Table 1. Result from fitted Y* response function for TEST 1 analysis (first row), and from the different eye movement parameters (LMM analysis), for TEST 2.
Parameters | Model | T | Z | T*Z | AIC | R2 | Random Slope T factor | Random Slope Z factor | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
βT | PT † | βZ | PZ † | γZ | Pγ † | AIClmm | AIC lm | Marg. | Cond. | PS1 | corr | PS2 | corr | ||
Y* | § | 5.54 | *** | 0.02 | 0.68 | 632.9 | 765.9 | 0.06 | 0.49 | ||||||
N° Saccades | † | 3.02 | *** | 0.34 | *** | 1170.8 | 1283.9 | 0.23 | 0.28 | ||||||
Δφ [°] | ††† | 8.69 | *** | 1.71 | *** | 1833.8 | 2024.7 | 0.19 | 0.83 | *** | -0.98 | ||||
LTs [s] | †† | -0.03 | 0.12 | -0.02 | ** | 0.04 | ** | -3080.4 | -2769.5 | 0.02 | 0.46 | ||||
CUSPn | † | 0.37 | *** | 0.07 | *** | -737.6 | -667.5 | 0.14 | 0.28 | ||||||
SPn | †††† | 0.50 | *** | -0.06 | *** | -1021.7 | -866.8 | 0.28 | 0.40 | *** | -0.75 | ||||
NTP [s] | ‡ | -0.17 | ** | -0.06 | * | 0.09 | * | -1902.1 | -1902.8 | 0.04 | |||||
Gain | ††† | 0.32 | ** | 0.01 | * | -832.79 | -504.7 | 0.02 | 0.80 | * | -0.95 | ||||
TAU [s] | ††† | -0.01 | 0.41 | 0.00 | 0.76 | -2841.8 | -2754.9 | 0.00 | 0.66 | ** | -0.92 | ||||
ΔHn θ | † | 0.13 | 0.62 | 0.1 | 0.01 | 1279.8 | 1287.8 | 0.004 | 0.1 | ||||||
ΔHn φ | ††† | 0.61 | 0.012 | 0.12 | *** | -238.37 | -3.98 | 0.05 | 0.78 | *** | -0.92 |
The second column reports the model selected for the specific parameter under analysis (see below for the symbol legend). The subsequent columns report the regression coefficients (β) and p-values (p) of the fixed factors (flight time T, ball arrival height Z) and their interaction term (when significant). The sixth column reports the AIC values computed including the random factor (AIClmm) and without it (AIClm). If AIClmm < AIClm the inclusion of the random factor (i.e. subject) is justified, indicating that the particular eye movement parameter varies across subjects. The seventh column reports the marginal and the condition R2 coefficient of the regression. Finally the two rightmost columns show the significance of the by-subject adjustment of the slope relatively to both the T factor (ps1), and the Z factor (ps2), and the correlation between the two random parameters (intercept and slope for each factor).
*: p_value <0.05;
**: p_value<0.01;
***: p_value<0.001.
§ (GLMM)Model type Yij* = β0 + βTtj + βzzj + εij + μi;
† (LMM) Model type (LMM) vij = β0 + βTtj + βzzj + S0i +εij;
†† (LMM) Model type: vij = β0 + βTtj + βzzj + γtjzj + S0i +εij;
††† (LMM) Model type: vij = β0 + (βT + Sli)tj + βzzj + S0i + εij;
†††† (LMM) Model type: vij = β0 + βTtj + (βz + S2i)zj + S0i +εij;
‡ (LM) Model type: vij = β0 + βTtj + βzzj + γtjzj + εij