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Abstract

Hypertension has become a major global health burden due to its high prevalence and associated 

increase in risk of cardiovascular disease and premature death. It is well established that 

hypertension is determined by both genetic and environmental factors and their complex 

interactions. Recent large-scale meta-analyses of genome-wide association studies (GWAS) have 

successfully identified a total of 38 loci which achieved genome-wide significance (P < 5×10−8) 

for their association with blood pressure (BP). Although the heritability of BP explained by these 

loci is very limited, GWAS meta-analyses have elicited renewed optimism in hypertension 

genomics research, highlighting novel pathways influencing BP and elucidating genetic 

mechanisms underlying BP regulation. This review summarizes evolving progress in the rapidly 

moving field of hypertension genetics and highlights several promising approaches for dissecting 

the remaining heritability of BP. It also discusses the future translation of genetic findings to 

hypertension treatment and prevention.
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Introduction

Elevated blood pressure (BP) is a major global health challenge due to its high prevalence 

and associated increased risk of cardiovascular disease (CVD) and premature death [1–4]. 

An estimated 978 million adults, or 28% of the world’s adult population, had uncontrolled 

hypertension in 2008 [2]. More alarming, conservative estimates indicate that the global 

burden of hypertension will increase to more than 1.5 billion by 2025 [4]. As the most 
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important modifiable risk factor for CVD and all-cause mortality, elevated BP was 

responsible for approximately 7.6 million deaths globally, or 13.5% of all deaths, in 2001 [1, 

3].

BP is influenced by both genomic and environmental factors, as well as their interactions. 

Although BP was established early on as an inheritable trait, with many monogenic forms of 

BP dysregulation clearly described, our understanding of the genomic architecture of the 

complex BP phenotype was initially slow to progress [5]. Early genome-wide linkage 

analyses, candidate gene studies, and genome-wide association studies (GWAS) were 

relatively unsuccessful in identifying reproducible loci related to BP [6–12]. However, 

increased methodological stringency and the recent formation of large BP consortia have 

enabled important breakthroughs in hypertension genomic research. Through GWAS meta-

analyses, numerous loci have now been robustly associated with BP in populations of 

European and Asian ancestries [5, 13–16]. Although much of the heritability of BP still 

remains unexplained, there is renewed optimism as we turn our attention towards next-

generation approaches for the discovery of novel genomic determinants of this complex 

trait.

Genetics of Hypertension in the Pre-GWAS Era

Monogenic forms of hypertension

Some of the earliest advancements in human BP genomics research involved the 

identification of the genes responsible for severe inherited forms of hypertension and 

hypotension. Although many physiological processes are responsible for the regulation of 

BP, the vast majority of genes identified for monogenic BP disorders play key roles in renal-

sodium handling [17–23]. Many such genes have been shown to exert their effects by 

directly or indirectly influencing sodium and water reabsorption in the nephron’s distal 

tubule, leading to changes in plasma volume, cardiac output, and BP [24]. A number of 

reports have provided systematic reviews of a variety of types of monogenetic forms of 

hypertension and their related causal mutations [25–29].

Identification of genes responsible for monogenic hypertension and hypotension disorders 

has provided valuable insights into the genomic mechanisms and biological pathways 

underlying BP regulation. Furthermore, such research has also provided important clues to 

investigators of the complex essential hypertension phenotype. For example, in comparison 

to the rare variants in genes responsible for monogenic BP disorders, investigators have 

postulated that common genetic variation in these genes may have more modest effects, 

contributing to the inter-individual variation in the complex BP phenotype [30]. As such, 

these genes have been the target of myriad candidate gene studies of BP and hypertension 

[31], and are considered very promising targets for follow-up when present at GWAS-

identified loci [13].

Heritability of essential hypertension

Blood pressure has long been established as an inheritable trait, suggesting a significant 

contribution of genetic factors to this complex phenotype [32–34]. The heritability of BP has 

been shown to range from about 30–60% in pedigree data to as high as 70% in twin studies 
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[35–44]. Longitudinal data from the Framingham Heart Study showed that 57% and 56% of 

inter-individual variability in systolic (SBP) and diastolic BP (DBP), respectively, was due 

to genetic factors [34]. Data from Nigerian families suggest heritabilities of 34% to 45% and 

29% to 43% for SBP and DBP, respectively [43, 44]. Similarly, in the Chinese population, 

Gu et al estimated significant heritabilities of 31% and 32% for SBP and DBP, respectively 

[36].

Linkage and Candidate studies

Given the widespread success of genome-wide linkage analyses in the identification of 

genes for Mendelian disorders, investigators were initially optimistic about using this 

approach to localize genomic regions harboring susceptibility loci for the complex BP 

phenotype. Numerous genome-wide linkage scans of SBP, DBP, or hypertension were 

subsequently conducted, but with somewhat disappointing results. For example, among 

approximately 34 quantitative trait loci (QTLs) for SBP, DBP, and hypertension phenotypes 

which achieved a LOD score of 3.0 or higher [34, 45–53], only one locus has been 

replicated in independent samples. Hsueh and colleagues linked 2q31–2q34 to DBP among 

Old Order Amish families [45], while Morrison and colleagues linked 2q34 to hypertension 

among African-American families [46]. The failure of linkage analyses highlights the 

complexity of the genomic mechanisms underlying BP regulation. In addition, it has spurred 

a general shift away from this approach in favor of more powerful association methods.

To date, over 1,500 genes have been related to BP in human populations, with the vast 

majority derived from candidate gene association studies [54]. Based on a priori knowledge 

of biologic function, candidate gene studies offer a powerful approach for detecting genetic 

variants which influence common complex traits like BP. Despite their popularity, early 

candidate gene studies of BP were hampered by inconsistent findings, which to some extent 

may have reflected methodological limitations, including small sample sizes, poor 

phenotype measurement, inappropriate correction for multiple testing, and lack of 

verification in independent samples. Some investigators, however, have continued to support 

the use of candidate gene studies, noting that biologically relevant loci may be missed by 

GWAS which use very stringent alpha-thresholds for determining statistical significance 

[55]. Some of the more recent candidate gene studies have successfully identified genetic 

associations that are reproducible in independent samples [55–57]. Such successes are likely 

the results of the employment of large sample sizes and appropriate correction for multiple 

testing. Furthermore, more recent candidate gene studies have taken advantage of advances 

in high-throughput genotyping technology to identify gene variants related to BP utilizing 

gene-centric arrays which interrogate large numbers of variants in a multitude of genes and 

biological pathways [57, 58]. Using the HumanCVD BeadChip, which genotypes 

approximately 50,000 single nucleotide polymorphisms (SNPs) from 2,000 genes 

demonstrated to associate with CVD-related traits, Johnson and colleagues identified BP-

related SNPs in the LSP1/TNNT3, MTHFR-NPPB, AGT, ATP2B1, NPR3, HFE, NOS3 and 

SOX6 genes among a discovery-stage sample of 25,118 participants and replication study of 

59,349 participants [58]. In summary, these findings demonstrate that despite their tarnished 

reputation, candidate gene studies may still play a role in our quest to discover variants 

related to BP.
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Progress in the GWAS Era

By interrogating a dense panel of SNPs covering the entire genome, GWAS represent an 

agnostic and powerful approach for the discovery of susceptibility loci for common complex 

traits. As such, there was initial enthusiasm at the prospect of using GWAS to identify novel 

BP-related variants. However, in contrast to GWAS for other CVD-related phenotypes [6, 

59, 60], early GWAS failed to identify any associations with BP at a level of genome-wide 

significance (P < 5×10−8) [6, 8–11]. For example, in the Wellcome Trust Case Control 

Consortium (WTCCC), investigators used a 500K Affymetrix SNP chip to compare 

approximately 2,000 cases for each of 7 common diseases, including hypertension, to 3,000 

shared controls. In this study, a total of 24 independent association signals were identified 

for 6 diseases with the exception of hypertension. There were no signals that achieved even 

a suggestive association of P<5×10−7 with hypertension [6]. While a couple of the more 

recent GWAS have identified BP loci that meet conventional significance thresholds with 

evidence of replication [61, 62], the failure of early GWAS created an impetus for the 

formation of consortia with the purpose of conducting GWAS meta-analyses in very large 

samples capable of detecting the modest effects of BP loci [5, 13–16].

In June 2009, two consortia, CHARGE and Global Blood Pressure Genetics (Global 

BPgen), reported findings of their large-scale GWAS meta-analyses. With discovery-stage 

sample sizes of 29,136 and 34,133 participants in CHARGE and Global BPgen, 

respectively, they together identified 13 independent loci associated with BP at a level of 

genome-wide significance (P < 5×10−8) [13, 14]. These findings represented an important 

advance in BP genomics research, providing some of the first robust evidence of genetic 

association for the BP phenotype. Since the 2009 publications, four additional large BP 

GWAS meta-analyses have been conducted in European and East Asian populations. These 

include two from the International Consortium of BP (ICBP), which is the largest GWAS 

meta-analysis of BP to date, with a discovery-stage sample of approximately 70,000 

participants [5, 16]; one from the HYPERGENES Project, with a smaller sample size of 

1,865 hypertension cases and 1,750 controls [63]; and one from the Asian Genetic 

Epidemiology Network (AGEN), with GWAS data from nearly 20,000 East Asian 

participants and follow-up genotyping in an additional 30,000 [15]. In total, these studies 

have identified 38 loci robustly associated with BP traits (Table 1).

Although inference of causal genes and variants based on GWAS signals alone is difficult 

due to regional linkage disequilibrium (LD) structure, findings from these large GWAS 

meta-analyses have provided robust association evidence for some biological candidate 

genes previously suspected to influence BP. For example, meta-analysis of CHARGE and 

Global BPgen findings revealed an association of SBP with intronic marker rs1004467 

(P=1.28×10−13) of the CYP17A1 gene, which is responsible for a monogenic form of 

hypertension [14, 64]. Similarly, in the GWAS meta-analysis by Global BPgen, Newton-

Cheh and colleagues identified a strong signal for SBP at 1p36. The most significant SNP at 

that locus was rs17367504 (P=7×10−24), an intronic variant of the MTHFR gene, which has 

been implicated in BP due to its role in regulating homocysteine, a biomarker linked to 

endothelial dysfunction and hypertension [65]. Several other relevant biological candidates 

are also present at this locus, including NPPA and NPPB, which encode natriuretic peptides, 
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renin-angiotensinogen-aldosterone system (RAAS) component AGTRAP, and ion channel 

CLCN6 [13].

While GWAS meta-analyses results have provided association evidence for some genes with 

known biologic relevance, the majority of loci identified had not been previously implicated 

in studies of BP regulation in human populations. For example, the ATP2B1 gene at the 

12q21 locus achieved genome-wide significance for SBP, DBP, and mean arterial pressure 

(MAP) in GWAS meta-analyses conducted by CHARGE, Global BPgen, and ICBP [5, 13, 

14, 16], but has never been linked with BP regulation. The post hoc investigation into the 

potential biologic plausibility of ATP2B1 revealed a previous experiment demonstrating 

increased mRNA expression in the spontaneously hypertensive rat [66]. While some genes 

at implicated loci, like that of ATP2B1, have demonstrated plausibility for association with 

BP based on our current knowledge, other loci discovered by GWAS meta-analyses have 

provided completely novel insights into BP regulation. For example, the SH2B3 locus 

achieved genome-wide significance for SBP, DBP, and MAP in GWAS meta-analyses by 

CHARGE, Global BPgen, and ICBP [5, 13, 14, 16]. SH2B3 had been shown previously to 

exert an effect on cytokine sensitivity in studies of knockout mice and was associated with 

autoimmune conditions in human populations [14]. Based on these studies, Levy and 

colleagues speculated that immune response pathways may influence BP by mechanisms not 

previously appreciated [14].

As the largest consortium of GWAS conducted in the East Asian population, the AGEN 

Hypertension meta-analysis replicated 7 of the 13 loci that had been identified previously by 

the CHARGE and Global BPgen consortia, including 4 at a level of genome-wide 

significance [15]. Of particular importance, the AGEN meta-analysis identified 5 novel loci 

which achieved P < 5×10−8 for association with BP phenotypes [15]. These findings 

indicate that the physiologic effects of many common polymorphisms may be generalizable 

across populations with diverse genetic backgrounds. On the other hand, the success of 

AGEN also suggests that genomic mechanisms may be discovered in unique populations 

due to differences in allele frequencies or factors that interact with genes to influence BP. 

Thus, the investigation of genomic factors influencing BP in populations with differing 

genetic backgrounds should continue to be pursued. Findings from these studies will be 

essential to enhancing our understanding of the molecular mechanisms underlying BP 

regulation.

Promising Approaches for Dissecting the Missing Heritability of 

Hypertension

To date, most identified genetic variants have displayed modest effect sizes. It was estimated 

that the currently identified common variants explain only about 0.9% of the variability of 

BP, leaving a large proportion of heritability unexplained [5]. As we look towards the future, 

new approaches are being sought to help explain the “missing heritability” of BP. On the 

horizon are global GWAS meta-analyses, research of gene-gene and gene-environment 

interactions (including epigenetic studies), and, as we move beyond GWAS, next-generation 

sequencing studies. While setbacks are likely to occur as we continue to move forward, 
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there is optimism that such work will make headway in our quest to better understand the 

genomic architecture of BP.

Global GWAS meta-analyses

In the ICBP GWAS meta-analysis, Ehret and colleagues estimated that up to 2.2% of inter-

individual variation in BP would eventually be explained by approximately 116 common 

genetic variants theorized to associate with BP (compared to 0.9% of variation explained by 

29 currently identified SNPs) [5]. However, they showed that very large sample sizes would 

be required to detect these remaining SNPs [5]. Mega-consortia are now being formed that 

include genetically diverse samples from around the world. By substantially increasing 

sample sizes, these studies will have power to detect additional BP loci [67, 68]. 

Furthermore, such research will present an outstanding opportunity to refine genomic 

signals in the search for causal variants by leveraging LD structure across populations [67, 

68]. In undertaking these studies, investigators will likely encounter new challenges, such as 

how to appropriately account for the genetic heterogeneity that exists between ethnically 

diverse samples while maximizing study power [67, 68]. However, novel insights into other 

phenotypes, such as serum proteins, have already been identified by global GWAS meta-

analysis approaches [69]. It is likely that BP will soon follow suit.

Gene-gene and gene-environment interactions

Given the commonly accepted belief that complex traits like BP are influenced by the 

interaction of genetic and environmental factors, it has been suggested that research of such 

interactions could help explain some of the missing heritability of these traits [30, 70, 71]. 

Still, there is a paucity of data from GWAS examining how genes interact with each other 

and with environmental factors to influence BP. Since current methods for detecting 

interactions have been shown to lack power, investigators may be hesitant to undertake such 

analyses, especially in light of the early difficulties of BP GWAS in identifying simple 

single-marker associations [72]. However, before moving completely beyond GWAS, it may 

be worthwhile to leverage data from existing large consortia to explore the interactions 

between genes and environmental factors on BP.

Epigenetics

Epigenetics is the study of heritable alterations in phenotypes and gene expression that occur 

without changes in the DNA sequence [73]. The epigenetic control of gene expression is 

critical for many cell functions, such as tissue specificity, germline specificity, imprinting, 

and X-chromosome inactivation [74]. Epigenetic processes include nucleic acid methylation, 

histone modification, nucleosome positioning, transcription control with DNA-binding 

proteins and noncoding RNAs, and translation control with microRNAs and RNA-binding 

proteins. Epigenetic mechanisms have been involved in the pathogenesis of CVD, including 

hypertension, [73, 75] and suggested as a potential mechanism for explaining a part of 

missing heritability of these complex diseases [74]. Studies have already shown a loss of 

global genomic methylation content among hypertension patients, as well as 

hypermethylation of the HSD11B2 gene [76, 77]. To reveal epigenetic biomarkers 

implicated in hypertension etiology, progression, and prevention, the National Heart, Lung, 
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and Blood Institute convened a working group of multidisciplinary experts to identify 

urgently needed studies and resources and the future direction of epigenetic research of 

hypertension [74]. A better understanding of epigenetic changes in response to 

environmental and genetic stresses is needed to clarify the factors that act together to 

determine an individual’s BP.

Rare variants and sequencing studies

Cohen and colleagues achieved early success identifying rare variants with large influence 

on lipid phenotypes by sequencing extremes of the population distribution, prompting 

investigators to turn their attention towards clarifying the role of rare genetic variants in the 

complex BP phenotype [78–80]. There is already some suggestion that rare variants could 

help explain the missing heritability of BP. For example, Ji and colleagues reported that 

carriers of rare functional mutations in three renal salt-handling genes (SLC12A3, SLC12A1, 

and KCNJ1) had significantly reduced BP compared to non-carriers [81]. Similarly, Rao et 

al resequenced a locus of the CHGA gene and discovered a Gly364Ser amino-acid 

substitution that decreased DBP by approximately 5 mmHg [82]. While these previous 

studies have sequenced a limited number of genes, the advent of next-generation sequencing 

technology has made it plausible to deeply sequence large stretches of DNA, whole exomes, 

or even the entire genome in large population-based studies [83]. As such, the National 

Heart, Lung, and Blood Institute sponsored an initiative to identify low-frequency and rare 

variants which may contribute to heart, lung, and blood disorders by conducting whole-

exome sequencing in ongoing population-based studies [84]. With much of the sequencing 

completed and catalogued in the database of Genotypes and Phenotypes (dbGaP), results 

from the BP working group are eagerly anticipated [85].

Prospects for Translation of Genetic Findings

Development of novel drugs for hypertension treatment

Recent large-scale genetic studies have implicated novel biological pathways in BP 

regulation, providing potential targets for the treatment of hypertension and the prevention 

of CVD. However, the translation of genetic findings from GWAS into the clinic remains 

limited and a topic of intense debate. It takes a considerable length of time to move from a 

gene target identified by association study to an approved marketed drug, and most GWAS 

results have become available only in the past few years. In addition, the effect sizes of 

GWAS-identified BP variants are relatively small (ranging from 0.2–1.0 mm Hg per risk 

allele) [5], and the merit of their utilization in clinical practice is not clear. Nevertheless, the 

case for statins in the treatment of high low-density lipoprotein (LDL)-cholesterol provides 

optimism for the potential use of GWAS-identified BP genes as pharmaceutical targets for 

antihypertensive drug development [86]. Although statins were developed in the last 

century, a recent GWAS identified that the gene (HMGCR) encoding the statins’ target 

protein, 3-hydroxy-3-methylglutaryl coenzyme A reductase, was associated with plasma 

LDL-cholesterol levels (P for rs12654264 = 1 × 10−20) [87]. Despite an effect size of only 

2.7 mg/dl per allele of the rs12654264 variant [87], the statin drug can lower LDL-

cholesterol by 40–60% [88].
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Although the development of novel drugs based on GWAS findings will take some time, 

Sanseau and collaborators have suggested a potential shortcut for using emerging genomics 

research to assuage human disease. In an analysis conducted using data from the National 

Human Genome Research Institute’s repository of GWAS data and Informa Healthcare’s 

Pharmaprojects database of drug development projects [89], they found that out of 155 

genes that could be mapped to GWAS traits and were also targeted by available drugs, 92 

genes were associated with drugs that had indications for diseases that differed from their 

mapped GWAS traits. These findings suggest that GWAS data may help us identify novel 

uses for existing drugs, leading to immediate translational opportunities for GWAS findings.

Hypertension risk prediction

Improving risk prediction is a key objective in genomic studies of human diseases and is an 

important component of “personalized medicine,” including risk stratification, targeted 

prevention, and therapeutic interventions. However, GWAS-identified variants that have 

been robustly associated with BP and hypertension have relatively small effect sizes. In 

addition, most GWAS have used cross-sectional data, and the predictive values of variants 

identified by such studies need validation in prospective cohorts. Fortunately, investigators 

have begun to implement large-scale longitudinal cohorts to confirm the associations 

between GWAS-identified BP variants and both hypertension incidence and BP change over 

time. For example, Fava and colleagues recently validated a genetic risk score (GRS) with 

aggregate genetic information from 29 GWAS-BP SNPs. These variants were cumulatively 

and independently associated with hypertension incidence and BP changes over 

approximately 23 years’ follow-up among more than 17,000 Swedes [90]. However, their 

analyses did not show an improvement in the prediction of incident hypertension beyond 

traditional risk factors. Indeed, the magnitude of association of the GRS with hypertension 

incidence is substantially lower than that of obesity and prehypertension status, but 

comparable to that of either positive family history of hypertension or the presence of 

diabetes. These results suggest that it is still too early to consider GWAS findings in the 

prediction of hypertension. In the future, however, knowledge of additional BP-related 

genomic variants and their complex interactions with both genetic and environmental factors 

could substantially improve the GRS and lead to its translation to the clinical setting.

Antihypertensive pharmacogenomics

Another promising area of genomic research is its application in the prediction of individual 

response and side effects to antihypertensive therapies. Although this is still far away from 

clinical application, the past decade has seen substantial growth in the literature surrounding 

hypertension pharmacogenomics. Most of the studies have been focused on candidate genes, 

primarily direct protein targets of a drug or involved in the physiological or pharmacological 

signaling pathways relevant to a drug’s action. For example, genetic variants of several 

genes from the RAAS (ACE, AGT, AGTR1, AGTR2, and REN) have been widely 

investigated for their associations with BP response to angiotensin-converting enzyme 

inhibitors and angiotensin II receptor blockers [91]. Variants of β1-adrenergic receptor 

(ADRB1) from the sympathetic nervous system and its associated regulatory protein (GRK4) 

have shown significant interaction effects with β-blocker on BP lowering [92–94]. In 

addition, renal sodium absorption-regulating genes ADD1, WNK1, and NEDD4L have 
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influenced BP response to diuretics in an interactive manner [95]. With the advent of 

GWAS, Turner et al published the first GWAS of antihypertensive pharmacogenomics [96], 

in which theyhey identified and validated a region on chromosome 12 that was associated 

with DBP response to hydrochlorothiazide. This region includes LYZ, YEATS, and FRS2 

genes that had not been previously implicated in hypertension or response to diuretics. The 

study highlights the potential power of the GWAS approach in antihypertensive 

pharmacogenomics. Other groups are conducting ongoing pharmacogenomics studies that 

will also utilize GWAS [97].

Although there have been significant advances in hypertension pharmacogenomics research, 

most of the studies were not sufficiently powered, with relatively small sample size and lack 

of replication samples. Thus, collaboration among investigators to allow large-scale joint 

analyses and replication will be essential in advancing this field. Ethnic differences have 

also been noted in response to the BP-lowering effects of antihypertensive medications, as 

seen with β-blockers and diuretics [98]. This not only supports the role of genetic factors in 

determining individuals’ response to antihypertensive medications, but it also highlights the 

necessity and importance of utilizing multiple ethnicities to identify genetic variants 

responsible for varied BP response to treatment.

Conclusions

Although the genomic mechanisms underlying BP regulation have yet to be fully elucidated, 

there have been important advances in the field. Initially slow to progress, genetic 

association studies seem to have finally delivered on their promise to identify common 

polymorphisms associated with this trait. While it is true that much of the heritability of BP 

remains unexplained, the variants robustly identified by previous GWAS meta-analyses 

already show non-negligible associations with BP and its comorbid conditions. Furthermore, 

with the formation of global GWAS meta-analysis consortia, the emergence of epigenetics, 

and the advent of next-generation sequencing technology, the future for BP genomics 

research is bright. Investigators are optimistic that the coming years will offer a clearer 

picture of the genomic architecture of BP. Eventually, such insights could be used to 

identify individuals at high risk for hypertension who may benefit most from primary 

prevention efforts, and could provide new biological targets for developing more effective 

hypertension treatment methods. In addition, advances in pharmacogenomics of 

antihypertensive drugs may be used to develop novel personalized treatments for 

hypertension. Advancements in all of these areas will have important public health and 

clinical implications that will help to curb the growing cardiovascular disease epidemic at 

national and global levels.
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