weight during the
training phase. (Note: methamphetamine-trained rats lose
about 4–8 g after each day of training and regain the lost
weight during the off day (Krasnova et al, 2014; Theberge
et al, 2013)). During training, active lever presses led to the
delivery of a methamphetamine infusion and a compound
5-s tone–light cue (the tone and light modules (Med
Associates) were located above the active lever). During
the 20-s timeout, we recorded the non-reinforced lever
presses. The daily training sessions started at the onset of
the dark cycle and began with the extension of the active
lever and the illumination of a red house light that remained
on for the duration of the session. At the end of each 3-h
session, the red house light was turned off and the active
lever retracted. The training data from Exps. 1–3 are
described in Figure 1.

Withdrawal Phase

During the withdrawal phase, we housed the rats indivi-
dually in the animal facility and handled them 3–4 times
per week.

Extinction Test

We conducted all extinction tests immediately after the
onset of the dark cycle. For Exps. 2 and 3, we started the
extinction test session 15 min after intracranial injections.
The sessions began with the extension of the active lever
and the illumination of the red house light, which remained
on for the duration of the session. Active lever presses
during testing (the operational measure of cue-induced
drug seeking in incubation of craving studies (Lu et al,
2004b; Pickens et al, 2011)) resulted in contingent
presentations of the tone–light cue, previously paired with
methamphetamine infusions but not the drug.

Food Self-Administration

See Supplementary Online Material.

Exp. 1: Incubation of Methamphetamine Craving After
Withdrawal

The goal of this initial experiment was to determine that
‘incubation of methamphetamine’ is observed under our
experimental conditions. We trained 18 rats to self-admin-
ister methamphetamine as described above. We tested 8 rats
after 2 withdrawal days and 10 rats after 30–35 withdrawal
days (termed herein 1 month) for cue-induced metham-
phetamine seeking under extinction conditions (Extinction
test) in a 2-h session. We counterbalanced the two group of
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rats based on their methamphetamine infusions during self-
administration training.

Exp. 2: Effect of Amygdala Inactivation on Incubation of
Methamphetamine Craving

We performed intravenous surgeries on the eight groups of
rats (total n¼ 71) and implanted them with bilateral guide
cannulas 1 mm above the CeA or BLA. We then trained
them for methamphetamine self-administration in four
independent runs. In the first two runs, we determined the
effect of reversible inactivation of CeA and BLA on
extinction responding after 1 month of withdrawal; in the
last two runs, we assessed the inactivation effect after
2 withdrawal days (Figure 3a). (Note: because of the long-
term nature of ‘incubation of craving’ studies, our research
strategy is to first determine the reversible inactivation
effect during late withdrawal and then follow-up on positive
findings with assessment on withdrawal day 2, in order to
determine whether the effect of reversible inactivation is
selective to the late withdrawal ‘incubated’ response or
reflects a general time-independent effect on cue-induced
drug seeking (Lu et al, 2007).)

On either withdrawal day 2 or after 1 month of withdrawal,
we injected different groups of rats bilaterally with vehicle
or muscimolþ baclofen (0.03 nmolþ 0.3 nmol/0.5ml/side)
into CeA or BLA 15 min before the 3-h extinction tests. The
number of rats per group after exclusion due to misplacements
was: CeA-Day 2-vehicle, n¼ 11; CeA-Day 2-muscimolþ
baclofen, n¼ 9; BLA-Day 2-vehicle, n¼ 10; BLA-Day
2-muscimolþ baclofen, n¼ 7; CeA-1 month-vehicle, n¼ 9;
CeA-1 month-muscimolþ baclofen, n¼ 11; BLA-1 month-
vehicle, n¼ 7; and BLA-1 month-muscimolþ baclofen, n¼ 7.

Finally, to ensure that the effect of CeA inactivation by
muscimolþ baclofen on extinction responding during the
late withdrawal test (see Results section) was not due to
motor deficits, we trained five rats from the vehicle group
for food self-administration (see Supplementary Online
Material) after they completed CeA injections and extinc-
tion tests on withdrawal day 2. We trained them for 7 days
(1 h/day) and then injected them with vehicle or
muscimolþ baclofen (0.03 nmolþ 0.3 nmol/0.5 ml/side) into
CeA, 15 min before the 1-h food self-administration session
on the eighth and ninth day; we counterbalanced the order
of the vehicle and muscimolþ baclofen injections.

Exp. 3: Effect of Prefrontal Cortex Inactivation on
Incubation of Methamphetamine Craving

We performed intravenous surgeries on the six groups of
rats (n¼ 43) and implanted them with bilateral guide
cannulas 1 mm above vmPFC, dmPFC, or OFC. We then
trained them for methamphetamine self-administration
in three independent runs. After 1 month of withdrawal,
we injected the rats bilaterally with vehicle or muscimolþ
baclofen (0.03 nmolþ 0.3 nmol/0.5 ml/side) into vmPFC,
dmPFC, or OFC 15 min before the 3-h extinction tests.
The number of rats per group after exclusion due to
misplacements was: vmPFC-vehicle, n¼ 9; vmPFC-muscimolþ
baclofen, n¼ 7; dmPFC-vehicle, n¼ 7; dmPFC-muscimolþ
baclofen, n¼ 5; OFC-vehicle, n¼ 7; and OFC-muscimolþ
baclofen, n¼ 8.

Statistical Analysis

See Supplementary Online Material.

RESULTS

Exp. 1: Incubation of Methamphetamine Craving

Self-administration training. The rats increased their
number of methamphetamine infusions over days (F9,153¼
12.8, po0.01). Analysis of lever presses demonstrated that
active but not inactive lever increased over days (Lever�
Day interaction, F9,153¼ 3.6, po0.01; Figure 1a).

Extinction tests. Cue-induced methamphetamine seeking
in the extinction tests was higher after 1 month of
withdrawal than after 2 days, demonstrating ‘incubation
of methamphetamine craving’ under our experimental
conditions. The statistical analysis of total active lever
presses showed a significant interaction between With-
drawal period and Lever (F1,15¼ 12.4, po0.01). Analysis of
the time course of active lever presses showed a significant

Figure 1 Methamphetamine self-administration training. Data are
mean±SEM of the methamphetamine infusions (Left column) and lever-
presses (Right column) during the 10 9-h daily self-administration sessions
(3 3-h sessions separated by 1 h) for Exp. 1 (total n¼ 18), Exp. 2 (total
n¼ 71), and Exp. 3 (total n¼ 43). During training, active lever presses
were reinforced on an FR1 20-s timeout reinforcement schedule, and
methamphetamine infusions were paired with a 5-s tone–light cue.
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interaction between Withdrawal period and Session time
(F3,48¼ 3.0, po0.01; Figure 2).

Exp. 2: Effect of Amygdala Inactivation on Incubation of
Methamphetamine Craving

Self-administration training. The rats increased their
number of methamphetamine infusions over days
(F9,630¼ 79.8, po0.01). Analysis of lever presses showed
that active but not inactive lever increased over days
(Lever�Day interaction, F9,630¼ 12.3, po0.01; Figure 1b).

Extinction tests. Muscimolþ baclofen injections into the
CeA but not BLA decreased cue-induced methamphetamine
seeking after 1 month of withdrawal but not after 2 days.
Analysis of active lever presses (inactive lever presses as a
covariate) showed a significant interaction of Withdrawal
period�Drug (F1,35¼ 5.8, po0.05). Analysis of time
courses of active lever presses showed a significant triple
interaction of Withdrawal period�Drug� Session time
(F2,72¼ 10.6, po0.01). In contrast, muscimolþ baclofen
injections into the BLA had no effect on cue-induced
methamphetamine seeking after 1 month of withdrawal or
after 2 days. Analysis of active lever presses (inactive lever
presses as a covariate) showed a significant effect of
Withdrawal period (F1,26¼ 19.3, po0.01) but no other main
effects of interactions (p-values40.1). Analysis of the time
course of active lever presses showed a significant effect of

session time (F2,54¼ 70.4, po0.01) and Withdrawal period
(F1,27¼ 20.9, po0.01) but no other main effects of interac-
tions (p-values40.1). Additionally, muscimolþ baclofen
injections outside the CeA or BLA (misplacements) had
no effect on extinction responding during early (2 days) or
late (1 month) withdrawal (Figure 3). Furthermore,
muscimolþ baclofen injections into either the CeA or BLA
had no effect on inactive lever presses, which were
significantly lower than active lever presses; inactive lever
presses were somewhat higher after 1 month of withdrawal
(range 10–22 lever presses per 3 h in the different groups)
than after 2 days (range 4–20 lever presses). The latter
effect, which is commonly observed in our incubation of
craving studies (Airavaara et al, 2011; Lu et al, 2004a;
Theberge et al, 2013), likely reflects response generalization
after prolonged withdrawal (Shalev et al, 2002).

Finally, to rule out that the effect of CeA inactivation is
due to motor deficits, we trained rats (n¼ 5) to self-
administer palatable or preferred food pellets (Calu et al,
2014) and determined the effect of vehicle or muscimolþ
baclofen CeA injections on ongoing food-reinforced re-
sponding. We found that muscimolþ baclofen injection
into CeA had no effect on food self-administration. The
number of food pellets and active lever presses (mean±
SEM), respectively, during the 1-h test sessions was 127±17
and 379±97 after vehicle injections and 120±18 and
395±150 after muscimolþ baclofen injections.

Exp. 3: Effect of Prefrontal Cortex Inactivation on
Incubation of Methamphetamine Craving

Self-administration training. The rats increased their
number of methamphetamine infusions over days
(F9,378¼ 119.0, po0.01). The analysis of lever presses
showed that active but not inactive lever increased over
days (Lever�Day interaction, F9,378¼ 30.6, po0.01;
Figure 1c).

Extinction tests. Muscimolþ baclofen injections into
vmPFC, dmPFC, or OFC had no effect on ‘incubated’
cue-induced methamphetamine seeking after 1 month of
withdrawal. Analysis of active lever presses (inactive lever
presses as a covariate) showed no significant effects of Drug
(vehicle, muscimolþ baclofen) for vmPFC (F1,13¼ 0.1,
p40.1), dmPFC (F1,9¼ 0.3, p40.1), and OFC (F1,12¼ 0.1,
p40.1). Analysis of time course of active lever presses
showed a significant effect of Session time for the three
brain areas: vmPFC (F2,28¼ 12.2, po0.01), dmPFC
(F2,20¼ 22.0, po0.01), and OFC (F2,26¼ 7.7, po0.01;
Figure 4).

DISCUSSION

We used an established reversible inactivation method to
study the roles of CeA, BLA, vmPFC, dmPFC, and OFC in
incubation of methamphetamine craving. Our first main
finding was that reversible inactivation of CeA but not BLA
decreased ‘incubated’ cue-induced methamphetamine seek-
ing after prolonged withdrawal. These results indicate a
critical role of CeA in incubation of methamphetamine
craving and extend previous findings on the critical role of

Figure 2 Time-dependent increases in cue-induced methamphetamine
seeking after withdrawal (incubation of methamphetamine craving).
(a) Timeline of the experiment. (b and c) Mean±sem total lever presses
and time course of lever presses during the extinction tests after 2
withdrawal days and after 1 month of withdrawal. During testing, lever-
presses led to contingent presentations of the tone–light cue previously
paired with methamphetamine infusions during training but did not result in
an infusion of methamphetamine. Data are mean±SEM of the lever
presses on the previously active lever and on the inactive lever during the
extinction sessions. *Different from day 2, po0.01, n¼ 8–10 per group.
Meth¼methamphetamine.
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Figure 3 Reversible inactivation of CeA but not BLA decreased cue-induced methamphetamine seeking after prolonged but not early withdrawal.
(a) Timeline of the experiment. (b and c) Extinction tests after 2 withdrawal days and after 1 month of withdrawal following bilateral injections of vehicle
or muscimolþ baclofen (0.03þ 0.3 nmol/side): Left: CeA (n¼ 9–11), Middle: BLA (n¼ 7–10), Right: misplaced injections (n¼ 3–8). During testing, lever-
presses led to contingent presentations of the tone–light cue previously paired with methamphetamine infusions during training. Data are mean±SEM of the
responses on the previously active lever during the extinction tests. *Different from vehicle, po0.05. (d) Approximate placement (mm from Bregma,
(Paxinos and Watson, 2008)) of injection tips (vehicle: open circles; muscimolþ baclofen: closed circles) and representative cannula placements.
Meth¼methamphetamine.
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this brain area in incubation of drug and non-drug rewards
(Li et al, 2008; Lu et al, 2005; Lu et al, 2007; Uejima et al,
2007). Our second major finding was that reversible
inactivation of vmPFC, previously implicated in incubation
of cocaine craving (Koya et al, 2009), had no effect on
incubation of methamphetamine craving. These results
demonstrate an unexpected dissociation in mechanisms of
incubation of methamphetamine vs cocaine craving.

Methodological Considerations

Several methodological issues should be considered in
data interpretation. One issue is that the effect of CeA
muscimolþ baclofen injections is due to non-specific
performance deficits. This interpretation is unlikely, be-
cause these injections had no effect on lever-presses during
early withdrawal or high rate operant responding for food.
Another issue is the anatomical specificity of the CeA
injections. An interpretation issue in studies using intra-
cranial injections is that behavioral changes might be due to
drug diffusion from the injected site into the adjacent sites
(Wise and Hoffman, 1992). However, it is unlikely that drug
diffusion can account for our data, because muscimolþ
baclofen injections into BLA or other areas outside the
CeA (cannula misplacements) had no effect on ‘incubated’
methamphetamine craving.

In addition, negative findings in current reversible
inactivation studies of BLA and cortical areas should be
interpreted with caution. This is because studies investigat-
ing the role of other areas (eg, NAc) in drug seeking and
motivated behaviors have demonstrated dissociable effects
of reversible inactivation manipulations vs dopamine or
glutamate receptor antagonists (Bossert et al, 2005; Schmidt
et al, 2005; Yun et al, 2004).

Recently, Dong and colleagues showed that silent-
synapse-based manipulations of the BLA or dmPFC
(prelimbic cortex) projections to accumbens shell or core,
respectively, decreased incubated cue-induced cocaine
seeking during late withdrawal (Lee et al, 2013; Ma et al,
2014). In contrast, reversible inactivation of BLA or dmPFC
with muscimolþ baclofen had no effect on incubation of
methamphetamine (present study) or cocaine (Koya et al,
2009) craving. However, direct comparison between our
results and the results by Dong and colleagues (Lee et al,
2013; Ma et al, 2014) should be made with caution because
of several notable differences in experimental procedures.
We used extended daily drug access (6–9 h/day) and adult-
onset drug self-administration, while Dong and colleagues
used limited drug access (2 h/day) and juvenile-onset self-
administration. It is well established that extended drug
access causes different physiological and behavioral changes
than limited drug access (Ahmed and Kenny, 2011; Koob
and Le Moal, 2001). Additionally, there is evidence from

incubation of reward-craving studies that adult-onset self-
administration is associated with different physiological and
behavioral changes than juvenile- and adolescent-onset self-
administration (Counotte et al, 2014; Doherty et al, 2013;
Li and Frantz, 2009).

The CeA and Incubation of Reward Craving

An unexpected finding in our study was that reversible
inactivation of the CeA but not the other brain areas
decreased the expression of methamphetamine craving
during late withdrawal. This selective effect was unexpected,
because previous studies have demonstrated that reversible
inactivation (lidocaine or muscimolþ baclofen) of CeA,
BLA, vmPFC, and dmPFC decrease cue-induced reinstate-
ment of methamphetamine seeking after extinction
(Hiranita et al, 2006; Rocha and Kalivas, 2010). Addition-
ally, CeA, BLA, vmPFC, dmPFC, and OFC have critical
roles in cue-induced reinstatement of cocaine seeking after
extinction (Alleweireldt et al, 2006; Fuchs et al, 2004;
Kruzich and See, 2001; McLaughlin and See, 2003; Meil and
See, 1997; Pockros et al, 2011). What might account for the
general role of multiple cortical and amygdala nuclei in cue-
induced reinstatement of methamphetamine seeking after
extinction vs the selective role of CeA in incubation of
methamphetamine craving?

One issue is that, in the above studies on cue-induced
reinstatement after extinction, the rats were trained for
1–3 h/day (limited access), while we trained our rats
for 9 h/day (extended access), resulting in escalation of
drug intake (Figure 1). As mentioned above, these different
drug-access procedures cause different behavioral and
brain changes. Another issue is that in the above
extinction–reinstatement studies, cue-induced drug seeking
was assessed after B5–10 withdrawal days, while the cue-
induced drug seeking test in our study was performed after
1 month of withdrawal. It is well established that certain
drug-induced neuroadaptations, which are critical for
incubation of cocaine craving and cue-induced drug
seeking, only emerge after prolonged withdrawal (Loweth
et al, 2014; Shaham and Hope, 2005; Van den Oever et al,
2010; Wolf and Ferrario, 2010). A third issue is that
mechanisms of relapse to drug seeking after forced
abstinence vs forced abstinence plus extinction training
can be mediated by different substrates (Fuchs et al, 2006;
Marchant et al, 2013), possibly due to extinction-induced
reversal of drug-induced neuroadaptations (Knackstedt
et al, 2010; Sutton et al, 2003).

The present and previous results on the critical role of
CeA but not BLA in incubation of drug craving (Pickens
et al, 2011) may have implications to the understanding of
psychological mechanisms of incubation of reward craving.
In this regard, one phenomenon that has been consistently

Figure 4 Reversible inactivation of vmPFC, dmPFC, or OFC had no effect on ‘incubated’ cue-induced methamphetamine seeking after prolonged
withdrawal. (a) Timeline of the experiment. (b and c) Extinction test after 1 month of withdrawal following bilateral injections of vehicle or muscimolþ
baclofen (0.03þ 0.3 nmol/side): Left: vmPFC (n¼ 7–9), Middle: dmPFC (n¼ 5–7), Right: OFC (n¼ 7–8). During testing, lever-presses led to contingent
presentations of the tone–light cue previously paired with methamphetamine infusions during training. Data are mean±SEM of the responses on the
previously active lever and on the inactive lever during the extinction tests. (d) Approximate placement (mm from Bregma, (Paxinos and Watson, 2008)) of
injection tips (vehicle: open circles; muscimolþ baclofen: closed circles) and representative cannula placements.
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shown to be sensitive to CeA but not BLA manipulations
is Pavlovian-to-Instrumental Transfer (PIT) (Balleine and
Killcross, 2006; Hall et al, 2001; Holland and Gallagher,
2003; Mahler and Berridge, 2012), and in particular, the
‘general’ form of PIT (Corbit and Balleine, 2005), which is
thought to represent the general motivational or affective
properties of the reward (Corbit and Balleine, 2005).
PIT refers to the ability of a Pavlovian conditioned cue,
previously paired with non-contingent delivery of a reward,
to increase non-reinforced operant responding for the
reward after operant training (Estes, 1948; Lovibond, 1983).
The magnitude of responding to Pavlovian cues in PIT
studies is thought to reflect the motivational potency of
reward cues (Mahler and Berridge, 2012; Wyvell and
Berridge, 2001). The PIT training procedure (non-contin-
gent pairing of Pavlovian cues with the reward) and the
training procedure in incubation studies (contingent
pairing of the tone–light or light with the reward) are
different. However, in both cases Pavlovian cues can
strongly influence subsequent non-reinforced operant
responding during testing (Balleine and Killcross, 2006;
Shalev et al, 2002). Thus, based on the results from PIT
studies described above, we speculate that incubation of
drug craving is due to CeA-mediated time-dependent
increases in the motivational potency of Pavlovian drug-
associated cues after withdrawal.

Implications for Mechanisms of Incubation of Drug
Craving for Different Abused Drugs

We found that reversible inactivation of vmPFC, previously
shown to decrease incubated cocaine seeking (Koya et al,
2009), had no effect on incubated methamphetamine
seeking. This finding is surprising based on the commonly
held notion, derived from numerous studies, that psychos-
timulant-induced dopamine release in the mesocorticolim-
bic dopamine system mediates psychostimulant reward
(Pierce and Kumaresan, 2006; Wise, 2004) and relapse
(Schmidt et al, 2005; Self, 2004). However, our results from
the incubation studies are in agreement with previous
findings demonstrating that different mPFC mechanisms
contribute to methamphetamine vs cocaine seeking, as
assessed in the operant reinstatement procedure (Bossert
et al, 2013). Specifically, reversible inactivation of the
vmPFC induces reinstatement of cocaine but not metham-
phetamine seeking after extinction (Peters et al, 2008; Rocha
and Kalivas, 2010). Additionally, reversible inactivation of
the vmPFC decreases cue-induced methamphetamine but
not cocaine seeking (McLaughlin and See, 2003; Rocha
and Kalivas, 2010). We speculate that differences between
mechanisms of cocaine vs methamphetamine seeking are
due to the different long-term effects of these drugs on
glutamate transmission in corticostriatal circuits, which
have a critical role in drug- and cue-induced reinstatement
after extinction (Kalivas et al, 2009; Thomas et al, 2008) and
incubation of drug craving (Loweth et al, 2014; Pickens
et al, 2011; Wolf and Ferrario, 2010). For example, repeated
exposure to cocaine but not amphetamine causes long-term
alterations in NAc AMPA receptor surface expression
(Boudreau et al, 2007; Boudreau and Wolf, 2005; Nelson
et al, 2009). Additionally, lesions of mPFC, a main gluta-
matergic projection to NAc (Voorn et al, 2004), decreases

cocaine but not amphetamine locomotor sensitization
(Tzschentke and Schmidt, 2000).

We found that reversible inactivation of the lateral OFC,
previously shown to decrease ‘incubated’ heroin seeking
after 14 withdrawal days (Fanous et al, 2012), had no effect
on incubated methamphetamine seeking. These data, and
previous findings (Pickens et al, 2011), suggest that
mechanisms of incubation of opiate and psychostimulant
craving are not identical. In this regard, we previously
found that GDNF (glial cell line-derived neurotrophic
factor) activity in ventral tegmental area is critical for
incubation of cocaine but not heroin craving (Airavaara
et al, 2011; Lu et al, 2009). In contrast, chronic delivery of
the Toll-like receptor 4 antagonist (þ )–naltrexone de-
creases incubation of heroin but not methamphetamine
craving (Theberge et al, 2013). Our current and previous
results are in agreement with the notion that different brain
mechanisms mediate the motivational effects of opiates and
psychostimulants and cues associated with these drug classe
(Badiani, 2013; Badiani et al, 2011; Caprioli et al, 2009;
Ettenberg, 2004, 2009).

Taken together, the available data suggest that dissociable
neural substrates mediate incubation of drug craving for
methamphetamine, heroin, and cocaine. However, this
conclusion should be made with caution, because it is
based on comparison across studies, which were performed
at different times, with different cohorts of rats, and under
different experimental conditions (eg, 9-h/day training
sessions in the present study vs 6-h/day in our previous
heroin and cocaine studies; Fanous et al, 2012; Koya et al,
2009).

CONCLUSIONS

Our anatomical mapping study has identified the CeA as a
critical brain substrate for incubation of methamphetamine
craving which together with previous results indicate that
CeA neuronal activity is a common substrate for incubation
of drug and non-drug reward craving. In contrast, our
negative results for inactivation of different prefrontal
cortex areas suggest that their role in incubation of craving
after withdrawal is drug specific.
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