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Abstract

One of the major challenges in protein tertiary structure prediction is structure quality assessment.
In many cases, protein structure prediction tools generate good structural models, but fail to select
the best models from a huge number of candidates as the final output. In this study, we developed
a sampling-based machine-learning method to rank protein structural models by integrating
multiple scores and features. First, features such as predicted secondary structure, solvent
accessibility and residue-residue contact information are integrated by two Radial Basis Function
(RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring
functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are
synthesized by a sampling method. At last, another integrated RBF model ranks the structural
models according to the features of sampling distribution. We tested the proposed method by
using two different datasets, including the CASP server prediction models of all CASP8 targets
and a set of models generated by our in-house software MUFOLD. The test result shows that our
method outperforms any individual scoring function on both best model selection, and overall
correlation between the predicted ranking and the actual ranking of structural quality.

INTRODUCTION

Protein tertiary structure is essential for understanding protein function [1]. The
experimental approaches for determining protein structures, such as X-ray crystallography,
nuclear magnetic resonance spectroscopy, are typically expensive and time-consuming,
which cannot be used to solve most of the proteins characterized in high-throughput genome
sequencing [2]. Compared to experimental approaches, computational methods are much
cheaper and faster. As significant progress has been made over the past two decades [1, 3—
6], computational methods are becoming more and more important for studying protein
structures in recent years [7]. For protein structure prediction, most methods generate a large
number of candidate models and only select a handful of structures, e.g., top one or top five
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models as final predictions. In many cases, good models were generated but the tools failed
to select best models from the candidate model pool. This becomes a bottleneck in protein
structure prediction, and hence ranking the predicted structural models is a very important
research problem in structural bioinformatics [8].

Currently, approaches for ranking structural models can be basically classified into four
categories: (1) physical-based energies, (2) knowledge-based scoring functions, (3)
consensus approaches, and (4) machine learning-based scores. A physical-based energy
calculates energy of a protein structural model, together with its interaction with the solvent
according to some physical laws [9-10]. Physical-based energy is often time-consuming to
compute and very sensitive to small atomic displacement. Hence, it is usually not directly
applied in ranking structural models. A knowledge-based scoring function is extracted from
the statistical distribution of atoms or residues, either their environments or interactions, in
known native structures [11]. Many of knowledge-based scoring functions are useful in
general [12-16]. However, knowledge-based scoring functions only reflect some averages
of the statistical properties, which also have associated noises. As a result, the discerning
power of knowledge-based scoring functions may be limited and its performance may vary
substantially among different types of structural models. The idea of consensus approaches
is that near-native structures have low free energy and thus tend to be most populated with
similar conformations. This is often implemented by using representatives from the largest
clusters in a model pool as the top candidates. Such an approach has been extended to CASP
predictions [17-19], For example, it is reported that the consensus approaches select
structures with the highest similarity scores to all the others (or a subset of references) in the
pool as the best models [18-19]. Consensus methods perform very well when most of the
models in the pool are close to the native structure or at least not too far away from the
native structure. However, when the model pool is dominated by poor models, it may
perform worse than other knowledge-based approaches. Machine-learning methods assess
model quality according to some trained “machines” [20-22], typically support vector
machine or artificial neural networks using a set of structural models and their native
structures. For example, a support vector regression model was proposed to take some
abstracted structural features, including secondary structure and contact map features as
input [22].

As demonstrated in CASP, consensus approaches typically work better than any individual
knowledge-based scoring function in ranking structural models [23]. A reason behind the
success of the consensus-based approach is that each individual tool captures some instead
of all aspects of the native protein structure, and the correct prediction tends to be over-
represented in a consensus model [24]. Machine learning-based scores using consensus-
based features and features from individual structures extracted from a CASP training data
set can further improve the performance [20]. The strength of machine-learning approach is
its ability to “learn” the intrinsic rules from the differences between structural models and
their native structures by combining various features that depict the models from different
facets. The features might include structural features, features reflecting physical energy
terms, knowledge-based scoring functions, as well as some comparisons between the
features of a structural model and the predicted features from its amino acid sequence.
However, consensus methods and machine learning methods using consensus information
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work very well in CASP only because there were so many tools to generate a large number
of good and diverse models. Unfortunately, one typically cannot run many tools to obtain a
suitable model pool in routing predictions for practical purposes. At the protein alignment
level, some effort has been made to combine various energy terms using a consensus
approach. A recent work [25] conducted threading for protein structure prediction by
sampling weights of different potentials and applied an artificial neural network for target-
specific weighting factor optimization. However, this method aimed to predict sequence-
structure alignment in threading and could not be applied to quality assessment directly. By
learning the spirit of consensus approaches and machine learning methods, we can apply a
sampling scheme in a machine-learning frame to mimic their strengths without using many
prediction tools. This is the rationale of this study and we believe the work will bring
substantial benefit to individual structure prediction tool.

More specially, our sampling-based machine-learning method to rank structural models
combines different existing knowledge-based scoring functions by a sampling method, and
then uses radial basis function (RBF) neural networks to learn knowledge from the sampling
distribution. In this way, the advantages of knowledge-based scoring functions, consensus
approaches and machine learning-based scores can be combined. Our approach has two
major contributions: (1) we integrate different features and scores systematically to obtain
more discerning power for model quality assessment (QA); (2) we apply a sampling scheme
and use sampling distribution features as input for more robust model QA.

In our method, five popular protein structural QA scores, as well as two of our machine-
learning scores are adopted. The five existing scores are Opus-CA [13], Opus-PSP [14],
DFIRE [15], RAPDF [16], and Cheng Score [22]. Taking multiple abstracted features of
structural models as inputs, including secondary structures, solvent accessibilities and
contact information, we construct an RBF model to predict model’s GDT_TS score.
Although there are many metrics to measure the similarity of a model to its native structure,
among of them the global distance test total score (GDT_TS) [26] is the most popular one,
which has been typically applied in CASP. In this paper, we use GDT_TS also as a standard
for structural QA. We have trained two RBF models to obtain two machine-learning scores.
Furthermore, the two machine-learning scores and five existing scores are synthesized by a
novel sampling process, which mimics consensus approaches. At last, we constructed an
“integrated RBF model” as the “final machine”, which takes some sampling distribution
features as inputs. Hence, we obtained a more robust score for model ranking from the
integrated RBF model than that from each of individual scoring functions.

We have applied our method to two different datasets: one set is the CASP server prediction
models of CASP8 targets, downloaded from http://www.predictioncenter.org/casp8/
index.cgi, and the other set includes the models generated by our in-house software
MUFOLD [27]. The test results show that our method performs significantly better than
each individual approach on both selection of top models and Spearman Correlation
between the predicted GDT_TS scores and the actual GDT_TS scores of the models to their
native structures.
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METHODS

Framework of the Approach

The overview of our method is presented in Fig. (1), which includes three main parts: (1)
generating features and individual scores, (2) sampling process, and (3) integrating the RBF
model. In part 1, we calculate five existing QA scores and two RBF scores for each model.
In part 2, we apply a sampling process to simulate consensus methods. For this purpose, all
the five existing scores and two RBF scores are normalized into z-scores [28]. Then a large
number of weight sets are sampled to combine the seven z-scores into a set of new scores. In
part 3, we study the distribution of the new scores, and retrieve several distribution features
to build an integrated RBF model. Finally, we apply the score calculated by the integrated
RBF to estimate the quality of each model.

Five QA Scores

We have done extensive survey and tests on existing QA scores. We finally selected five
scoring functions, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score as features
in this study. These scores are user-friendly and have better performance than other
candidate scores that we evaluated on our testing datasets.

Opus-CA [13] is a knowledge-based potential function, which considers various molecular
interactions, such as distance-dependent pair-wise energy with orientation preference,
hydrogen bonding energy, short-range energy, packing energy, tri-peptide packing energy,
three-body energy, and solvation energy. Opus-PSP [14] is a new version of Opus score,
which also considers side-chain packing. DFIRE [15] includes a distance-scaled, finite ideal-
gas reference (DFIRE) state to describe a residue specific, all-atom potential of mean force
from a native protein structure database. RAPDF [16] uses three discriminatory functions to
compute the probability of a structural model being native-like according to the set of pair-
wise atom-atom distances. Cheng Score [22] applies a support vector regression method to
assess the quality of a structural model by comparing the secondary structure, relative
solvent accessibility, contact map, and beta-sheet structure of the model with the
corresponding properties predicted from its primary sequence.

Abstracted Features for RBF

To evaluate the predicted protein structure models, two types of input features are generated
for the learning “machines”. The first type of features is secondary structure based, which
are abstracted from the comparison between the secondary structures (SS) / solvent
accessibilities (SA) calculated from 3D coordinates of a model and those predicted from
protein amino acid sequence. Here, the SS and SA of the model are calculated by DSSP
[29], the predicted SS for the target sequence comes from PSIPRED [30], and the predicted
SA for the target comes from SPINE [31]. Suppose the length of the target protein sequence
is N, and the sequence is

seq={res;},i=1,2,...,N, (1)

Curr Protein Pept Sci. Author manuscript; available in PMC 2015 March 20.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shietal.

Page 5

where res; is the i-th residue of the sequence. Denote the calculated SS and SA of a model
by DSSP as

SS_ Model={55D;},i=1,2,...,N, (2)

SA_ Model={SAD;},i=1,2,...,N, (3)

where SSD; is the secondary structure of the i-th residue of the model and SSD;c{q, S, c}=
{ss1, s, s53}, which represents a-helix, #-sheet and coil, respectively, SAD; €[0, 1] is the

solvent accessibility of the i-th residue of the model. Denote the predicted SS and SA from
the target sequence by PSIPred and SPINE as

SS_ Target={{S5T;;}},i=1,2,...,N;j=1,2,3, ()

SA_ Target={SAT;},i=1,2,...,N, (5)

where SSTj; is the predicted probability of the secondary structure of the i-th residue being
taken as s and SAT; €[0, 1] is the predicted solvent accessibility of the i-th residue. By
comparing the above two secondary structures, we obtain three features as follows:

1 .
SS_ C’omp]:n—j Z SSTi;  j=1,2,3, ®)
SSD;=ss;

where nj is the number of residues that satisfy SSDj =sg (i=1, 2, ..., N).

To compare the above two solvent accessibilities, the 20 amino acids are divided into 3
categories with respect to their water solubility: (1) non-polar amino acids; (2) polar, neural
amino acids; and (3) polar, charged amino acids. The non-polar amino acid set is denoted as
Ri={A, V,L, I, M, F, G, W, P}, the polar, neural amino acid setas R, = {S, T, C, N, Q,
Y}, and the polar, charged amino acid set as Rz = {K, R, H, D, E}, respectively. Then, three
features are abstracted based on solvent accessibility:

1
SA_ Comp=— 3" (SAT,—SAD,)* k=1,2,3, @
k

aapERy
where my is the number of amino acids that satisfy aa, € R¢and aay, is the p-th type of
amino acid (p=1, 2, ..., 20).

The second type of features is statistic based. We count the contact preferences of each type
of amino acid within a given threshold distance. In a protein tertiary structure, we denote
Cpq(dis) as the contact number between the p-th type of amino acid aa, and the g-th type of
amino acid aaq (p, =1, 2, ..., 20) within the distance dis. For each distance threshold dis,
we can get a 20-dimensional vector representing the “contact ability” of each type of amino
acid (see Eq. 8) and a 210-dimensional vector that shows how likely two types of amino
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acids might interact with each other (see Eq. 9). The formula to calculate these two vectors
are depicted as follows:

1 20
AA_ Num,,(dis)= di =1,2,---, 20,
umy (dis) { ContactNmu  (dis) ;CPQ( ZS)} P ®)

1
ContactNmu

AA_ Pairpq(diS)Z{ (dis) Cpq(diS)} p,g=1,2,---,20;9 >p, (9

where ContactNum(dis) is the total number of contacts in the structure within distance
threshold dis. We select 1400 native protein structures in PDB with homology less than 30%
to obtain the averages of the above two vectors. We then calculate the Euclidian Distance
and cosine value between each vector obtained in a predicted structural model and the same
vector obtained from the native structure pool. We take two distance thresholds, namely 6A
and 12A. Therefore, for each vector we get four features as the inputs of RBF.

RBF NNs

RBF is a variant of artificial neural networks and it has excellent nonlinear approximation
properties [32]. A typically RBF network has three layers: input layer, hidden layer and
output layer Fig. (2). An input vector X is used as input to RBF and the output of the
network is a linear combination of the outputs from radial basis functions. Thus, the output y
is computed as follows:
Nj,
y:Zwi -radial(|| X —Cil), (10)

i=1

where Ny, is the node number of hidden layer, C; is the center of the i-th hidden node, and w;
is the weight linking the i-th hidden node to the output node, respectively. A typical radial
function is a Gaussian function:

7‘2
G(r)=e 2.2, (11)

where ois the width of Gaussian function. By integrating Eq. (10) and Eq. (11), we can get

_Ix-cy?

Np,
y=Y wi-eT W (1)
i=1

There are three types of parameters to be determined in RBF networks, the centers of hidden
nodes, the widths of Gaussian functions, and the weights linking the hidden layer and output
layer. In this study, all the parameters were trained by the steepest descent method.

We selected two different training data sets to train two RBF models. The first training data
set is composed of randomly selected models of 32 CASP8 targets produced by MUFOLD.
After discarding those models with quality lower than average in the first data set, we

Curr Protein Pept Sci. Author manuscript; available in PMC 2015 March 20.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shietal.

Page 7

obtained the second dataset. The objective function of the training is the GDT_TS score of a
model. In our study, the number of input nodes is 14 corresponding to the number of
abstracted features and the number of hidden nodes is 35. The training is terminated after
reaching 3000 cycles. The two RBF scores are integrated in the sampling process (described
in the following section), together with the above five existing scoring functions.

Sampling Process for Integral RBF Model

After we get the above described five existing QA scores and two RBF scores, a sampling
process is performed to integrate these seven scores. Our main idea is to generate a large
number of “new scores”, which inherit the properties of selected individual QA scores, and
hence, the distribution of the new scores will give us more discerning power with more
robustness. For equal utilization of the seven scoring functions, each score is normalized by
z-score [28] for all the models of a same protein target, which is defined by

X-X

7=
dev(X)’ (13)

where

Here, X is the score vector and x; represents the score of the i-th structural model in the pool.

A large number of weight sets are generated randomly to combine the above seven z-scores.
Denote the k-th weight set as weight® = {OK}, k=1, 2,...,K,i=1,2, ..., 7, QK € [0, 1] with a
uniform random distribution, K is number of samples, taken as 1000 in our study, and i is an
arbitrary order of individual scoring functions. As a result, a new sampling score is obtained
according to the k-th weight set:

7
S_ Samp*=>"QF-Z; k=1,2,--- K. (16)
=1

Then, we get K ranks for the each model according to K sampling scores.

After retrieving the distribution information of the sampling ranks, we found that the
distribution features were well defined and robust. For example, we show the distributions
of the sampling ranks of two structural models in Fig. (3), one is for CASP8 target 0388
with 174 residues in Fig. (3a) and the other is for CASP 8 target 0428 with 267 residues in
Fig. (3b). From the data in Fig. (3), we can observe that both of them have relatively well-
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defined peaks but with different sharpness. For example, the peak in Fig. (3a) is very sharp
and the center is around 18. In fact, the actual rank of this model in terms of its closeness to
the native structure is 25 in a pool of 3000 candidate models and its GDT_TS against the
native structure is 0.864. The number of 18 is very close to the actual rank of 25. While in
Fig. (3b), the peak is wider and the center is around 335, which is also not far from its actual
rank of 366 in 3000 models with a GDT of 0.818.

We abstract some distribution features, including the highest rank, the upper quartile rank,
the median rank, the lower quartile rank, and the lowest rank of the distribution as the inputs
of the integrated RBF model to retrieve actual rank information. In addition, we use two
more features, i.e., fiop, the maximum frequency, i.e., the highest occurrence of any rank or
the peak value in the distributions as shown in Fig. (3), and rqp, the rank associated with
fiop- All these features are normalized by the total sample size before we input them in the
RBF model.

Fig. (4) shows sampling relations between fio, / op and the actual rank of models sorted by
their GDT_TS against the native structure using three CASP8 targets 0428, 0490 and 0399.
We can see that in general ryqp increases with the actual rank as a trend. The trend is the
strongest for target 428 and the weakest for target 0399. Another significant feature is that
fiop OF most “top” (with small rank value) and “bottom” (with large rank value) models are
much higher than fio, of other models. This is particularly true for targets 0428 and 0490,
which have strong trend that ryop increases with the actual rank. This indicates good models
are frequently ranked by many combinations of the seven scoring functions and poor models
are consistently ranked at the bottom. Therefore, fio, and ryqp are robust features for the
integrated RBF model. The structure and learning algorithm of the integrated RBF model is
the same as those of the two above-mentioned RBF models. The output score of the
integrated RBF model is set as the final QA for model ranking in our method.

RESULTS

To verify the effectiveness of our proposed method, we applied it to two different model sets
of CASP8 targets. One is the server predictions of CASP8 (available at http://
www.predictioncenter.org/casp8/index.cgi) and the other is the models produced by our in-
house software MUFOLD. We select the MUFOLD models from 32 targets of CASP8 as
the training dataset, and the remaining 88 targets as the test dataset in both CASP8 server
models and MUFOLD maodels.

Four metrics are selected to evaluate the performance of different methods, namely

GDT _TS1, GDT_TSMean5, GDT_TS5 and Spearman Correlation. GDT_TS1 measures the
GDT_TS score of the top model ranked by a QA approach; GDT_TSMean5 the average
GDT _TS score of the top five ranked models; GDT_TS5 the GDT_TS of the best of the top
five ranked models; and Spearman Correlation is the ranking correlation between predicted
GDT_TS scores (output score of the integrated RBF model) of the models and actual
GDT_TS of the models to their native structure.
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Performance on MUFOLD Models

MUFOLD is our in-house software, which integrates whole and partial template information
to cover both template-based and ab initio predictions in a same package [27]. We firstly
test our method on MUFOLD models generated for the CASP8 targets. The comparison of
our method with each individual score is listed in Table 1. Note, all the performance data in
Table 1 are the average performance on 88 targets. Real Topl means the average GDT_TS
of the best models of 88 targets.

From the data in Table 1, we can see that among the five existing scores and two individual
RBF models, the best GDT_TS1 is 0.5540 by Opus-PSP, the best GDT_TSMean5 is 0.5576
also by Opus-PSP, the best GDT_TS5 is 0.5700 by Cheng Score, and the best Spearman
Correlation is 0.6169 by RBF1. Our method (integrated RBF model) outperforms any of the
individual approaches by any measure significantly. The corresponding performances of our
method using the four measures are 0.5706, 0.5660, 0.5790, and 0.6253, which gain 3.00%,
1.51%, 1.59% and 1.37% improvements, respectively.

More specifically, we also plot the comparison of the GDT_TS1 for 88 targets between our
method and Opus-PSP (the best individual scores in both GDT_TS1 and GDT_TSMean5
metrics) in Fig. (5a). The result shows that the number of points above the diagonal, 42, is
more than those below the diagonal, 27, and the other 19 points lie on the diagonal exactly.
This means that overall the integrated RBF model is better than Opus-PSP. There are several
cases where the improvement of integrated RBF model over Opus-PSP is substantial.
Furthermore, a comparison of GDT_TS1 between the selected top model of our method and
the best structure (measured by GDT_TS1) among top models ranked by each of seven
individual scoring functions is shown in Fig. (5b). The figure shows that most of the points
are close to the diagonal. The average of GDT_TS1 is 0.5706 and 0.5845 for selected top
models of our method and the best one of the selected top models ranked by all seven
individual approaches, respectively. This indicates our method can mostly recognize the best
structure among top ranked models by the seven individual approaches, which might suggest
our method is approaching the theoretical limit of sampling and combined discerning power
of all scoring functions.

Performance on CASP8 Server Models

We also tested our method on the CASP8 server models. Although CASP8 server prediction
includes models from more than 70 diverse servers, the computational results show that our
approach still works very well in this dataset. A comparison of our method versus each
individual QA score is listed in Table 2. Similar to Table 1, all the performance data in
Table 2 are the average performance on 88 targets and Real Topl means the average
GDT_TS of the best models of 88 targets. Table 2 shows that among the five existing scores
and two individual RBF models, the best GDT_TS1 is 0.5699 by Cheng Score, the best
GDT_TSMean5 is 0.5743 by Cheng Score, the best GDT_TS5 is 0.6376 by DFIRE, and the
best Spearman Correlation is 0.5167 by RAPDF. In contrast, the corresponding values of the
integrated RBF are 0.6093, 0.6031, 0.6489, and 0.5426, gaining 6.92%, 5.00%, 1.78% and
5.00% improvements, respectively. This result shows that the improvement of our method is
significant.
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Similarly to Fig. (5a), we plot the comparison of the GDT_TS1 for 88 targets by the best
individual score in GDT_TS1/GDT_TSMean5 metrics (Cheng Score) and by our method in
Fig. (6a). Similarly to Fig. (5b), we also plot the comparison of GDT_TS1 by the best
structure (measured by GDT_TS1) among top models ranked by seven individual scoring
functions and that by our method in Fig. (6b). Table 2 and Fig. (6) confirm that the
integrated RBF model is better than each individual approach. In Fig. (6a), there are 56 and
25 points above and below the diagonal, respectively, and 7 points lie on the diagonal. The
average of GDT_TS1 is 0.6093 and 0.6357 for top ranked models of our method and the
best models ranked by all seven individual approaches combined, respectively. The gap is
larger than that in the test using MUFOLD models (0.5706 and 0.5845, respectively). This
may be due to the fact that the integrated RBF model was trained using MUFOLD models
and CASP8 server models are more diverse than MUFOLD models.

DISCUSSIONS AND CONCLUSIONS

In recent CASP tests, it has been shown that meta-server methods are the most effective
approaches in the field. A number of individual tools also incorporated various third-party
tools to mimic meta-servers. However, in reality one typically cannot obtain so many
prediction tools and get a suitable model pool. Our idea is to mimic the meta-server methods
but do not need to collect or incorporate so many tools. The foundation of this approach is
based on the following hypothesis: better structures are more likely to be over-represented
among top ranked models in various combinations of scoring functions, given that each
scoring function may evaluate some but not all aspects of structure quality well. By
integrating of these scores with a large number of sampling, the resulting score is more
robust and has far better chance to rank good structures on the top.

Based on the above consideration, in this paper we present a novel sampling based machine-
learning method to integrate multiple existing scores and features for the protein structure
QA problem. Through sampling, more robust sampling distribution features are obtained
and used as the inputs of an integrated RBF model. To evaluate the ability of our novel
method, we applied it to two different datasets, CASP8 server predictions and MUFOLD
models. The test results show that the sampling based machine-learning method is superior
to any individual QA score in all the four measurement metrics, GDT_TS1,
GDT_TSMean5, GDT_TS5 and Spearman Correlation. The new method is not only useful
for our own protein structure prediction development in MUFOLD, but also can be applied
in any protein structure prediction tool.
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Flowchart of the sampling-based approach.
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Fig. 2.
Architecture of a radial basis function (RBF) network
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Fig. 3.
The sampling distributions of two structural models. (a) A model for CASP8 target 0388;

(b) a model for CASP8 target 0428.
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Typical distributions of ryn and fion 0f 900 MUFOLD models for (a) target 0428, (b) target
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(a) Comparison of GDT_TS1 of integrated RBF and Cheng Score; (b) comparison of
GDT _TS1 of integrated RBF and the best of seven individual scoring functions on CASP8

server prediction models.
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