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Abstract

In vitro examinations of the effect of saturated fatty acids on skeletal muscle insulin action
often use only one or two different fatty acid species, which does not resemble the human
plasma fatty acid profile. We compared graded concentrations (0.1-0.8mM) of 3 different
lipid mixtures: 1) a physiologic fatty acid mixture (NORM; 40% saturated fatty acids), 2) a
physiologic mixture high in saturated fatty acids (HSFA; 60% saturated fatty acids), and 3)
100% palmitate (PALM) on insulin signaling and fatty acid partitioning into triacylglycerol
(TAG) and diacylglycerol (DAG) in cultured muscle cells. As expected, PALM readily im-
paired insulin-stimulated pAktThrsos/Akt and markedly increased intracellular DAG content.
In contrast, the fatty acid mixtures only modestly impaired insulin-stimulated pAkt'""%8V/
Akt, and we found no differences between NORM and HSFA. Importantly, NORM and
HSFA did not increase DAG content, but instead dose-dependently increased TAG accu-
mulation. Therefore, the robust impairment in insulin signaling found with palmitate expo-
sure was attenuated with physiologic mixtures of fatty acids, even with a very high
proportion of saturated fatty acids. This may be explained in part by selective partitioning of
fatty acids into neutral lipid (i.e., TAG) when muscle cells were exposed to physiologic

lipid mixtures.

Introduction

Epidemiological studies provide considerable support for the notion that diets high in saturated
fats are associated with accelerated development of several cardiometabolic abnormalities, in-
cluding insulin resistance and type 2 diabetes [1]. To investigate mechanisms underlying these
associations, experiments performed in vitro commonly incubate cultured cells in high concen-
trations of a single saturated fatty acid (e.g. palmitate (C16:0)), which potently impairs insulin
signaling [2-4]. Interestingly, the addition of an unsaturated fatty acid (e.g. oleate (18:1)) to
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palmitate in the incubation media can attenuate, and even completely prevent the deleterious
effect(s) of palmitate on insulin signaling in cultured muscle cells [5-8]. However, exposing
muscle cells to media containing only one or even two different fatty acids (often in non-
physiologic concentrations/proportions) is not likely to provide an accurate reflection of elevat-
ed fatty acid availability common in obesity [9-12]. Thus, the primary aim of this study was to
determine the effects of physiologic lipid mixtures (resembling the human plasma fatty acid
profile) containing a normal vs. high proportion of saturated fatty acids on insulin signaling in
cultured muscle cells.

Impaired insulin action in obesity is linked to an excessive fatty acid uptake into insulin sen-
sitive tissues, including skeletal muscle [13]. Skeletal muscle accumulation of bioactive lipids
such as diacylglycerol (DAG) is associated with the development of insulin resistance [14-16].
However, because preferentially incorporating fatty acids into triacylglycerol (TAG) is consid-
ered protective (as it limits fatty acid substrate available for the formation of more bioactive
lipid intermediates) [17], a secondary aim was to determine the effects of these lipid mixtures
on muscle cell fatty acid partitioning into DAG and TAG.

Materials and Methods
Cell culture

Mouse C2C12 myoblasts (American Type Culture Collection, Manassas, VA) were grown in
high glucose Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal
bovine serum and 1% (v/v) antibiotic-antimycotic solution in tissue culture treated plates. All
cells were passed 3-5 times, and ultimately plated in 6-well, 35mM/well tissue culture treated
plates. Upon reaching ~70% confluence, myoblasts were switched to high glucose (~25mM)
DMEM supplemented with 2% (v/v) horse serum and 1% (v/v) antibiotic-antimycotic solution
to induce differentiation. This media was replaced at 48 h. At 96 h (4 d), differentiated myo-
tubes were used in the experiments described below. All cell culture media and media supple-
ments were purchased from Gibco-Invitrogen (Grand Island, NY).

Experimental procedures

Differentiated mouse C2C12 myotubes were incubated for 12 hours in media containing low
glucose (~5mM) serum-free DMEM (with 1% (v/v) antibiotic-antimycotic solution), and 2%
(w/v) fatty acid-free bovine serum albumin (BSA) supplemented with one of three different
fatty acid mixtures: 1) a normal physiologic mixture of fatty acids reflecting their proportion in
plasma of a healthy human (NORM; 30% oleate [C18:1], 25% linoleate [C18:2], 25% palmitate
[C16:0], 15% stearate [C18:0], and 5% palmitoleate [C16:1], thus 40% saturated fatty acids), 2)
a physiologic mixture of fatty acids resembling a diet very high in saturated fatty acids (HSFA;
20% oleate, 15% linoleate, 35% palmitate, 25% stearate, and 5% palmitoleate, thus 60% saturat-
ed fatty acids), or 3) 100% palmitate (PALM). The NORM and HSFA fatty acid mixtures were
formulated by Nu-Chek Prep Inc. (Elysian, MN). We performed incubations at 4 different con-
centrations of the 3 fatty acid mixtures (0.1, 0.2, 0.4, or 0.8mM), and a “control” treatment,
without fatty acid (OmM). After the 12 hour incubation, myotubes were treated without or
with insulin (100nM) for 15min, and then harvested for later analysis (described below). All
measures of lipid accumulation and lipid metabolism regulatory proteins were made using
non-insulin treated myotubes. All analyses were performed on n>3 experiments.
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Ethics statement

Written, informed consent was obtained from all human subjects prior to participation in the
studies described below. Importantly, all procedures were approved by the University of Michi-
gan Institutional Review Board, in accordance the principals expressed in the Declaration of
Helsinki.

Human primary muscle cell culture

Some experiments were repeated in primary myotubes cultured from human skeletal muscle
(n>3 experiments). Vastus lateralis biopsies were obtained from 6 obese non-diabetic men and
women (male/female: 1/5; age 32+2years; BMI 39.0+1.7kg/m?). Muscle biopsy samples
(30-50mg) were dissected free of adipose and connective tissue, rinsed in saline, and minced in
low glucose DMEM (with 1% (v/v) antibiotic-antimycotic solution). Minced muscle was di-
gested at 37°C in low glucose DMEM supplemented with 0.5% type II collagenase. Digested
muscle was resuspended in low glucose growth media and placed in untreated tissue culture
plates at 37°C to facilitate adherence of non-satellite cell populations. Non-adhering superna-
tant (containing satellite cells) was filtered (100pum), resuspended in low glucose growth media,
and placed in a Matrigel-treated plate (Sigma-Aldrich). Experiments were performed following
5-7d of differentiation as described for C2C12 muscle cells.

Cell harvest

Cells were rinsed twice with ice-cold Dulbecco’s phosphate buffered saline (DPBS), treated
with lysis buffer (20mM Tris-HCI pH 7.5, 150mM NaCl, ImM Na,EDTA pH 8.0, ImM EGTA
pH 8.0, 1% (v/v) Triton X-100, 2.5mM NaPP, ImM -glycerophosphate, ImM Na;VOy,, and
1x SigmaFAST protease inhibitor cocktail), and scraped on ice into microfuge tubes. Lysates
were centrifuged at 20,000 g for 10 min at 4°C. Supernatants were collected and tested for pro-
tein concentration (Pierce BCA protein assay, Thermo Scientific, Rockford, IL). For cell lipid
content assays (described below), DPBS was used as a harvest solution and lysates were not
centrifuged prior to use in cell lipid content assays.

Western blotting

20-30 pg of protein were separated by SDS-PAGE and transferred to nitrocellulose mem-
branes. To minimize potential variability between analyses, all western blots were performed
using aliquots of the same master preparation for each sample. Furthermore, to help ensure
equal loading and proper transfer of proteins, all membranes were visually inspected using
Ponceau-S staining immediately after transfer. Various proteins were targeted within whole
cell lysates with primary antibodies against: Akt (9272; Cell Signaling Technology, Danvers,
MA), pAkt™3% (9275; Cell Signaling Technology), GSK3p (9315; Cell Signaling Technology),
pGSK3o/ 212 (9331; Cell Signaling Technology), AS160 (ABS54; EMD Millipore, Billerica,
MA), pASl60Thr642 (3028 P1; Symansis, Auckland, New Zealand), GPAT1 (4613; ProSci Incor-
porated, Poway, CA), DGAT1 (NB110-41487; Novus Biologicals, Littleton, CO), ATGL (2138;
Cell Signaling Technology), CGI-58 (NB110-41576; Novus Biologicals), and HSL (4107; Cell
Signaling Technology). Membranes were incubated with appropriate secondary antibodies and
developed using enhanced chemiluminescence (Amersham Biosciences, Piscataway, NJ).
Bands were imaged and then quantified via densitometry (AlphaEaseFC, Alpha Innotech
Corp., Santa Clara, CA). Data are presented in arbitrary units relative to values obtained for
0mM (control) treated myotubes.
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Cellular triacylglycerol and diacylglycerol concentrations

Cells were harvested in ice-cold DPBS, and lipids were extracted overnight at 4°C in a single-
phase mixture of chloroform-methanol-aqueous homogenate (1:2:0.8, v/v/v). Internal lipid
markers for TAG, DAG, monoacylglycerol, non-esterified fatty acid (NEFA), phospholipid
(PL), and cholesterol ester having fatty acid moieties of odd carbon number were added at the
start of extraction for subsequent purity and recovery determinations (Nu-Chek Prep Inc.,
Waterville, MN; Avanti Polar Lipids Inc., Alabaster, AL). Fatty acid methyl esters from TAG
and DAG were generated, purified, and detected as previously described [18]. Data are pre-
sented in arbitrary units relative to values obtained for OmM (control) treated myotubes.

Statistical analysis

A two-way (dose x treatment type) or one-way (treatment type) ANOVA was used to test for
significant differences in factor means. Tukey’s post-hoc pair-wise analysis was used to exam-
ine significant F values. Statistical significance was defined as P<0.05.

Results
Insulin signaling

As anticipated, incubating the myotubes in PALM readily suppressed insulin-stimulated
pAktThr308/Akt even at the lowest dose (0.1mM; P<0.001), and this effect was dose-dependent
(Fig. 1A). In contrast, incubating myotubes in a mixture of fatty acids resembling a “normal”
plasma fatty acid profile (NORM), induced a lesser (yet statistically significant) suppression in
insulin-stimulated pAkt™™>%/Akt (Fig. 1A). Interestingly, incubating myotubes in the fatty
acid mixture containing a very high physiologic proportion of saturated fatty acids (HSFA) did
not exacerbate the modest suppression in insulin-stimulated pAkt 2%/ Akt observed with
NORM. Consequently, PALM treatment resulted in significantly lower insulin-stimulated
pAkt™3%/ Akt compared with NORM and HSFA at the 0.4 and 0.8mM doses, but there was
no difference between NORM and HSFA (Fig. 1A). Importantly, basal (i.e. non-insulin stimu-
lated) phosphorylation of Akt was not altered by exposure to any of the various treatments, at
any treatment dose (S1A Fig).

Despite the marked reduction in pAkt™2%%/Akt in response to PALM incubation, this was
not accompanied by a similarly robust suppression in insulin-stimulated phosphorylation of
targets downstream of Akt, including pGSK3B***/GSK3p and pAS160™™*2/AS160 (S1B and
S1C Fig). This phenomenon may be explained by the fact that insulin induced only a mild in-
crease in the phosphorylation of both GSK3f and AS160 (~50% and ~100% increase, respec-
tively, compared with >10-fold increase in pAkt'™>%), making it challenging to detect a
reduction in phosphorylation in response to PALM.

Fatty acid partitioning

PALM incubation increased cellular DAG content in a dose-dependent manner (Fig. 1B). Con-
versely, neither NORM nor HSFA increased DAG (Fig. 1B). Importantly, the pattern of change
in cellular TAG content in response to the different treatments was nearly opposite to that of
DAG (Fig. 1C). Both NORM and HSFA resulted in robust, dose-dependent increases in cellular
TAG content, while this effect was significantly attenuated with PALM (Fig. 1C). In general,
the fatty acid composition of both DAG and TAG tended to resemble the fatty acid(s) provided
in the incubation media, particularly at the higher treatment doses when lipid accumulation
was greatest (S1 and S2 Tables).
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Fig 1. Insulin signaling and fatty acid partitioning in C2C12 muscle cells. Muscle cells were incubated
with PALM (open), NORM (filled), or HSFA (hatched). (A) Insulin-stimulated pAktTh'3°8/Akt, and non-insulin-
stimulated (i.e., basal) accumulation of (B) DAG and (C) TAG. All data are expressed relative to a no fatty
acid (OmM) condition, and representative blots are inset above figure panel A. *P<0.05 vs. OmM. 1P<0.05
vs. NORM and HSFA within treatment dose. $P<0.05 vs. HSFA within treatment dose. DAG, diacylglycerol;
TAG, triacylglycerol; AU, arbitrary units.

doi:10.1371/journal.pone.0120871.g001
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Factors regulating lipid storage and breakdown

The fatty acid partitioning pattern in PALM compared with NORM and HSFA treated muscle
cells was not explained by differences in protein abundance of key TAG synthesis enzymes
GPATI and DGAT]I, or lipolytic regulators, including ATGL co-activator CGI-58 and HSL
(Fig. 2). It is noteworthy that protein abundance of the TAG lipase ATGL was increased dose-
dependently in all fatty acid treatments (Fig. 2C). However, this effect seems unlikely to have
been a major determinant of fatty acid partitioning.

Human primary muscle cell culture

Unlike the C2C12 experiments, human primary muscle cells tended to exhibit modest differ-
ences in basal pAkt™™3%/Akt in response to fatty acid treatment. To account for this, insulin-
stimulated pAkt™™ %%/ Akt was determined as the increase above basal pAkt ™%/ Akt (i.e.
delta pAkt™%/Akt). The effects of our fatty acid treatments on the suppression of insulin-
stimulated pAkt™3%/Akt in the human primary cells (Fig. 3A), resembled our findings in
C2C12 myotubes (Fig. 1A), but none of these differences in our human cells reached statistical
significance. Fatty acid partitioning within the human primary muscle cells reinforced our ob-
servations from C2C12 experiments; PALM primarily increased DAG concentration, while all
lipid treatments increased TAG content (Fig. 3B and 3C).

Discussion

The major finding of this study was that unlike the robust suppression in insulin signaling
found when cultured myotubes were incubated in palmitate, exposing myotubes to a physio-
logic mixture of fatty acids containing a very high proportion of saturated fatty acids (60%)
only modestly impaired insulin-stimulated phosphorylation of Akt. Moreover, insulin signal-
ing in response to this high saturated fatty acid mixture (HSFA) was no different to that found
when cultured myotubes were incubated in a fatty acid mixture with a relatively “normal” pro-
portion of saturated fatty acids (NORM; 40% saturated fatty acids). These findings suggest that
when muscle cells are exposed to the most abundant fatty acids in human plasma, in propor-
tions and at concentrations generally found in humans, the saturation state of the fatty acids
may not be a critical factor regulating insulin signaling.

We acknowledge that this does not agree many epidemiological reports supporting the no-
tion that diets high in saturated fats are associated with insulin resistance and an increased
prevalence of type 2 diabetes [1]. However, well-controlled dietary intervention studies in
human subjects have also reported that diets high in saturated fatty acids do not induced
marked insulin resistance [19]. Still, the reason for this discrepancy between the epidemiologi-
cal studies and intervention studies (as well as in vitro studies like ours) is not clear. It is possi-
ble that epidemiological associations between the type of dietary fat and insulin resistance are
mediated by other unappreciated dietary and/or environmental conditions that may comple-
ment the saturation state of dietary fat. Conversely, it is also possible that some intervention
studies did not expose participants to the diet for sufficient duration to evoke changes in insu-
lin action. Along these lines, it is noteworthy that although we incubated the muscle cells in
our lipid mixtures for several hours, in human obesity muscles are chronically exposed to the
fatty acid milieu available in the systemic circulation [9-11]. It is also possible that the deleteri-
ous effects of a highly saturated fatty acid profile in humans may be predominately mediated
via impairments in other tissues (e.g. adipose, liver, vascular) and/or secondary to resulting
proinflammatory/stress response(s) in these other tissues.

Similar to previous studies [4, 5], we found incubating muscle cells in palmitate induced a
robust accumulation of DAG. In contrast, neither of our physiologic fatty acid mixtures
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Fig 2. Factors regulating lipid storage and breakdown in C2C12 muscle cells. Muscle cells were
incubated with PALM (open), NORM (filled), or HSFA (hatched). Protein abundance of (A) GPAT1, (B)
DGAT1, (C) ATGL, (D) CGI-58, and (E) HSL. In all figure panels data are expressed relative to a no fatty acid
control condition (OmM). In panel B, #P<0.05 for a main effect of HSFA vs. PALM and NORM. In panel C,
#P<0.05 for a main effect of treatment dose vs. OmM. Representative blots are inset above each figure panel.
GPAT, glycerol-3-phosphate acyltransferase; DGAT, diacylglycerol acyltransferase; ATGL, adipose
triacylglycerol lipase; CGI-58, comparative gene identification 58; HSL, hormone sensitive lipase; AU,
arbitrary units.

doi:10.1371/journal.pone.0120871.g002

increased DAG concentration, but instead increased TAG accumulation in a dose-dependent

manner. In fact, accumulation of DAG and TAG in response to NORM and HSFA was nearly
identical despite a substantial difference in the contribution of saturated fatty acids to the two
physiologic fatty acid mixtures (i.e. 40% vs. 60%, respectively). The tendency for the fatty acid
moieties within each lipid pool (both DAG and TAG) to reflect the fatty acid composition of

the incubation media indicates relatively unbiased incorporation of fatty acids into these lipid
pools. Akin to our insulin signaling observations, these data suggest that when skeletal muscle
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Fig 3. Insulin signaling and fatty acid partitioning in human primary skeletal muscle cells. Muscle cells
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doi:10.1371/journal.pone.0120871.g003
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cells are exposed to a physiologic mixture of fatty acids, the saturation state of these fatty acids
is not a critical factor regulating their partitioning between DAG and TAG.

At present it is unclear why incubating skeletal muscle cells with physiologic mixtures of
fatty acids results in robust accumulation of TAG, whereas incubation with 100% palmitate is
associated with significant DAG accumulation. The protein abundance of key lipogenic and li-
polytic enzymes measured here does not appear to have played a significant role in this regard
[17, 20]. Previous work in INS-1 cells and isolated mouse islets reported similarly attenuated
palmitate- compared with oleate-mediated TAG accumulation in vitro [21, 22], and the au-
thors suggested these effects may be due to the non-physiologic accumulation of tripalmitin
[22]. Along these lines, the non-physiologic cytotoxicity of 100% palmitate exposure in cul-
tured muscle cells has also been well documented [23]. Regardless of mechanism(s), because
intramyocellular DAG has been linked to impaired insulin signaling, the preferential storage as
TAG may at least partly explain why exposure to high concentrations of our physiologic lipid
mixtures resulted in only modest suppression of insulin-stimulated phosphorylation of Akt.
These findings support the working hypothesis that the capacity to esterify and store fatty acids
as TAG may help limit the accumulation of more harmful lipid intermediates, such as DAG,
and thereby “protect” against fatty acid-induced insulin resistance [17, 24, 25]. Nevertheless,
regulation of intramyocellular fatty acid partitioning remains an unresolved process worthy of
continued investigation.

One limitation of this investigation is that a constant concentration of BSA was provided
for every fatty acid incubation (and control) condition. As such, the molar ratio of fatty acid to
BSA increased with increasing fatty acid concentration in the media, resulting in a sub-optimal
molar ratio during the higher fatty acid treatments [12]. Despite this, it is important to recog-
nize that this cannot account for the differences observed between our physiologic mixtures
and palmitate, because within each treatment dose (i.e. 0.1, 0.2, 0.4, 0.8mM) the molar ratio of
fatty acid to BSA was the same among the different incubations. Additionally, experiments
using human primary skeletal muscle cells were performed only in primary cells obtained from
obese humans. We chose to perform these lipid incubation experiments in cells derived from
obese subjects because obese human skeletal muscle is regularly exposed to high circulating
fatty acid availability in vivo [9, 11], and we wanted to mimic this effect in vitro. However, the
insulin resistant phenotype is often found to be retained in primary skeletal muscle cells de-
rived from obese humans [26], which might help explain why the reduction in insulin signaling
with our lipid incubations did not reach statistical significance in the primary muscle cells
from our obese subjects.

Opverall, our findings indicate that compared with the profound impairment in insulin sig-
naling when cultured myotubes were incubated with palmitate, exposure to physiologic mix-
tures of fatty acids only modestly blunted insulin-stimulated Akt phosphorylation, even when
the mixture contained a very high proportion of saturated fatty acids (60%). This may be ex-
plained in part by a selective partitioning of fatty acids into neutral lipid (i.e., TAG) when mus-
cle cells were exposed to physiologic lipid mixtures. Our experiments in human primary
muscle cells suggest that these findings translate to muscle from obese humans. Future studies
aimed at elucidating the mechanism(s) underlying intracellular partitioning of fatty acids may
yield insight into promising targets for the treatment of obesity-related insulin resistance.

Supporting Information

S1 Fig. Basal and insulin signaling in C2C12 muscle cells. Muscle cells were incubated with
PALM (open), NORM (filled), or HSFA (hatched). Basal (i.e. non-insulin stimulated) (A)
pAkt ™%/ Akt, and insulin-stimulated (B) pGSK3p°™/GSK3p and (C) pAS160™7*2/AS160.
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above each figure panel. #P<0.05 for a main effect of treatment dose vs. OmM, ##P<0.05 for a
main effect of NORM vs. PALM and HSFA. GSK, glycogen synthase kinase; AS160, Akt sub-
strate of 160 kD; AU, arbitrary units.
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