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Abstract

Neuroimaging and the neurosciences have made notable advances in sharing activation results 

through detailed databases, making meta-analysis of the published research faster and easier. 

However, the effect of publication bias in these fields has not been previously addressed or 

accounted for in the developed meta-analytic methods. In this article, we examine publication bias 

in functional magnetic resonance imaging (fMRI) for tasks involving working memory in the 

frontal lobes (Brodmann Areas 4, 6, 8, 9, 10, 37, 45, 46, and 47). Seventy-four studies were 

selected from the literature and the effect of publication bias was examined using a number of 

regression-based techniques. Pearson’s r correlation coefficient and Cohen’s d effect size 

estimates were computed for the activation in each study and compared to the study sample size 

using Egger’s regression, Macaskill’s regression, and the ‘Trim and Fill’ method. Evidence for 

publication bias was identified in this body of literature (p<0.01 for each test), generally, though 

was neither task- nor sub-region-dependent. While we focused our analysis on this subgroup of 

brain mapping studies, we believe our findings generalize to the brain imaging literature as a 

whole and databases seeking to curate their collective results. While neuroimaging databases of 

summary effects are of enormous value to the community, the potential publication bias should be 

considered when performing meta-analyses based on database contents.
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INFORMATION SHARING STATEMENT:
The BrainMap database is a publicly available database which can be accessed via the web at http://www.brainmap.org. Matlab 
(Mathworks, Nattick, MA) was used in our analyses of publication bias, and the program written and used in this research is available 
from the authors upon request. In addition, many different statistical packages offer programs for diagnosing and correcting for 
publication bias. A macro (Rendina-Gobioff and Kromrey 2006) has been created in the SAS statistical analysis platform (SAS 
Institute, Cary, North Carolina) which is useful when comparing two groups, and the ‘rmeta’ package in R (http://www.r-project.org) 
contains different functions which can be implemented to diagnose and account for the effect of publication bias (Lumley 2009).
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Introduction

In recent years meta-analyses have become increasingly popular in neuroimaging as large 

databases of structural and functional brain imaging data have been created and employed to 

aggregate results from across individual studies (Murphy, Nimmo-Smith et al. 2003; 

Neumann, von Cramon et al. 2008; Fusar-Poli, Placentino et al. 2009). Meta-analytic 

methods to examine these data have become increasingly refined (Turkeltaub, Eden et al. 

2002), and these techniques are rapidly becoming particularly important tools for 

understanding fundamental questions underlying patterns of cognitively induced activity.

The development of highly detailed neuroimaging databases of published results has made 

quantitative assessment of the available research much easier (Fox, Laird et al. 2005), and 

the ability to pool studies and sample sizes to make inferences about functional brain 

activity has become increasingly valuable in diagnostics (Peyron, Laurent et al. 2000). 

These resources provide a useful means for combining the results of studies in specific 

research domains and have offered a unique solution for examining variation in reported 

activation foci (Nielsen and Hansen 2002).

However, while meta-analyses of functional imaging studies may provide invaluable 

insights, caution must be taken due to the potential for bias in the current literature, 

especially, as is common in functional magnetic resonance imaging (fMRI) research, where 

the published results are primarily small-study effects (Sterne, Gavaghan et al. 2000). Since 

recruitment of subjects is often demanding and having a large sample can be costly, many 

individual neuroimaging studies have small sample sizes, particularly in many fMRI studies. 

This practice has been defended by Friston et al. (1999), who have argued that fixed-effects 

analyses are adequately serviced through voxel-wise general linear models and conjunction-

based analyses based upon samples of at least 6 subjects, whereas only experiments 

comparing two or more samples require random-effect analyses and necessarily larger 

cohort sample sizes. While such assertions seek to justify using small samples for cognitive 

activation studies in light of sufficient sensitivity, they have produced the somewhat 

unintended consequence of researchers tending to publish statistically significant brain 

activation findings merely based on low sample sizes. This can result in a particular form of 

‘publication bias’ present in the literature which can severely hamper subsequent meta-

analytic assessments from neuroimaging summary data archives containing reported 

statistical effects.

Generally speaking, publication bias is the tendency of researchers, journal editors, and 

corporate entities to manage the reporting of experimental findings that are positive (i.e. 

“significant” findings) differently from findings that are negative (i.e. supporting the null 

hypothesis) or are otherwise inconclusive (Dickersin 1990). This then leads to bias in the 

overall published literature toward only those effects considered to be statistically 

significant. Such bias can occur despite the fact that studies with significant results may not 

appear to be superior to studies having null results with respect to quality of design 

(Easterbrook PJ, Berlin JA et al. 1991). Statistically significant results are three times more 

likely to be published than papers affirming a null result (Dickersin, Min et al. 1992; 

Dickersin 1997). Typical reasons for non-publication of non-findings has been attributed to 
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loss of interest in the study in question by the researcher once a null effect has been 

observed (Hopewell, Loudon et al. 2009). However, not reporting negative effects can bias 

true average statistical effect sizes and mask particular trends present across studies over 

time (Schooler 2011). The reporting of only statistically significant findings can be traced to 

the pressures due to academic career trajectories, the need to secure research funding, and 

concerns about being considered a top scientist (Fanelli 2010). Often these pressures may 

force researchers to publish statistically significant results as soon as they have them, despite 

their study having a low sample size (Rucker, Carpenter et al. 2011). Journal editors and 

reviewers may also prefer publishing articles reporting statistically significant results 

(Matias-Guiu and Garcia-Ramos 2011) while studies reporting null findings may be rejected 

or deferred to another periodical. Collectively, these influences toward publishing positive 

effects while demurring on those that are not contributes to publication bias in the literature. 

Evidence for publication bias has been observed across a range of disciplines (Awad 2010; 

Saeed, Paulson et al. 2010; Polyzos, Valachis et al. 2011; Zhu, Duijvesz et al. 2011) and the 

field of neuroimaging is likely no different. Moreover, given the interest in gathering the 

summary data from neuroimaging studies of cognitive activation task paradigms into various 

shared databases (Van Horn and Gazzaniga 2002; Van Horn, Grafton et al. 2004), there is a 

danger that publication bias has been embedded in these archives which may, in turn, affect 

their subsequent usage in meta-analytic assessments of activation patterns, regional 

involvement in cognitive systems, comparisons between diagnostic groups, etc. The 

characterization of publication bias is therefore a necessary and important consideration for 

the neuroimaging literature and its summary data archives.

In this article, we seek to explore the notion of publication bias, present several analytic 

means for assessing publication bias from a meta-analytic treatment of study summary 

information, measure the evidence for publication bias in the neuroimaging literature as 

contained in a representative archive of study meta-data, and provide a comment on the 

importance of assessing the potential for publication bias in shared neuroimaging results 

resources and meta-analyses that use them.

Assessment of Publication Bias in Neuroimaging

Irrespective of sample size, per se, the failure to report non-significant findings in any field 

of study is typically known as the ‘file-drawer’ effect (Rosenthal 1979). This occurs because 

authors are less likely to submit, and editors accept, negative results or non-statistically 

significant findings, causing such studies to go unpublished (‘left in the file drawer’). While 

this practice might seem reasonable, it can lead to erroneous measures of mean effect sizes 

when independently combining statistical results from the published literature under meta-

analysis (Scargle 2000). In an extreme case the literature may contain only the 5% of studies 

which obtained a significant p<0.05 result by chance alone, with the remaining 95% of non-

significant studies unavailable for meta-analytic consideration.

Conversely, as noted above, ‘publication bias’ is the tendency to publish only significant 

results despite having a low sample size. While it can be challenging to determine the true 

number of non-significant studies that might exist which would render those that are 

published only representative of chance occurrence (Scargle 2000), a number of useful 
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statistical techniques for examining publication bias have been proposed. Each method has 

its own benefits as well as some limitations (Hayashino, Noguchi et al. 2005; Kromrey 

2006) but can be helpful for examining not only a specific meta-analytic set of studies but 

also of potential use in evaluating entire databases of published results. Several of the most 

prominent approaches are described here:

The Funnel Plot

Publication bias can be examined by visual inspection of a funnel plot (Light and Pillemer 

1984). This graphical technique plots the effect size (in our case, Pearson’s r or Cohen’s d 

values) by sample size, and allows the observer to determine the existence of publication 

bias by the symmetry or lack thereof in the generated graph. If publication bias is not 

present, then the points should form a symmetrical inverted funnel around the overall 

estimate of the effect, with results from smaller studies scattered more widely about the 

mean effect at the bottom of the graph (see Deeks, Macaskill et al. 2005 for examples). If, 

however, publication bias is present then the graph may be asymmetrical or skewed. A 

‘classic’ asymmetry involves non-publication of insignificant studies which causes gaps in 

the bottom left-hand corner of the graph and leaves the plot skewed to the right. Though this 

method is used frequently in the literature, it is a subjective test and is not always interpreted 

consistently among different observers (Terrin, Schmid et al. 2005). While it is a useful tool, 

it is also necessary to use more systematic tests that have been developed for detection of 

publication bias.

Macaskill’s Regression—A method which draws on the idea of the funnel plot more 

systematically is Macaskill’s regression method, also known as the funnel plot regression 

method (Macaskill, Walter et al. 2001). This linear regression model takes the effect size as 

the dependent variable and sample size as the independent, or predictor, variable. A 

weighted least squares regression approach is taken and the effect size is weighted by the 

inverse variance. This method is often employed due to its low false-positive rate and an 

outcome giving a significant p-value indicates the presence of publication bias.

Trim and Fill—Another metric based on the funnel plot is the trim and fill method (Duval 

and Tweedie 2000). This is a non-parametric approach which assumes that in addition to the 

number of published studies (n), there are another k0 studies which have not been reported 

due to publication bias. This method ranks studies based on the absolute values of their 

deviations from the mean effect size; ranks of studies with effect sizes smaller than the mean 

are given a negative sign, and ranks of studies with effect sizes greater than the mean retain 

a positive sign. Mathematically the ranks are estimated by:

with a negative sign given to the ri where ai <āi

γ*, the length of the rightmost run of ranks associated with positive values of the observed ri, 

is defined as:
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where n= number of studies in the meta-analysis and rh is the largest negative rank in the 

sample. And k0 is estimated by R0, the “rightmost run” estimator, where:

R0 is the sample estimate of k0, the number of studies which have not been reported due to 

publication bias. Subsequently, publication bias is evident when R0>3, as outlined by Duval 

and Tweedie (2000).

Egger Regression—This approach also utilizes a linear regression model to estimate 

funnel plot asymmetry using a standardized measure of effect (e.g. Cohen’s d). The 

treatment effect is standardized by dividing by its standard error and regressed against 

precision, defined as the inverse of the standard error, as the predictor (Egger, Davey Smith 

et al. 1997). If the resulting value yields a significant p-value, then this test indicates the 

presence of publication bias in the collection of studies. While the Egger method has been 

shown to be highly sensitive with strong statistical power (Sterne, Gavaghan et al. 2000), it 

also tends to have a relatively high false positive rate, although it can be subject to low 

power when meta-analytically examining results from only small numbers of studies (Peters, 

Sutton et al. 2006).

Begg’s Rank Correlation—Begg’s method is an adjusted rank correlation test proposed 

as a technique for identifying publication bias in a meta-analysis of random-effects study 

results. The test statistic is a direct statistical analogue of the popular “funnel-graph.” The 

number of component studies in the meta-analysis, the nature of the selection mechanism, 

the range of variances of the effect size estimates, and the true underlying effect size are all 

observed to be influential in determining the power of the test. The test has been shown to 

be fairly powerful for large meta-analyses (n>75 studies), but possesses only moderate 

power for smaller meta-analyses (n<25 studies) (Begg and Mazumdar 1994). The test must 

be interpreted with caution in small meta-analyses and bias cannot be ruled out if the test is 

not significant.

To explore the presence of publication bias in the reported neuroimaging literature, we 

examined papers described in the BrainMap (http://www.brainmap.org) database which is a 

leading online database of published functional neuroimaging (fMRI and PET) experiments 

with coordinate-based (x,y,z) activation locations in Talairach space (Fox and Lancaster 

2002; Laird, Lancaster et al. 2005). This resource is particularly valuable for such an 

examination as each study has been published in peer-reviewed journals and whose articles, 

in many instances, contain the necessary information concerning the statistical test of 

interest, its magnitude, and the sample size upon which the statistics were performed. In 

what follows, we describe our approach to study selection/exclusion from this analysis.
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Methods

To select studies for inclusion, we used the Sleuth program (http://www.brainmap.org/

sleuth/index.html), the BrainMap application that is used to search for papers of interest and 

read their corresponding meta-data, to find the appropriate studies for our analysis. To 

narrow down the range of studies we focused our analysis on studies reporting working 

memory tasks with activation in the frontal lobe using fMRI; searching on keywords 

“fMRI”, “working memory”, and “frontal lobe” selected 162 papers from the database. The 

body of literature on working memory in the frontal lobe is extensive, as it has been a 

central region of study for many years, yielding a rich collection of published research 

articles. Though the analysis could have been performed on any and all brain regions of 

interest, in any cognitive domain, effects of working memory in the frontal lobe are studied 

extensively by researchers focusing on many different fields, including cognitive 

neuroscience, psychology, and psychiatry, and are applicable to a wide audience. In 

addition, focusing the analysis on one extensive brain region, one functional domain, in 

normal subjects allowed for a less heterogeneous collection of studies. While this sample 

was not completely homogeneous, it represents well the collection of studies which would 

be formed when performing any meta-analyses on the published literature.

After examining these papers, 77 were selected that gave both a statistical parametric image 

(SPI) value and an SPI unit (e.g. Z-statistic or Student’s t-test), so that significance and 

effect size could be estimated. Of the selected 77, only 74 (Fitzgerald 2008, Kim 2003, & 

Malhi 2007 were excluded) were included that had a working memory task using fMRI on a 

normal control population. In studies where there were two or more additional groups being 

compared to control subjects, we utilized only effects reported for the normal subject 

sample. Articles listed by BrainMap in which insufficient meta-data information was 

available about their reported effects these studies were omitted from consideration. The 

effects reported in the frontal lobe were examined and the highest z or t value reported for 

frontal lobe activity on Sleuth was recorded. For each study, this peak reported focus of 

activation was noted to characterize the frontal activity for the given study. Studies will 

routinely report a list of significant effects, however, it is often this most robust effect which 

confirms the author’s hypotheses pertaining to cognitively-induced regional activation, 

forms the motivation for examining subsequent effects, or is the main impetus for the 

interpretation of the results. From this statistically maximal locus of activity, examining a 

range of secondary activations and multiple statistical contrasts are then justified by study 

authors in order to explore ever-more subtle experimental distinctions in activation. In this 

analysis, secondary effects beyond the maximum test statistic were not considered. Tests of 

publication bias were examined using these largest reported within study statistical effects 

alone, under our assumption that this was the generally most appropriate means for the 

consideration of overall publication bias across studies.

Of 74 papers, 68 showed significant results in frontal lobe regions and 6 recorded working 

memory tasks with non-significant results in the frontal lobe (Figure 1). We took care not to 

exclude studies of working memory reported in BrainMap which nevertheless failed tp 

report significant statistical results in the frontal lobes. In most studies, the z-statistic or 

student’s t-statistic was typically only given for significant effects, as it is uncommon to 
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report statistically non-significant findings which, in fact, were the motivation for this 

analysis. Therefore, 6 studies examined a main effect of their working memory task though 

did not report a test statistic with corresponding MNI or Talairach coordinates. Since these 

studies were specifically exploring working memory tasks, were reported by BrainMap 

under those categories, but reported no statistically significant activation in the frontal lobes 

their effect sizes were set to 0, representing no task associated effect. The true effect sizes 

could most certainly be higher than this value, but without further details (which were not 

provided in the published studies and, thus, by BrainMap) there was no way to quantify this 

except for setting these to null values. We considered this the most conservative approach 

since all 6 non-significant studies also reported significant secondary tasks in working 

memory among normal subjects in the frontal lobe, though these were not selected for 

analysis (Sevostianov et al. 2002; Landau et al. 2004; Malisza et al. 2005; Baumann et al. 

2007; Sowell et al. 2007; Shamosh et al. 2008). The z values and t values were converted to 

a Pearson’s r effect size as well as Cohen’s d effect size (Cohen 1988), and these were used 

to examine publication bias. A summary of the studies retained for this analysis is given in 

Table 1.

Results

Pearson’s r

Pearson’s r measure of effect size was computed in addition to Cohen’s d because upon 

conversion of the z-scores some of the Cohen’s d values were found to be particularly large 

(e.g., Grosbas et al., d=1014.97), leading to a number of extreme outlier values. Analyses 

were performed on the Cohen’s d variable, but the results were also examined both with and 

without the four main extreme effect size values to avoid having them drive the analysis. 

Additionally, for a visual assessment of publication bias, we plotted the effect sizes (r or d) 

against the total sample size (n) for each study and examined the resulting funnel plot. Since 

it was the most easily viewable effect size metric, we present Pearson’s r effect by sample 

size here for all studies (n=74), noting considerable evidence of publication bias even by 

mere visual inspection of the funnel plot alone (Figure 2). Even when a true effect is present, 

it is expected that some small studies will show non-significant results due to lack of power, 

corresponding to points in the lower left portion of the plot, and the absence of such points 

lends to the conclusion that publication bias is present here.

Cohen’s d

In general, a “small” Cohen’s d effect size is between 0.2 and 0.3, “medium” is around 0.5, 

and “large” is greater than or equal to 0.8 (Cohen 1988). While these terms are relative, they 

are used in common convention and supply a rough overview of the findings. Of the studies 

that showed an effect (n=68), all had a Cohen’s d value of >1, and were therefore “large”. 

While an arbitrary cut-off, we considered any Cohen’s d value greater than the 95th 

percentile (values ≥ 72.9) to be an extreme value since the majority of our data (64/68 = 

94.1%) fell within a Cohen’s d value where: 1<d <25. While we were able to calculate 

Cohen’s d effect sizes from the given t-statistic or z-statistic, the effect size variance was not 

given for each study in the database and was estimated. Methods examining the Cohen’s d 

effect size with the extreme values included (n=74, evaluating a total of 1106 subjects) 
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found statistically significant publication bias using the Egger regression method (F=6.7, 

p=0.01), Macaskill’s regression method (F=12.07, p=0.0009), and the Trim and Fill method 

(both tails, R0>3). Visual inspection of the funnel plot was hindered by the presence of four 

extreme values, which are plotted here for reference (Figure 3 Inset).

To further examine possible publication bias, we did a second analysis based on Cohen’s d 

in which the four extreme values were removed (Grosbas 2001, d=1014.97; Heide 2001, 

d=455.82; Quintana 2003, d=72.9; Ricciardi 2006, d=260.05), with publication bias analyses 

performed on the remaining studies. Methods examining the Cohen’s d effect size without 

extreme values (n=70, evaluating the contributions from a total of 1076 subjects) found 

evidence of statistically significant publication bias using the Egger regression method 

(F=8.17, p=0.006), Macaskill’s regression method (F=9.92, p=0.002), the Trim and Fill 

method (right tail, R0>3), as well as being evident by inspection of the funnel plot (Figure 

3). Though we omitted the four extreme observations, the observation that these four points 

had extreme effect sizes with very small sample sizes (all n≤10) only strengthen the 

evidence of publication bias noticeable by an obvious right-tailed bias. As Begg’s method is 

a non-parametric approach specifically designed for assessing random effects tests between 

distinct groups, it was not employed in our analysis of fixed effects activation studies.

Structural and Behavioral Domains

We also divided the studies and examined publication bias according to Brodmann Area as 

well as by cognitive/behavioral domain and found that publication bias was present in all 

sub-groups. Examination of publication bias by Brodmann Area was performed using the 

same metrics outlined previously to determine if one or more regions specifically studied in 

fMRI was driving the overall presence of publication bias. Briefly, the most commonly 

reported areas were BA6 (n=33) and BA9 (n=15). Other areas of activity included BA4 

(n=4), BA8 (n=2), BA10 (n=3), BA37 (n=1), BA45 (n=2), BA46 (n=4), BA47 (n=3), and 

unreported or non-significant BA (n=7) for a total N=26. Analyses were carried out by 

examining the presence of publication bias in BA6, BA9, and in the ‘other’ regions (due to 

the low numbers of studies reporting these sub-regions). In the examination of each 

Brodmann’s Area sub-group of studies, evidence of publication bias was evident by Egger’s 

method, Macaskill’s method, or both, thus, findings of publication bias did not appear to be 

regionally dependent. In addition to these independent analyses by BA, a multivariate 

extension of Macaskill’s regression was performed across the three regions of interest, both 

with and without outliers. An overall finding of publication bias was found, once again (with 

and without outliers p<0.0001), and between group differences were examined using 

pairwise t-tests. No differences were found to be significant between BA6 and BA9 (with 

outliers p=0.5, without outliers p=0.4), BA9 and BA ‘other’ (with outliers p=0.7, without 

outliers p=0.6), or BA6 and BA ‘other’ (with and without outliers p=0.3).

The most common cognitive/behavioral domain (as defined by the Sleuth tool in BrainMap) 

was a strict working memory task (n=55; e.g. the N-back task, etc). Of the remaining 19 

studies, there were working memory tasks that focused on perception (n=7), emotion (n=4), 

attention (n=3), language (n=2), interoception (n=1), reasoning (n=1), and space (n=1). 

Analyses were performed examining the strict working memory task compared with the 
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‘other’ tasks (again, due to low sample sizes in each domain). While these domains did not 

differ with respect to the presence of publication bias when examined individually, it was of 

interest to note that three out of the four reported extreme Cohen’s d values were from the 

perception domain. The multivariate Macaskill regression also showed that there was an 

overall presence of publication bias (p<0.0001 both with and without outliers), but that there 

were no differences between the two groups with respect to the presence of publication bias 

(with and without outliers p=0.4). Since these results did not differ from our overall 

findings, there appeared to be no systematically different bias based on functional domain. It 

appears that the presence of publication bias is not restricted by sub-region of the brain or 

cognitive/behavioral paradigm but is likely to be broadly present across the literature.

Discussion

Evidence of publication bias was observed in this body of literature using a number of 

different statistical techniques and examining two different metrics of effect size. However, 

in certain instances the bias is so prominent that it is clearly evident when simply graphing 

data via the funnel plot. While we specifically focused our examination at fMRI activation 

in the frontal lobe during a working memory task in normal subjects, this region and 

functional domain were chosen arbitrarily from all available brain regions and cognitive 

domains. However, the findings reported here are likely to be characteristic of the functional 

imaging literature as a whole. With such small sample sizes per study, we would expect that 

there should exist a large number of negative (i.e. supporting the null hypothesis) or non-

significant findings due to a lack of power alone. Since we did not restrict our analysis by 

age (groups ranged from children to seniors, minimum age 7, maximum age >61), one might 

further expect more studies with inconclusive findings in children since their patterns of 

activation tend to vary much more widely than adults (Thomason, Burrows et al. 2005; 

Thomason, Chang et al. 2008). Further work might be done to examine such hypotheses in 

detail.

Though publication bias appears to exist in the published cognitive activation literature 

assessed here, the importance of openly accessible data repositories should not be 

overshadowed by this outcome. With the amount of available results rapidly growing each 

year, the creation of BrainMap as a universal coordinate database for functional 

neuroimaging is both necessary and important (Fox, Mikiten et al. 1994; Laird, Lancaster et 

al. 2005). The ability to store and share meta-data for analysis, especially in the functional 

imaging field, is invaluable and having a way to then easily access this information is even 

more essential.

Since there may be inherent publication bias present in archives of neuroimaging study 

summary data, however, it is important to be aware of this possibility, and apply appropriate 

consideration to account for this when performing meta-analyses using these resources. 

Though we used the trim and fill method as a diagnostic to measure the presence or absence 

of publication bias, this method can be implemented in a way to account and adjust for 

publication bias in the literature (it “fills in” the missing non-significant studies presumed to 

be absent from the published literature) (Duval and Tweedie 2000). Other techniques 

estimate the minimum number of non-significant, unpublished studies (i.e. those with null 
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results). This number of “filed” studies, or the tolerance for future null results, is evaluated 

to test for whether the effect detected by meta-analysis would be overturned if only a few 

more non-significant studies were added (Rosenthal 1979). If this estimated number is 

small, often called the “fail-safe file drawer” estimate, then the findings in the meta-analysis 

are not robust enough, and not resistant to the file drawer threat.

Publication Bias and Reports of Inflated Correlations between fMRI Activity and 
Experimental Variables

Important concerns about the reporting of extremely high correlations in fMRI studies have 

recently been highlighted in the literature. Vul et al. (2009) examined how non-independent 

region of interest (ROI) analyses (where the correlations are both the selection criteria and 

the secondary statistics) inflate the correlations presented in functional imaging research, 

also known as non-independence or circular analysis. While the specific claims of the Vul et 

al. article have been hotly contested (Lieberman, Berkman et al. 2009), and the claim that 

many of the reported correlations were “impossibly high” may have been overstated 

(Poldrack and Mumford 2009), the study highlighted important issues in the functional 

imaging literature and the need for stringent and robust statistical techniques when analyzing 

data and reporting results. In particular, multiple comparison corrections should be utilized 

so that false-positive results based on chance are accounted for. However, tasks in working 

memory are stimulus-response driven and do not tend to suffer from non-independent ROI 

analysis, since behavior and survey data are not examined alongside BOLD activation (so 

are therefore “blinded” to subject performance). Vul et al.’s criticisms were restricted only 

to studies reporting linear correlations between regional fMRI activity and a behavioral or 

personality measure. Related to selecting bias, Yarkoni (2009) has described the effects that 

low sample size and power can have on the inflation of reported correlations, which is 

closely related to the type of publication bias tested for here. Clearly, the identification and 

reporting of inflated correlation results with a low sample size is a likely contributor to 

publication bias. Collectively, these biases are likely part of a family of potential biases that 

can affect observed statistical results, and testing for the effect of publication bias in meta-

analyses provides a further tool to analyze various bias components.

Potential Limitations in Our Analysis

One potential criticism of our approach to assessing publication bias in neuroimaging is that 

the use of the BrainMap database may have limited the number and type of studies 

examined in this analysis. The BrainMap database does not index every neuroimaging study 

appearing in the literature (Derrfuss and Mar 2009) - capturing only about 20% of the 

studies listed in PubMed in any given year. This might be taken to mean that the results 

obtained here are not reflective of the entire neuroimaging literature on frontal lobe activity 

or any other sample of studies drawn from this resource. This might suggest that our 

assessment of bias is itself biased toward only those studies contained in BrainMap. The 

entry of information into BrainMap occurs both through voluntary upload using the 

BrainMap Scribe tool or occurs through the activities of BrainMap curatorial staff. We are 

unaware that studies are filtered in any way according to task domain, brain region, sample 

size, level of effect size, etc – the criterion for entry is that they simply appeared in the peer-

reviewed published literature. So conversely, if evidence exists for publication bias in this 
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sample of the literature as indexed into this resource, it could be equally argued that perhaps 

the issue of publication bias is actually much more wide spread than this analysis indicates.

We might have also chosen other archives from which to draw the results data to assess 

publication more widely in the literature, such as SumsDB (Van Essen 2009) – an activation 

foci coordinate database similar to BrainMap. Sums DB captures a slightly smaller 

percentage of published articles than BrainMap and likely contains many of the same studies 

and accompanying summary data. Still other archives may not contain lists of activation foci 

but may contain results maps or the raw data itself (e.g. the OpenfMRI Project, http://

openfmri.org), may not have sufficient numbers of samples, or may necessitate additional, 

labor intensive data processing to extract the relevant sets of activation coordinates. In 

focusing on the BrainMap archive, however, we sought to note what would likely be present 

in any particular archive of published results available from such archives that others may 

use to perform other forms of coordinate-driven meta-analytic assessment. BrainMap, in 

particular, has been used to conduct such meta-analyses previously (Fox, Laird et al. 2005; 

Laird, Lancaster et al. 2005; Laird, Eickhoff et al. 2009) and can be expected to continue 

that role in future.

We do not wish to suggest that the BrainMap database, or any similar archive, is itself 

flawed in any way or that any specific cautions are needed in using the information 

contained therein beyond the consideration of reported effect sizes relative to sample sizes. 

On the contrary, the BrainMap database is ideally suited for examining publication bias 

because it specifically focuses on published activation foci results in the form of Talairach 

or MNI coordinates. The curators of this archive are to be commended for thoroughly and 

accurately presenting the types of study summary data that permit meta-analytic 

examinations such as these.

Indeed, we believe that publication bias may be evident in similar results data contained in 

many other neuroimaging archives containing the results from peer-reviewed articles. This 

article, however, focused on the most available and economical resource for testing for the 

presence of publication bias. We advise that careful examination of other archives by their 

curators should be undertaken to measure the degree of potential bias in publication across 

the collection of articles and these results made open for users to take into consideration.

We hope that by illuminating this potential issue future meta-analyses can test and account 

for publication bias consistently and systematically. While such tests are commonly applied 

to meta-analyses of epidemiological studies (Bracken 2005) and studies examining cancer 

causing agents (Vandenbroucke 1988), to our knowledge such methods have not been used 

consistently in biological studies, especially in neuroimaging and neuroscience, generally. 

Ours is the first such examination. Further research into the extent of publication bias in 

neuroimaging is likely necessary on an archive-by-archive basis to determine mitigating 

factors such as pressure to publish, requirements for funding, year of study effects (Van 

Horn and McManus 1992), the number of co-authors, among other potential variables that 

might give rise to such bias.
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Figure 1. 
Results for studies, plotted on a standard glass brain in Talairach space using BrainMap, 

showing each reported study local maxima located in the frontal lobes (n=68).
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Figure 2. 
Funnel plot of Pearson’s r by sample size for each study (n=74). This funnel plot shows the 

‘classic’ funnel plot asymmetry, with small, non-significant studies absent in the available 

research.
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Figure 3. 
Funnel plot of Cohen’s d by sample size for studies without extreme values (n= 70). While a 

‘large’ Cohen’s d value is usually d >0.8, most of our values are between 1 and 25, with 

funnel plot asymmetry due to the heavy right-tail evident here. Figure 3 Inset: Funnel plot of 

Cohen’s d by sample size for each study (n=74), showing the four extreme outlier values.
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