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The discovery of mutations in genes encoding protein kinase PTEN-

induced kinase 1 (PINK1) and E3 ubiquitin ligase Parkin in familial Par-

kinson’s disease and their association with mitochondria provides compel-

ling evidence that mitochondrial dysfunction is a major contributor to

neurodegeneration in Parkinson’s disease. In recent years, tremendous pro-

gress has been made in the understanding of how PINK1 and Parkin

enzymes are regulated and how they influence downstream mitochondrial

signalling processes. We provide a critical overview of the key advances in

the field and also discuss the outstanding questions, including novel ways

in which this knowledge could be exploited to develop therapies against

Parkinson’s disease.

Introduction

As we approach two centuries since the first descrip-

tion of Parkinson’s disease (PD), recent progress has

started to reveal the origins and mechanisms of this

progressive movement disorder. A leading hypothesis

that has emerged over the last 30 years is that mito-

chondrial dysfunction may underlie the pathogenesis

of PD [1]. Initial evidence arose from the observation

that accidental exposure to the neurotoxin 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) led to Par-

kinsonism in humans [2]. 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine is a selective inhibitor of complex I

of the electron transport chain [3] and the relevance of

this finding to sporadic PD was suggested by post-

mortem studies of PD patient brains revealing reduced

complex I activity in the substantia nigra, which is the

major site of pathology [4,5]. Furthermore, mitochon-

drial dysfunction was shown to increase in the brain

during normal ageing, providing an explanation for

the late age of onset of PD cases [6]. Nevertheless,

outstanding questions relating to the contribution of

mitochondrial impairment remain, especially regarding

whether it has a primary or secondary role in PD

pathogenesis.

Over recent decades, PD research has been revolu-

tionized by the identification of gene mutations in rare

familial forms of PD [7]. In particular, the discovery

of mutations in PTEN-induced kinase 1 (PINK1) and

Parkin [8,9] and their subsequent analysis have reposi-

tioned mitochondrial dysfunction back at the heart of

PD. It has also raised significant interest in the field
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with respect to uncovering the physiological roles of

these PD-linked proteins in mitochondrial signalling

and understanding how mutations lead to neurodegen-

eration. In this mini-review, we discuss the key

advances in our understanding of the regulation and

downstream signalling of PINK1 and Parkin and high-

light outstanding questions for future research.

PINK1: sensor of mitochondrial
damage

Undoubtedly, the discovery of mutations in PINK1,

first reported 10 years ago in patients with early-onset

PD, represents a landmark finding because it provided

the first direct evidence for mitochondrial dysfunction

playing a primary role in the development of PD [8].

Protein kinases epitomize classical signal transduction

molecules that sense and integrate external stimuli to

generate changes in enzyme activity, localization or

stability, which subsequently leads to the dramatic

alteration of downstream signalling events and cell fate

[10]. Uncovering the molecular function of protein kin-

ases has led to profound insights into the molecular

mechanisms of human diseases, particularly cancer,

and has resulted in the development of numerous tar-

geted therapies now in clinical use [11]. As such, there

has been significant interest in the PD field aiming to

determine the function of PINK1.

PINK1 encodes a Ser/Thr protein kinase that is

unique amongst all kinases as a result of the presence

of a N-terminal mitochondrial targeting domain and

three insertional loops within its catalytic kinase

domain. Under basal conditions, PINK1 is imported

into mitochondria via the TOM 40 and TIM 23 core-

containing complexes [12], where it then undergoes

sequential cleavage by mitochondrial proteases [mito-

chondrial processing peptidase (MPP) and presenilin-

associated rhomboid-like protein (PARL)] [13–16]
(Fig. 1). The generation of cleaved PINK1 triggers its

rapid degradation via the N-end rule pathway [17]

thereby maintaining low levels of PINK1 in healthy

cells. Strikingly, upon treatment with mitochondrial

uncouplers that induce mitochondrial depolarization

[e.g. carbonyl cyanide m-chlorophenyl hydrazone

(CCCP)], PINK1 levels were observed to stabilize by

inhibition of both mitochondrial import and cleavage

[18]. This led to PINK1 accumulation on the outer

mitochondrial membrane (OMM) [18], where its

kinase domain is exposed outwards and potentially

accessible to cytosolic substrates [19]. The stabilization

of PINK1 was found to be associated with an increase

in its catalytic activity, as indicated directly by assess-

ment of autophosphorylation and substrate phosphor-

ylation [20,21] and indirectly via its ability to stimulate

Parkin recruitment to damaged mitochondria [22–25].
The molecular details responsible for the sensing of

mitochondrial damage and subsequent activation of

PINK1 remain unclear. One possibility is that PINK1

accumulation at the OMM per se is sufficient to enable

PINK1 to be active because it would lead to its

C-terminal kinase domain becoming accessible to

cytoplasmic substrates. In support of this, knockdown

of MPP led to accumulation of full-length PINK1 at

the OMM by inhibiting import and PINK1 was

observed to be active as indicated by Parkin recruit-

ment and mitophagy induction [16]. Furthermore, arti-

ficially tethering PINK1 to the OMM via fusion with

the OPA3 mitochondrial targeting sequence caused

PINK1 to be stabilized at the mitochondria and to

recruit Parkin independent of mitochondrial uncou-

plers [22]. Fascinatingly, this is also illustrated by Par-

kin recruitment in the absence of mitochondrial

depolarization when PINK1 is artificially tethered to

non-mitochondrial membranes (e.g. the peroxisome)

[12].

Another possibility is that PINK1 may undergo a

conformational change upon mitochondrial depolar-

ization that folds it into an active conformation. This

has been suggested by the observation that PINK1 is

activated by autophosphorylation of residues Ser228

and Ser402 [21]. The latter site, Ser402, is particularly

interesting because this residue is in the putative T-

loop site. A multitude of protein kinases share a

common mechanism of activation by T-loop phos-

phorylation (achieved either through autophosphory-

lation or by phosphorylation by an upstream kinase)

that leads to a structural alteration in the activation

segment of the kinase [26]. In future studies, it would

be interesting to dissect the role of these PINK1

autophosphorylation sites in vivo via generation of

phosphospecific antibodies or by quantitative mass

spectrometry (MS).

If the location of PINK1 is central to both sensing

mitochondrial damage and its ensuing activation, then

it will be critical to determine the localization of

endogenous PINK1 under both healthy conditions and

upon mitochondrial depolarization because our current

understanding is based almost exclusively on the local-

ization of over-expressed PINK1. In addition, given

the intimate association between mitochondrial depo-

larization and mitochondrial import block, it remains

a challenge to determine whether either or both are

required for PINK1 activation. Further complexity in

understanding how PINK1 is activated has been

derived from an elegant analysis of PINK1 knockout

neurones that revealed an important role for PINK1
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in maintaining calcium homeostasis [27]. Because mito-

chondrial depolarization leads to an impaired calcium

buffering capacity of mitochondria [28], it will be

important to probe the potential role of calcium-

dependent signalling on PINK1 activation.

Finally, although mitochondrial uncouplers have

proven to be extremely useful tools for activating

PINK1 in cells and uncovering its function, the physi-

ological equivalent stimulus in the brain remains elu-

sive. Because ageing is a major risk factor of PD, it

Fig. 1. PINK1-Parkin signalling. Under healthy conditions, PINK1 is imported to the mitochondria via a multisubunit complex, including TOM40

on the outer mitochondrial membrane (OMM) and TIM23 in the inner mitochondrial membrane (IMM). Upon entry, PINK1 is sequentially

cleaved by proteases MPP and PARL between residues 103 and 104. The resulting C-terminal fragment is rapidly degraded via the N-end rule

pathway (inset A). Upon mitochondrial depolarization (e.g. induced by uncouplers), mitochondrial import and cleavage by PARL is inhibited,

resulting in PINK1 stabilization and accumulation at the OMM, which in turn leads to PINK1 autophosphorylation and activation (inset B). Parkin

exists in an inactive state mediated by multiple autoinhibitory surface interactions. Upon activation, PINK1 phosphorylates Parkin at Ser65

within its Ubl domain and ubiquitin at Ser65. Phosphorylation of Parkin Ubl Ser65 and binding of ubiquitin Ser65 confers maximal activation of

Parkin E3 ubiquitin ligase activity. Multiple Parkin substrates have been identified, implicating its role in distinct mitochondrial signalling

processes, although only a few substrates have been characterized in detail. Parkin-dependent ubiquitylated OMM substrates interact with

ubiquitin binding domain-containing proteins (UBD) e.g. p62 that stimulate recruitment of autophagy machinery to induce mitophagy. Targeting

of mitochondrial GTPases Miro1 and Mfn1/2 may influence mitochondrial transport and dynamics, respectively. The negative regulators of this

pathway remain largely unknown, although recent work has suggested roles for USP15 and USP30 as deubiquitylases.
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would be interesting to invetigate whether neurones

become less efficient at maintaining mitochondrial

membrane potential with age and whether this is asso-

ciated with increased PINK1 catalytic activity.

Parkin activation: dependence on
PINK1

Mutations in Parkin are the major cause of familial

early onset PD, accounting for almost 50% of all cases

in patients under the age of 40 years [29]. Parkin is a

RING-in-between-RING (RBR) E3 ligase, capable of

mediating mono, multi-mono and polyubiquitylation

of substrates with different chain topologies [30,31].

Historically, Parkin was assumed to be a typical

RING E3 ligase, acting as a scaffold that mediates

interaction between a cognate E2 and a substrate. In a

landmark study, it was revealed that Parkin, as well as

other RBR enzymes, possesses a catalytic cysteine

within its RING2 domain (Cys431) that acts as an

intermediate ubiquitin acceptor between the E2 and

substrate [32]. This led to Parkin and other RBRs to

be reclassified as RING/HECT hybrid E3 ligases [32].

A further metamorphosis in our understanding of Par-

kin was achieved when it was discovered that full-

length untagged Parkin was catalytically inactive and

it was proposed that the autoinhibition was mediated

in part by the N-terminal ubiquitin-like domain (Ubl)

[33]. Structural analysis of N-terminal deleted frag-

ments of Parkin have confirmed that Parkin is autoin-

hibited and also identified two further regions of

autoinhibition mediated through interactions between

the RING0 and catalytic cysteine, Cys431, within the

RING2 domain and blockade of the E2 binding site

on the RING1 domain by a repressor element of Par-

kin (REP) a-helix [34–36]. However, the mechanism of

Parkin activation was not revealed by these structures

[34–36].
Clinically, patients harbouring PINK1 mutations

resemble those with mutations in Parkin [37]. The deci-

sive advance linking these two genes together was the

discovery in Drosophila that PINK1�/� and Parkin�/�

mutant flies exhibited similar mitochondrial abnormali-

ties, as well as neuronal loss and motor deficits [38,39].

Furthermore, it was demonstrated that over-expression

of Parkin could rescue the PINK1�/� phenotype but

not vice versa, indicating that PINK1 functions

upstream of Parkin in a common mitochondrial path-

way [38,39]. This work supported an earlier study in

mammalian cells that found Parkin to be neuroprotec-

tive against mitochondrial damage [40].

Although Parkin is predominantly cytoplasmic,

groundbreaking work revealed that Parkin could be

selectively recruited to damaged mitochondria upon

depolarization induced by uncouplers, such as CCCP,

and that, remarkably, this stimulated their autophagic

removal termed mitophagy [41]. It was further shown

that Parkin recruitment was dependent on stabiliza-

tion and accumulation of PINK1 on the OMM of

depolarized mitochondria [22–25]. However, biochemi-

cal mechanisms linking PINK1 to its regulation of

Parkin initially remained elusive as a result of the low

catalytic activity of mammalian PINK1. This was

overcome by the discovery of catalytically active

insect orthologues of PINK1 (including Tribolium cas-

taneum PINK1) that enabled the development of

robust assays of PINK1 kinase activity [42]. Deploy-

ment of Tribolium castaneum PINK1 in a substrate

screen subsequently led to the identification of Parkin

as a direct PINK1 substrate and the site of phosphor-

ylation was mapped to Ser65 that lies within the Ubl

domain of Parkin [20]. Furthermore, phosphorylation

of Parkin Ser65 was found to activate Parkin and

stimulate E3 ligase activity [20]. However, the low

resolution structure of full-length Parkin [35] reveals

that the Ser65 residue lies away from the autoinhibi-

tory interface, providing no clear explanation as to

how phosphorylation at this site mediates Parkin acti-

vation. Moreover, mutation of the Parkin Ser65 site

to Ala only partially prevented its translocation to

depolarized mitochondria in cells, suggesting that

additional regulatory factors were required for opti-

mal Parkin activation by PINK1 [43]. Recently, in a

series of three independent reports, PINK1 has been

discovered to directly phosphorylate ubiquitin at resi-

due Ser65 (equivalent to the Parkin Ubl site) and that

this is required for optimal activation of Parkin E3

ligase activity [44–46] (Fig. 1). The discovery of phos-

pho-ubiquitin represents the missing link in Parkin

activation by PINK1; it is also the first example of a

functional phosphorylation site on ubiquitin and the

most dramatic example of cross-talk between these

two major forms of post-translational modifications

[44–46].
The mechanisms underlying phospho-ubiquitin-med-

iated Parkin activation remain unknown. First, it will

be important to understand whether the activation is

mediated by conformational changes induced by phos-

pho-ubiquitin binding to Parkin or by substrate prefer-

ence itself. Initial reports suggest that binding of

phospho-ubiquitin plays the major role in activation

because a C-terminal di-glycine mutant of ubiquitin

that cannot be attached to chains was found to retain

the ability to activate Parkin [46].

The crystal structures of Parkin have revealed a sul-

phate-containing pocket within the RING0 domain of
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Parkin flanked by residues K161/R163/K211 that

could putatively bind a phosphopeptide and act as a

docking-site for phospho-ubiquitin; it would be inter-

esting to co-crystalize phospho-ubiquitin bound to

Parkin and determine whether these residues form the

binding site. This structure may also provide insights

into how phospho-ubiquitin renders Parkin in an

active conformation. Phospho-ubiquitin is also incor-

porated into polyubiquitin chains, suggesting that it

might have additional roles beyond Parkin activation

[46]. As of yet, it is not known whether PINK1 can

phosphorylate ubiquitin that is incorporated into

chains and it will also be interesting to explore whether

the phosphorylation is influenced by the chain topol-

ogy and influences the preference for chain formation

by Parkin. It would also be fascinating to investigate

whether phospho-ubiquitin can confer substrate speci-

ficity for Parkin (as well as other E3 ligases) and hence

enable Parkin to regulate distinct downstream signal-

ling events. Although biochemical and cell biological

analysis does support PINK1 regulation of Parkin and

ubiquitin via phosphorylation at Ser65, it will be cru-

cial to confirm that these signalling events occur

in vivo where PINK1 and Parkin are expressed at

endogenous levels. Further exploration of native cells

will demand the development of tools, such as highly-

sensitive antibodies, with potential utility as biomar-

kers of PINK1/Parkin pathway activity and that

enable the quantitative monitoring of this signalling

pathway in PD patients.

Parkin: effector of mitochondrial
damage

Although much progress has been made into under-

standing how PINK1 and Parkin are regulated, a

major question remains on the cellular consequences

of PINK1-directed Parkin activation after mitochon-

drial depolarization. To date, the field has been signifi-

cantly influenced by the discovery that activation of

Parkin initiates mitophagy [41]. As such, there is great

interest in solving the mechanisms of Parkin-induced

mitophagy and, in particular, determining the identity

of the key substrates whose ubiquitylation by Parkin

stimulates the recruitment of the autophagy machinery

to sites of mitochondrial damage. Multiple substrates

of Parkin have been previously identified upon mito-

chondrial depolarization [47,48]; however, only a select

few have been thoroughly validated. The evidence

obtained to date suggests that Parkin is a promiscuous

ubiquitin ligase targeting multiple substrates at the

OMM and that this collective ubiquitylation signals

recruitment of the autophagosome machinery to initi-

ate mitophagy [48]. However, it is still unknown

whether specific substrates are required to drive mito-

phagy and, although K11, K27, K48, and K63 ubiqu-

itin linkages have been identified in depolarized cells, it

is still unknown which linkage type is critical for mito-

phagy. Furthermore, it is still not clear how these

ubiquitin linkages are decoded. It would interesting to

identify all of the ubiquitin binding domain-containing

proteins that translocate to mitochondria after depo-

larization and also assess their role in mitophagy initi-

ation.

Although Parkin activation drives mitophagy, it is

still not known whether this occurs at endogenous lev-

els of Parkin because the current assays to monitor mi-

tophagy lack sensitivity and require the over-

expression of Parkin to achieve robust clearance of

mitochondria. The lack of sensitive assays has also

prevented the assessment of whether mitophagy is

altered in PD-derived tissues and cell lines. A recent

fluorescence-based assay of mitophagy has been devel-

oped that enables the monitoring of mitophagy under

endogenous PINK1 and Parkin levels [49]. Interest-

ingly, both PINK1 and Parkin were found to be dis-

pensable for mitochondrial depolarization-induced

mitophagy under these assay conditions, suggesting

redundancy [49]. However, that study employed small

interfering RNA knockdown technologies that did not

completely abolish PINK1 and Parkin levels and so it

would be important to analyze this in PINK1 and Par-

kin knockout cells. Recently, it has been suggested

that PINK1 and Parkin could regulate an autophagy-

independent mitochondrial quality control pathway via

the generation of vesicles enabling the removal of

damaged and oxidized proteins [50]. This has revealed

interesting cross-talk between the mitochondria and

membrane trafficking pathways and it will be interest-

ing to identify the molecular check-points that deter-

mine the outcome of mitochondrial damage.

The involvement of other mitochondrial processes

has been implicated through identification of some

well characterized Parkin substrates. Mitofusin (Mfn)1

and Mfn2 are major regulators of mitochondrial

fusion and dynamics and their ubiquitylation by Par-

kin has been shown in multiple studies [47]. Although

numerous Mfn1 and Mfn2 ubiquitylation sites have

been mapped by MS [47], the key sites induced by Par-

kin after CCCP that promote its degradation or, alter-

natively, alter its function, such as its GTPase activity,

remain unknown. In the future, a detailed structure–
function analysis of these sites and an analysis of the

impact of mutations on endogenous protein function-

ing would allow a more thorough understanding of

the interplay between Mfn ubiquitylation and its
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downstream effects. Furthermore, the mechanism of

how ubiquitylation of Mfn1/2 is linked to the induc-

tion of mitophagy remains to be determined.

Similarly, multiple ubiquitylation sites have been

identified on the mitochondrial GTPase Miro1 [47,51].

Miro1 plays a major role in mitochondrial transport

and tethers mitochondria to microtubules via the ki-

nesin motor protein [52]. Inactivation or loss of

Miro1 might lead to the detachment of kinesin and

promote pools of stationary mitochondria that could

be selectively degraded. However, it still is unknown

whether PINK1 and Parkin regulate mitochondrial

transport at the endogenous level and, moreover,

which of the identified ubiquitylation sites are critical.

There is also great interest in understanding the effect

of Parkin ubiquitylation on other substrates, including

cytoplasmic proteins and nuclear proteins. Do these

events represent distinct roles of Parkin independent

of its mitochondrial ubiquitome or is there likely to

be cross-talk between mitochondrial damage and

aberrant signalling in these other cellular compart-

ments?

Therapeutic implications

The discovery of phospho-ubiquitin mediated Parkin

activation provides a platform for the development of

small molecule activators of Parkin that mimic phos-

pho-ubiquitin as potential therapeutic compounds.

Greater knowledge of the relevant mechanism and

structural insights into how phospho-ubiquitin binds

will greatly aid this effort. Nevertheless, traditionally,

the development of activators has proven extremely

challenging in drug discovery.

Phosphorylation and ubiquitylation are reversible

signalling events and there is now significant interest

in uncovering the negative regulators of the pathway

because these could prove to be more tractable drug

targets. A start has already been made on the deubiq-

uitylation of Parkin-directed substrates through the

identification of USP15 and USP30 that are both

members of the ubiquitin specific protease family of

deubuitinases [53,54]. It was recently shown that

knockdown of USP15 enhanced Parkin-dependent

mitophagy and global upregulation of mitochondrial

ubiquitylation upon CCCP [53]. However, it remains

to be shown whether all or a subset of the substrates

are specifically upregulated. Furthermore, USP15 does

not normally reside in mitochondria and it would be

crucial to determine how the recruitment and target-

ing of mitochondrial substrates is achieved. By con-

trast, USP30, a mitochondrial localized DUB, was also

shown to regulate Parkin-induced mitophagy in cells

including neurones [54]. The authors demonstrated that

TOM20 and Miro1 (previously characterized substrates

of Parkin) ubiquitylation is enhanced upon USP30

knockdown [54]. Strikingly USP30 knockdown in vivo

could rescue the PINK1 or Parkin�/� phenotypes in

Drosophila, indicating that the inhibition of USP30

could be therapeutically advantageous in patients with

equivalent null mutations in these genes [54].

Closing thoughts

The desire to better understand PINK1 and Parkin

has led to many exciting discoveries in recent years.

Molecular elaboration of how PINK1 and Parkin are

linked will provide a solid platform for the develop-

ment of rational therapies for PD. However, a ques-

tion remains: are there additional roles for PINK1

beyond Parkin regulation that could lead to further

ideas about how to potentially intervene in PD? In the

future, it will be exciting to discover novel PINK1 sub-

strates and investigate their roles in PD. Their exis-

tence is suggested by a recent analysis of PINK1

knockout rats that revealed a striking neurodegenera-

tion phenotype in direct contrast to Parkin knockout

rats that did not [55]. Furthermore, PINK1 was origi-

nally found to be regulated by the tumour suppressor

PTEN that regulates major signal transduction path-

ways in cancer and metabolism. Until recently, very

little work had been undertaken on the role of PTEN

in PINK1 signalling, although new data suggest a con-

vergence of the PTEN pathway and mitochondrial

dysfunction [56]. Complementing previous work on

Parkin and cancer [57], recent studies have now linked

PINK1 with both cancer and metabolism [58,59]. It

will be fascinating to investigate the link between

PTEN and PINK1 further, as well as understand the

mechanism of PINK1 and Parkin disruption in other

human diseases.
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