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Abstract

Nucleic acid aptamer selection is a powerful strategy for the development of regulatory
agents for molecular intervention. Accordingly, aptamers have proven their diligence in the
intervention with serine protease activities, which play important roles in physiology and
pathophysiology. Nonetheless, there are only a few studies on the molecular basis underly-
ing aptamer-protease interactions and the associated mechanisms of inhibition. In the pres-
ent study, we use site-directed mutagenesis to delineate the binding sites of two 2
“-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential,
both binding to the serine protease urokinase-type plasminogen activator (uPA). We deter-
mine the subsequent impact of aptamer binding on the well-established molecular interac-
tions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers
(upanap-126) binds to the area around the C-terminal a-helix in pro-uPA, while the other
aptamer (upanap-12) binds to both the 3-hairpin of the growth factor domain and the kringle
domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray
scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results
suggest and highlight that the size and shape of an aptamer as well as the domain organiza-
tion of a multi-domain protein such as uPA, may provide the basis for extensive sterical in-
terference with protein ligand interactions considered distant from the aptamer binding site.

Introduction

The SELEX procedure (systematic evolution of ligands by exponential enrichment) allows the
screening of large random-sequence oligonucleotide (RNA/DNA) libraries for sequences capa-
ble of binding to a protein target of interest [1, 2]. The protein-binding sequences isolated are
called aptamers. In many respects they resemble antibodies, i.e. they often bind their targets
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with high affinity and specificity as well as modulate target functions [3, 4]. However, aptamers
differ from antibodies in other respects, e.g. in terms of their pharmacokinetic and immuno-
genic profile and in the possibility of producing and modifying them by chemical synthesis.
Hence, aptamers are interesting alternatives or supplements to small molecules, peptides and
antibodies for use as artificial protein ligands for therapeutic strategies and prototype drugs,
and for analytical applications such as imaging and diagnostics.

Many pathological conditions have been linked to dysfunction or dysregulation of prote-
ases. Proteases are therefore often recognized as potential therapeutic targets or prognostic
markers [5]. Thrombin was the first protease for which aptamers were described [6]. Since
then, more than 40 aptamer selections alone using proteases as targets have been published [3].
Still, most of our detailed understanding of aptamer-target interactions, inhibitory functions
and relative sizes of aptamers and their targets comes from studies with a select number of sub-
stantially truncated thrombin aptamers [3, 7]. However, aptamers can rarely be reduced in this
degree and are therefore often much larger molecules. More studies are therefore needed in
order to obtain a more broad molecular understanding of how aptamers bind and affect their
target proteins.

The urokinase-type plasminogen activator, uPA, is an M, ~50,000 modular serine protease
consisting of an N-terminal epidermal growth factor-like domain (GFD, residues 1-48) and a
kringle domain (KD, residues 49-131), collectively known as the amino-terminal fragment
(ATE), followed by a C-terminal catalytic serine protease domain (residues 148/1-411/251)

[8, 9]. For the serine protease domain of human uPA, a double numbering system is used, the
first number starting from the N-terminus of uPA, the second number corresponding to the
chymotrypsinogen template numbering system. The catalytic domain is tethered to the kringle
domain by a 16 amino acid linker sequence. uPA is secreted from cells as an inactive zymogen
(pro-uPA) that can be activated by proteolytic cleavage of a single peptide bond (K158/
15-1159/16). The resulting A-chain (residues 1-158) and B-chain (159/16-411/251) are cova-
lently linked by a disulfide bridge between cysteines 148/1 and 279/122. Pro-uPA as well as ac-
tive uPA can bind the uPA receptor, uPAR, on the cell surface. Receptor binding is mediated
by the B-hairpin (residues 19-31) of the GFD. Here, trace amounts of plasmin is thought to ini-
tiate pro-uPA activation, which in turn activates more plasminogen. This arrangement pro-
vides the cell with a controlled proteolytic potential towards extracellular matrix (ECM)
proteins, which are being turned over during cell migration and invasion events. In addition,
pro-uPA binding to uPAR activates the adhesive and cell signaling functions of uPAR, includ-
ing the interaction of uPAR with the somatomedin B domain (SMB) of the ECM protein vitro-
nectin (VN) [8, 10]. The uPA proteolytic activity is regulated by the serpin plasminogen
activator inhibitor-1 (PAI-1) [11]. The covalently linked uPA:PAI-1 inhibitory complex is
cleared from the cell surface by endocytosis receptors, such as the low density lipoprotein re-
ceptor-related protein-1A (LRP-1A) [11, 12]. uPA participates in many events of tissue remod-
eling in the healthy organism, but is also known to be a prognostic marker in cancer and to
mediate cancer metastasis [8, 9, 13]. uPA is therefore a potential target for anti-cancer therapy.

We have previously isolated two different nuclease-resistant 2’-fluoropyrimidine-modified
(2’-F-Y) RNA aptamers binding to human uPA. One of them, upanap-12, appears to bind the
ATF and to be a potent inhibitor of the binding of uPA to uPAR [14]. This aptamer is currently
the only aptamer known to bind to a non-catalytic domain of a serine protease. The other apta-
mer, upanap-126, was selected against the zymogen form of the catalytic domain, but also
binds active uPA [15]. Upanap-126 is a multi-functional inhibitor of uPA, inhibiting the acti-
vation of pro-uPA, uPA binding to uPAR, as well as binding of the uPA:uPAR complex to
vitronectin. In addition, upanap-126 was found to inhibit invasion and dissemination of cancer
cells in simple in vivo chicken models of tumor dissemination [15]. Both aptamers exploit
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alternative strategies for inhibiting uPA activities as compared with the more classical approach
for inhibiting serine protease activity by targeting the active site. We therefore reasoned that
further analysis of structure-function relationships of the aptamers could be informative about
the mechanisms by which such RNA aptamers affect the molecular interactions and functions
of proteins in general and proteases in particular.

In the present study, we focused on the abilities of the aptamers to interfere with the interac-
tions between uPA and its physiological ligands, substrates and processing enzymes. We find
that both aptamers exhibit extensive pleiotropic inhibitory profiles. Accompanied by binding
site analysis using site-directed mutagenesis and small-angle X-ray scattering (SAXS), we ad-
vance a molecular explanation for the diverse functional properties and action of these two po-
tential therapeutic aptamers.

Results
Binding site of upanap-126 on the catalytic domain of uPA

To delineate the binding site of upanap-126 on pro-uPA, we analyzed 74 mutants with single-
site alanine replacements of surface exposed residues (25 in the A-chain and 49 in the B-chain)
by surface plasmon resonance (SPR) binding analysis. Alanine mutation was performed in var-
ious regions of uPA, including in particular the area of the active site, the pro-uPA activation
site and the uPAR binding site due to the inhibitory properties of the aptamers. After capturing
comparable levels of the pro-uPA mutants on an immobilized anti-uPA antibody (mAb-6),
binding levels achieved by subsequent injections of 15 nM upanap-126 were recorded. The ob-
tained levels of aptamer binding were calculated relative to the amount of captured pro-uPA.
From all 74 mutants analyzed (S1A Fig. for A-chain mutants; supplementary S1B Fig. for B-
chain mutants), a few hotspot residues were identified (Fig. 1A). Two mutations in particular
(Y284/127A and R391/231A) had a major impact on upanap-126 binding to pro-uPA (>50%).
They are located near the N-terminus of the C-terminal helix in the catalytic domain of pro-
uPA, almost on the back relative to the active site (Fig. 2). Two additional mutants (R323/166A
and K338/179A) located in this region exhibited a more moderate impact on uPA binding (25-
50%) as shown in Fig. 1A. To ensure that mutations did not affect the overall structure and
function of the protease domain, we measured the catalytic activity of the mutants after activa-
tion by plasmin and did not observe any major differences compared with wild type pro-uPA
(S2 Fig.).

Binding site for upanap-12 in the ATF of uPA

The 74 mutants were also screened by SPR analysis for mutations affecting the binding of the
ATEF-binding aptamer upanap-12 to pro-uPA. This analysis revealed the importance of both
the B-hairpin of the GFD as well as the kringle domain (Figs. 1B and S1A), whereas none of the
mutations to the catalytic domain affected binding (Figs. 1A and S1B). The most pronounced
effects in aptamer binding were observed for K23A, Y24A and W30A within the B-hairpin
(>50%), but moderate effects were also noted for N22A in the B-hairpin and K46A, K48A,
K61A, and K98A in the kringle domain (25-50%). The identified B-hairpin residues are all im-
portant for uPAR binding and/or uPA-uPAR species specificity, whereas alanine substitution
of kringle lysine residues do not affect the interaction [19-21]. The location of these mutations
in the ATF structure is shown in Fig. 2, clearly highlighting the composite nature of the binding
site where 5 proximate lysine residues form a charged perimeter around the aromatic hotspot
residue Trp30.
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Fig 1. SPR analysis of aptamer binding to pro-uPA mutants. Pro-uPA alanine mutants were captured on a SPR sensor surface carrying the immobilized
kringle specific anti-uPA antibody mAb-6 to a level of around 200 RU. The binding level observed for either 15 nM upanap-126 or upanap-12 was
subsequently recorded. The exact number of mole aptamer bound per mole captured pro-uPA was calculated for each mutant. The figure summarizes the
results with mutants for which a major (>50%) or moderate (25-50%) reduction in binding was observed relative to wild type pro-uPA binding in the case of
mutations in (A) the catalytic domain, or (B) the ATF. Each mean value and standard deviation is based on 5 determinations. The entire set of mutants
analyzed can be found in S1A Fig. (A-chain mutants) and S1B Fig. (B-chain mutants).

doi:10.1371/journal.pone.0119207.9001

The ATF-binding aptamer as well as the catalytic domain-binding
aptamer inhibit pro-uPA activation

While upanap-126 has previously been found to be an efficient inhibitor of pro-uPA activation
by plasmin [15], the ATF-binding aptamer upanap-12 has not been investigated in this respect.
We therefore studied the ability of upanap-12 to inhibit plasmin-catalyzed pro-uPA activation
by monitoring the relative rate of hydrolysis of a small peptidic chromogenic uPA substrate
(Vi/Vy), as a measure of the amount of active enzyme generated during incubation with plas-
min. Like upanap-126 (ICso = 7.1 + 1.6 nM), upanap-12 was also found to be a potent inhibitor
of pro-uPA activation in this assay (ICso = 3.1 + 0.3 nM; Fig. 3A). We also examined the effect
on pro-uPA activation with truncated versions of the ATF-binding aptamer upanap-12 (com-
prising 79 nucleotides). The truncation variants upanap-12.49 (49 nt) and upanap-12.33

(33 nt) contain the expected important sequence features of upanap-12 and were previously
found to interfere with pro-uPA—uPAR interaction, with similar ICs, values comparable to
that of the full-length version [14]. We did not observe any detectable differences between in-
hibitory activities for upanap-12.49 (IC5o = 3.2 + 0.3 nM), upanap-12.33 (ICso = 5.5 + 2.2 nM)
and that of full-length upanap-12 (Fig. 3A).

Upanap-12 interference with plasmin-catalyzed pro-uPA activation was confirmed by im-
munoblotting analysis of the temporal progression of cleavage of one-chain pro-uPA to two-
chain uPA (Fig. 4). In this analysis, upanap-12, as well as upanap-126, delayed the generation
of the two-chain form of uPA, while control RNA did not. The truncated variants of upanap-
12 inhibited the conversion as efficient as the parent aptamer (Fig. 4).

We then investigated whether the plasmin-catalyzed activation of mutants of pro-uPA
could be inhibited by the aptamers using the peptide substrate hydrolysis assay. While the cata-
lytic domain-binding aptamer upanap-126 inhibited zymogen activation for W30A efficiently,
the ATF-binding aptamer upanap-12 could not (Fig. 3B and 3C). This result confirms the im-
portance of residue Trp30 for the binding of upanap-12 to pro-uPA. Conversely, and in
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Fig 2. Aptamer binding sites displayed on the three-dimensional structure of pro-uPA in cartoon (left) and surface (right) presentation. The
structure of the catalytic domain (gray, residues 148/1-406/246) is a homology model [16] created using the sequence of pro-uPA and the chymotrypsinogen
structure (PDB ID 1EX3) [17]; the orientation of individual amino acid residues may not be correct. The activation bond (K158-1159/16) is coloured yellow.
Cysteine 148/1 is coloured magenta. The linker between the kringle and the catalytic domain (residues 132—-147) is shown as a black line, as its structure is
unknown. The structural depiction of the ATF was generated from an existing structure (PDB ID 219A) [18]. The growth factor domain (11-48) is coloured
brown and the kringle domain (49—131) is coloured wheat. Residues implicated in the binding of upanap-126 are coloured red. Residues implicated in the
binding of upanap-12 are coloured blue. The figure was created using PyMOL Viewer.

doi:10.1371/journal.pone.0119207.g002

agreement with the results of the SPR binding site analysis, upanap-12, but not upanap-126,
could inhibit plasmin-mediated activation of pro-uPA with the mutations Y284/127A and
R391/231A in the catalytic domain (Fig. 3B and 3C).

Finally, we examined if the two uPA aptamers could inhibit plasmin-catalyzed activation of
uPAR-bound pro-uPA. Pro-uPA was pre-incubated with a 5-fold molar excess of uPAR at a
concentration around 100-fold above the K, for the uPA—uPAR interaction and then incubat-
ed with plasmin in the presence of varying concentrations of aptamer. The hydrolysis of a
small peptidic uPA substrate was measured after the incubation. Only upanap-126 (ICs, =
27.4 £ 5.2 nM), but not upanap-12, was able to inhibit pro-uPA activation (Fig. 3D). This find-
ing is in agreement with the observation that upanap-126, and not upanap-12, is able to bind
to uPAR-bound pro-uPA as assessed by surface plasmon resonance (S3 Fig).

Effects of the aptamers on the pro-uPA—uPAR interaction

Both aptamers are low-nanomolar inhibitors of pro-uPA binding to uPAR immobilized on the
surface of a SPR sensor surface (Fig. 5A and 5B). For upanap-126, this observation was
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Fig 3. Aptamer interference with plasmin-catalyzed pro-uPA activation. Pro-uPA wild type with and without uPAR (A and D) or mutants (B and C) were
pre-incubated with aptamer and zymogen activation by plasmin allowed for 30 min. The extent of uPA generation was then estimated from the rate of uPA-
catalyzed cleavage of a chromogenic substrate. The graphs show the relative rates of substrate cleavage at a given aptamer concentration as a fraction of
controls without aptamers (Vi/V,). Data represent the average of three independent determinations.

doi:10.1371/journal.pone.0119207.g003

unexpected, since the aptamer binds to the catalytic domain. We therefore investigated the
ability of upanap-126 to inhibit uPAR binding using the pro-uPA mutants Y284/127A and
R391/231A. We observed no detectable inhibition in either case (Fig. 5A; sensorgrams in S4
Fig.). In contrast, these mutations did not significantly affect the ability of the ATF aptamer
upanap-12 to inhibit pro-uPA binding to uPAR (data not shown). Hence, the inhibitory activi-
ty of upanap-126 towards uPA—uPAR binding is dependent on its interaction with the
catalytic domain.

We also used the uPAR-coupled sensor surface to confirm the binding site of the ATF apta-
mer for pro-uPA. Previously, we were unable to detect binding of upanap-12 to a uPA variant
lacking the GFD, demonstrating that this domain is necessary for binding [14]. To reconcile
this finding with our present implication of kringle domain residues in the binding site of upa-
nap-12 (see above), we measured the effect of the aptamer on the binding of full-length pro-
uPA, ATF and GFD to uPAR. Upanap-12 was found to inhibit the binding of pro-uPA and
ATF to uPAR with similar ICsq values (2.2 £ 0.1 nM and 1.8 + 0.2 nM, respectively), but unable
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Fig 4. Inmunoblotting analysis of the effect of the aptamers on the conversion of one-chain pro-uPA
to two-chain uPA. Pro-uPA and plasmin were incubated for the indicated time periods with the indicated
aptamers, after which plasmin activity was stopped with HCI. The samples were analyzed by reducing
SDS-PAGE and immunoblotting with a polyclonal anti-uPA antibody. Two-chain uPA alone is shown to

the left.

doi:10.1371/journal.pone.0119207.9004
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Fig 5. Aptamer inhibition of the binding of uPA to uPAR. (A) The binding of pro-uPA (wild type or mutant) to uPAR immobilized on a SPR sensor surface
in the presence of the indicated concentrations of upanap-126 was estimated and expressed as a fraction of the binding in the absence of aptamer. Raw data
are shown in S4 Fig. With pro-uPA mutants only the effect of the highest dose of upanap-126 (200 nM) was tested. (B) The binding of pro-uPA, ATF or GFD
to uUPAR immobilized on a SPR sensor surface in the presence of the indicated concentrations of upanap-12 was estimated and expressed relative to the
binding in the absence of aptamer. Raw data are shown in S5 Fig. With the GFD only the effect of the highest dose of upanap-12 (50 nM) was tested. (C) and
(D) One million U937 cells were incubated with 10 pM '2%I-pro-uPA and 0-500 nM upanap-126, upanap-12 or control RNA for either 1 hour (C) or 24 hours
(D), respectively, at 4°C. For each sample, the amount of '2I-pro-uPA bound to the cells was divided by the total amount of ??I-pro-uPA (pellet and
supernatant) and normalized to the number obtained for cells without RNA. Data represent the average of three replicates.

doi:10.1371/journal.pone.0119207.g005

to inhibit the binding of the GFD alone to uPAR (Fig. 5B; sensorgrams in S5 Fig.). These results
clearly emphasize the importance of an intact ATF for the binding of the ATF-binding aptamer
upanap-12 to pro-uPA.

The effect of the aptamers on the uPA—uPAR interaction on live cells was investigated by
measuring the amount of '*’I-pro-uPA bound to U937 cells after incubations with and without
aptamers for various periods of time. Both aptamers were able to interfere with the association
of '*’I-pro-uPA with the cells during a one-hour incubation (Fig. 5C). Nonetheless, only the
ATF-binding aptamer upanap-12 exhibited high efficacy with a (ICs, = 1-2 nM). Furthermore,
the weaker effect exhibited by upanap-126 (ICs, = ~500 nM) did not persist after prolonged in-
cubation at 4°C (Fig. 5D). A separate set of experiments showed that the observed difference
between the two aptamers in this assay did not reflect a difference in stability under the assay
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conditions (data not shown). Therefore, during prolonged exposure of aptamer:pro-uPA com-
plexes to uPAR, the ATF-binding aptamer more efficiently interferes with uPA—uPAR bind-
ing. This is in agreement with the observation that upanap-126 can bind concomitantly with
uPAR (S3 Fig.), and instead of blocking binding, it may merely reduce the rate of uPA associa-
tion to uPAR as suggested from SPR experiments [15].

Effects of the aptamers on the binding of pro-uPA to LRP

The K, for the binding of pro-uPA to LRP-1A is around 10-20 nM [22]. The binding involves
interactions of all three domains of uPA with LRP [23]. Using an SPR setup with LRP-1A im-
mobilized on the sensor surface, we examined the ability of the two uPA aptamers to inhibit
the binding of pro-uPA to LRP (Fig. 6A and 6B). When passing pro-uPA over the sensor sur-
face after pre-incubation with or without uPA aptamers or a non-relevant control RNA, both
of the aptamers, but not the control RNA, were able to dose-dependently inhibit the binding of
pro-uPA to LRP-1A.

Effects of the aptamers on the pro-uPA-mediated uPAR-vitronectin
binding

Upanap-126 was previously found to inhibit binding of the pro-uPA:uPAR complex to vitro-
nectin in an ELISA setup and pro-uPA:uPAR complex-induced lamellipodia formation in cul-
tured cells [15]. The affinity of vitronectin to uPAR is regulated by a uPA-induced
conformational change in uPAR [24]. We observe that unlike upanap-126, upanap-12 does not
inhibit the binding of pro-uPA:uPAR complexes to vitronectin coupled to a SPR sensor surface

(Fig. 6C and 6D). This observation is in excellent agreement with upanap-12 not being able to
bind pro-uPA:uPAR complexes (S3 Fig.).

Effects of the aptamers on the inhibitory activity of PAI-1 towards uPA

Both uPA aptamers were previously demonstrated to bind the zymogen as well as the active
form of uPA [14, 15]. Accordingly, we investigated if the two uPA aptamers interfere with the
uPA-PAI-1 reaction. A 100-fold excess of either upanap-126 or upanap-12 over uPA did not
affect the reaction between uPA and PAI-1 compared with control RNA (data not shown).
This observation is in agreement with the fact that the aptamers do not inhibit uPA-mediated
plasminogen activation either, which also requires access to the active site [14, 15].

Small-angle X-ray scattering (SAXS) analysis of upanap-12.49 and the
aptamer:pro-uPA complex

SAXS analysis was already applied to characterize the overall shape of full-length pro-uPA and
active uPA [25]. In order to obtain low-resolution structural information regarding the relative
position of the aptamer in the quaternary complex with uPA, we performed SAXS analysis of
upanap-12 alone and in complex with pro-uPA.

For the analysis, we used the truncated version of the ATF-binding aptamer, upanap-12.49.
From the indirect Fourier transformation (IFT) analysis of the SAXS data (S6A Fig.), a ‘protein
equivalent’ molecular weight of ~71 kDa was determined. This corresponds well with the actual
molecular weight of ~16 kDa for the aptamer when taking into account the two times higher
scattering length density difference per unit mass of RNA relative to protein as can be calculat-
ed from typical partial specific volumes, and which makes it effectively seem like the aptamer
has about four times the mass (Table 1 and Fig. 7A). Furthermore, the p(r) function indicated
that the aptamer has an elongated shape, as the maximum of the curve is shifted to the left

PLOS ONE | DOI:10.1371/journal.pone.0119207 March 20, 2015 9/22



@ PLOS | one

Steric Interference by Multi-Functional Aptamers

A

Pro-uPA binding

Pro-uPA-uPAR binding

to LRP-1A (RU)

to vitronectin (RU)

—
T

—
<

(%))
1

o

-5-

B
1.0 -
— Control RNA s
— Upanap-126 §§
— Upanap-12 °og
calal s g O Upanap-126
% £ o5 B Upanap-12
______ iy 23 A Control RNA
. T
e P, Erx
________ Te- . o -l
ok 2
50 75 100 125 150 0.0 T T T T T
Time (sec) 0 100 200 300 400 500
[Aptamer], nM
a 1.0 E
——  200nM Contr. RNA EE - '
— 200nMup12 05%
-== 125nMup126 < E
]
=== 50nMup126 3 e
eeeeoa\ |/ 200nMup126 ez ® Upanap-126
£ 25 0.5 m Upanap-12
° 2
£3
T o
_______ =
& 5
__________ (3]
I L I 1 1
' 50 75 100 125 150 = 0 50 100 150 200
Time (sec) [Aptamer], nM

Fig 6. Aptamer inhibition of the binding of pro-uPA to LRP and of the binding of pro-uPA:uPAR complexes to vitronectin. (A) SPR sensorgram
showing the binding of samples containing 25 nM pro-uPA to LRP immobilized on the sensor surface. The pro-uPA was pre-incubated with control RNA
(black), upanap-12 (blue), or upanap-126 (red), as indicated. Solid line (150 nM RNA), broken line (50 nM RNA) and dotted line (17 nM) RNA. No significant
effect was observed for 200 nM control RNA relative to no addition (data not shown). (B) The number of RU bound to LRP on the sensor surface with 25 nM
pro-uPA and varying aptamer concentrations was normalized to the amount of RU bound in the absence of aptamer and plotted versus the aptamer
concentration. (C) SPR sensorgram showing the binding of samples of 10 nM pro-uPA:uPAR complex to monomeric vitronectin immobilized on the sensor
surface. The pro-uPA:uPAR was pre-incubated with RNA as indicated. (D) The number of RU bound to vitronectin on the sensor surface with 10 nM pro-uPA:
uPAR complex and varying aptamer concentrations was normalized to the amount of RU bound in the absence of aptamer and plotted versus the aptamer
concentration. No significant effect was observed with 200 nM control RNA (omitted in the figure). Data represent the average of three replicates.

doi:10.1371/journal.pone.0119207.g006

(Fig. 7A, insert). We subsequently determined the low-resolution shape of upanap-12.49 and
the average ab initio model illustrates that the aptamer adopts a straight rod-like structure in
solution (Fig. 7B and S6B). Using back calculation, the predicted 3D stem loop structure of
upanap-12.49, obtained by computational approaches (iFoldRNA) with the best fit to the ex-
perimental data was identified having a y*-value of 1.60 (Fig. 7A). By visual inspection, the 3D
model agrees well with the ab initio shape (Fig. 7B).

The SAXS data for pro-uPA alone obtained in this study was comparable to that previously
determined (S6C Fig.). Fig. 7C shows the average ab initio model for pro-uPA superimposed
with the previously published structural model of the full-length protein [25]. With SAXS
models for upanap-12.49 and pro-uPA as separate entities, we embarked on building a model
of the aptamer:pro-uPA complex based on the SAXS data for the complex. From the SAXS
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Table 1. Data obtained from the SAXS analysis.

Sample ‘Protein equivalent’ molecular mass [kDa]  Theoretical molecular mass [kDa]  Radius of gyration [A] D, [A]
Upanap-12.49 71+7(~18)2 16 26.7+1.0 90+5
pro-uPA + upanap-12.49 93+ 10 66 (114)° 34.2+0.2 110+5

8Corrected for the two-fold higher scattering length density difference per unit mass of RNA as compared to a protein sample to allow comparison to
theoretical molecular mass.

PCalculated ‘protein equivalent mass including pro-uPA (~50 kDa) and 4 times the mass of the RNA (see ) to allow direct comparison with the molecular
mass of the complex.

doi:10.1371/journal.pone.0119207.t001

data, a ‘protein equivalent’ molecular weight of ~93 kDa was obtained from the IFT analysis
(S6A Fig.), corresponding to a 1:1 complex of expected apparent ~114 kDa when adjusted for
the higher scattering length of RNA (Table 1 and Fig. 7A). The p(r) function indicated an over-
all elongated shape for the complex (Fig. 7A, insert), which was generated once again using ab
initio modeling (Figs. 7D and S6B). As we were interested in the intermolecular arrangement
of the molecules, we decided to fit the predicted 3D aptamer model and the pro-uPA SAXS
model into the low-resolution shape of the complex (SAXS data) using rigid-body modeling
guided by the biochemical data. The generated solutions could be sorted into two subpopula-
tions. The fit of one representative solution is shown in Fig. 7A as all fit equally well to the
SAXS data (y° of 1.8 and 1.9 for the most representative models in the two subpopulations, re-
spectively). Both followed the same overall binding pattern and could not be distinguished
based on the low-resolution of the SAXS data and the potential rotational freedom of the ATF
relative to the catalytic domain (data not shown). A representative solution for these two pools

A . e — B rva C powpa D pro.uPA+RNA

-
=
(]
T

p{r) [arb. units]

q [A"]

Fig 7. SAXS analysis of upanap-12.49 alone and the complex of upanap-12.49 and pro-uPA. (A) Scattering data obtained for free upanap-12.49 (open
circles) and the upanap-12.49:pro-uPA complex (open triangels) with their corresponding model fits (black line). The upanap-12.49 data is shown with the
CRYSOL fit and the complex with the SASREF fit. The scattering data for the complex is rescaled with a scale factor of 10 to improve visualization of the data.
The insert shows the pair distribution functions, p(r), for upanap-12.49 (black) and the aptamer:pro-uPA complex obtained from the IFT of the scattering data.
(B) Average ab initio model for free upanap-12.49 (semitransparent gray) with the best RNA fitting model (blue) superimposed using SUBCOMB alignment
[26]. (C) Average ab initio model for pro-uPA (semitransparent gray) with the previously published structural model of pro-uPA superimposed (red) [25]. (D)
Average ab initio model for the upanap-12.49:pro-uPA complex (semitransparent gray) with the best rigid body model of the upanap-12.49:pro-uPA

complex superimposed.

doi:10.1371/journal.pone.0119207.g007
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overlay well with the ab initio shape of the complex (Fig. 7D). In all solutions, the elongated
shape of the aptamer brings it into close proximity to the serine protease domain of uPA when
fitted into the SAXS envelope (zoom Fig. 7D). Therefore, under the assumption that the bind-
ing of upanap-12 to pro-uPA does not lead to larger conformational changes in the catalytic
domain, ATF and/or the aptamer, the best low-resolution rigid-body models based on SAXS
data suggest that the aptamer could sterically hinder the access of plasmin to the Lys15-Ile16
bond and hence inhibit pro-uPA activation.

Discussion

Similarly to many other serine proteases, uPA is a modular protein with multi-functional prop-
erties. In the present study, we report that two aptamers with different topologic target sites on
uPA (upanap-12 binding the ATF and upanap-126 binding the catalytic domain) exert func-
tional pleiotropy and display mutually overlapping inhibitory profiles. We investigated the in-
hibitory repertoire of these uPA specific aptamers in detail and identified the binding areas of
the aptamers by site-directed mutagenesis. Furthermore, using SAXS, we construct a low-
resolution structural model of the complex between pro-uPA and a truncated version of the
ATF-binding aptamer (upanap-12.49). Table 2 and Fig. 8 summarize the inhibitory profiles of
the two aptamers. Our results provide interesting insights into the relationship between apta-
mer binding sites and their functional activities.

The binding site of the catalytic domain-binding aptamer upanap-126

A major reduction in the affinity of upanap-126 to pro-uPA was observed in the case of the
mutants Y284/127A and R391/231A. A smaller reduction in affinity was observed with the mu-
tants R323/166A and K338/179A. All four mutated residues are located near the C-terminal o-
helix in the catalytic domain. This localization of the binding site is in agreement with the origi-
nal selection of the aptamer being driven by the purified catalytic domain in its zymogen form
as the bait. Most aptamers are highly specific for their targets and only in a few cases they bind
orthologous proteins from other species as observed with FIX and neutrophil elastase aptamers
[3]. Upanap-126 is specific for human uPA in the sense that it has no measurable affinity to
mouse UPA and the other predominant human plasminogen activator, tPA [15]. This could, at
least partly, be governed by the importance of the loop region containing Tyr284/127 for

Table 2. Summary of effects of uPA-binding aptamers on pro-uPA and uPA functions.

Type of uPA activity/interaction Effect of upanap-126 Effect of upanap-12
uPA catalytic activity (peptidic substrate) No effect [15] No effect [14]

uPA catatalytic activity (plasminogen) No effect [15] No effect [14]
uPA—PAI-1 reaction No effect No effect
Plasmin-catalyzed pro-uPA activation Inhibition Inhibition
Plasmin-catalyzed activation of uPAR-bound pro-uPA Inhibition No effect
Pro-uPA—uPAR binding Inhibition Inhibition
Pro-uPA—LRP-1A binding Inhibition Inhibition

Binding of pro-uPA—uPAR complex to VN Inhibition No effect

Each type of molecular interaction of uPA is listed in the first column. In the second and the third column,
the observed effects of upanap-126 (the catalytic domain-binding aptamer) and upanap-12 (the ATF-
binding aptamer) on the molecular interactions are reviewed, respectively.

doi:10.1371/journal.pone.0119207.t002
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aptamer binding, which is not conserved in tPA or mouse uPA. Arg391/231, on the contrary, is
in a region conserved among many trypsin-like serine proteases.

The pleiotropic effects of upanap-126 on uPA function

In cell culture experiments upanap-126 interferes with uPA:uPAR-mediated lamellipodia for-
mation and cell surface-dependent plasminogen activation [15]. Furthermore, upanap-126 in-
terferes with tumor cell intravasation and invasion in chicken embryo models of cancer [15].
However, there is no evidence that the upanap-126-binding region is directly involved in any
natural ligand interactions or activities of uPA. Neither in terms of the catalytic activity of uPA
towards small peptidic substrates or plasminogen, the reaction with PAI-1, the plasmin-
catalyzed activation of pro-uPA, the binding of uPA to uPAR, the binding of uPA to LRP, nor
the binding of the uPA:uPAR complex to vitronectin. It was therefore surprising to find that
upanap-126 is an inhibitor of several of uPA’s functions in vitro and in vivo. The large impact
of the Y284/127A and R391/231A mutations on aptamer binding and interference with molec-
ular interactions of uPA demonstrates the specific nature of the uPA-aptamer interaction and
rules out the possibility that the observed effects of upanap-126 are due to non-specific binding
independent of the identified binding site. Instead, the large size of the 79 nucleotide aptamer
most likely facilitates long range steric interference at sites distant from the identified binding
region (Table 2 and Fig. 8). Although we would like to further evaluate the size of the aptamer
relative to its functions, we have so far not been able to produce shorter variants of upanap-
126. Interestingly, the binding site of upanap-126 in pro-uPA corresponds to the binding site
of the exosite II-binding 2'-F-Y RNA aptamer Toggle25 in thrombin [7, 27]. Inspecting the
crystal structure of thrombin in complex with the truncated 25 nucleotide aptamer variant
Toggle-25t [7], a three times larger aptamer such as upanap-126 could easily extend to interfere
with plasmin access to the activation site in the pro-uPA catalytic domain. Alternatively, the
aptamer could interfere with an as yet unknown exosite interaction for plasmin. The effect of
Toggle-25 on zymogen activation has not been determined but crystal structures of thrombin
with and without aptamer does not indicate structural or allosteric changes in the serine prote-
ase domain upon aptamer binding [7]. In the case of upanap-126 (and upanap-12) uPA bind-
ing does not affect the peptidolytic activity of uPA or the uPA—PAI-1 reaction (Table 2 and
Fig. 8), suggesting no substantial allosteric changes in the protease domain either.

The exact orientation of the ATF relative to the catalytic domain in the three-dimensional
structure of pro-uPA is not known. However, the upanap-126 binding site is close to the at-
tachment site of the interdomain linker (C148/1) connecting the kringle domain to the catalyt-
ic domain. Hence, the aptamer could be located close to the ATF (Fig. 8), enabling the
observed sterical inhibition of pro-uPA B-hairpin burial in uPAR [28]. Still, minor flexibility in
the interdomain linker or the aptamer would allow upanap-126 to bind pro-uPA concomitant-
ly with uPAR and disturb the uPAR—vitronectin interaction site located just ~10-15 A from
the ATF, as revealed by the ATF:uPAR:SMB structure [28]. Concerning the pro-uPA—LRP in-
hibitory activity, site-directed mutagenesis implicated all three domains of uPA in the binding
of uPA:PAI-1 complexes to endocytosis receptors [23]. In the catalytic domain, the 37- and
60s-loop were found to be important for LRP binding, but as these loops are localized on the
opposite side of the catalytic domain as compared with the upanap-126 binding region, it
would suggest that the aptamer probably interferes with ATF—LRP interactions.

Most of the experiments in the present study were performed with pro-uPA. Although, upa-
nap-126 binds both pro-uPA and uPA, we found previously that upanap-126 interferes better
with the interaction of pro-uPA to uPAR than uPA to uPAR [15]. It is currently not known if
this is the result of a reduced affinity of upanap-126 for uPA or due to the increased
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A Pro-uPA Pro-uPA

Fig 8. Overview of uPA aptamer-mediated effects on uPA functions. (A) The ATF-binding aptamer (upanap-12, blue) binds to a composite site in the
kringle and growth factor domain. The domain organization of pro-uPA as well as the size and position of the aptamer in the complex allows it to interfere with
plasmin-catalyzed pro-uPA activation and interactions of pro-uPA with uPAR and LRP-1A. (B) The aptamer upanap-126 (red) binds to the catalytic domain of
pro-uPA positioning it to interfere with pro-uPA activation as well as pro-uPA interaction with uPAR and LRP-1A. (C) The interdomain organization of pro-
uPA, possibly in combination with some flexibility in the linker region between the catalytic domain and the kringle domain, allows upanap-126 to bind pro-
uPA concomitantly with uPAR. Upanap-126 is therefore able to inhibit the binding of pro-uPA:uPAR complexes to vitronectin in addition to plasmin-catalyzed
activation of uPAR-bound pro-uPA.

doi:10.1371/journal.pone.0119207.g008

interdomain flexibility accompanying pro-uPA activation [25]. However, some differences in
inhibition of uPA relative to pro-uPA may therefore also be observed concerning the effect of
upanap-126 towards uPA:uPAR complex binding to vitronectin and uPA binding to LRP.

The binding site of the ATF-binding aptamer upanap-12

Mutation of several residues in the kringle domain (Lys46, Lys48, Lys61 and Lys98) and the B-
hairpin of the growth factor domain (Asn22, Lys23, Tyr24, and Trp30) was found to have a
measurable effect on upanap-12 binding to pro-uPA, while no interactions with the catalytic
domain were suggested by the mutagenesis analysis. The residues of the B-hairpin are all posi-
tioned so that the side-chains point towards the solvent from the same face of the -sheet [18].
The mutation W30A had the largest effect on upanap-12 binding to pro-uPA and protected
pro-uPA efficiently from the inhibitory effect of upanap-12 towards plasmin-catalyzed activa-
tion. The side-chain of Trp30 is at the center of the upanap-12 binding site, highly surface-
exposed and probably optimally oriented for extensive interaction with the aptamer, unlike for
example Asn22, which is to some extent buried. Particularly Lys23, Tyr24, Phe25, Ile28, and
Trp30 have been determined to be important for human uPA—uPAR binding [19, 21]. Thus,
the upanap-12 binding site overlaps with the uPAR binding site. In addition, the hotspot nature
of Trp30 provides an explanation for the species selectivity of the aptamer, as Trp30 in human
uPA is replaced by Arg31 in murine uPA, a difference of high importance for the species selec-
tivity observed in the uPA—uPAR interaction [19, 21]. Previously, we showed that upanap-12
does not bind to a variant of uPA lacking the growth factor domain [14]. However, the aptamer
was also unable to compete out the binding of this domain alone to uPAR (Fig. 5B). Therefore,
the results confirm that the binding of the aptamer appears to require a surface composed of
residues from both the kringle and growth factor domain.

PLOS ONE | DOI:10.1371/journal.pone.0119207 March 20, 2015 14/22



@'PLOS ‘ ONE

Steric Interference by Multi-Functional Aptamers

The multiple effects of upanap-12 on the molecular interactions of uPA
(Table 2 and Fig. 8)

The overlap between the binding sites of upanap-12 and uPAR on uPA readily explains how
upanap-12 is able to inhibit pro-uPA binding to uPAR-expressing cells, uPAR-dependent en-
docytosis of the uPA:PAI-1 complex and cell surface-associated plasminogen activation initiat-
ed by exogenous addition of pro-uPA [14]. It also readily explains why upanap-12 does not
interfere with the catalytic activity of uPA, with the uPA—PAI-1 reaction, or with the molecu-
lar interactions of the pro-uPA:uPAR complex with vitronectin. Also, the inhibition of the pro-
uPA—LRP binding by upanap-12 is in agreement with both the kringle and growth factor do-
mains having been implicated in LRP binding [23]. However, it was surprising that the aptamer
is able to interfere with plasmin-catalyzed pro-uPA activation, as the cleavage site is localized
in the catalytic domain, presumably at a distance from the upanap-12 binding site. Even trun-
cating the aptamer from the full-length 79 nucleotides to 49 nucleotides (upanap-12.49) or 33
nucleotides (upanap-12.33) did not reduce this inhibitory activity of the aptamer. Currently,
however, the molecular details concerning plasmin recognition of the activation domain of
pro-uPA are unknown.

The SAXS structure of upanap-12.49 and the upanap-12.49-pro-uPA
complex

To the best of our knowledge, no serine protease-binding aptamers have previously been inves-
tigated by the SAXS technique. SAXS is able to provide low-resolution information on shape
and dimension of homogeneous molecules in solution. In particular, SAXS is an interesting
tool for studying the overall shape of multi-domain proteins, for which other structural ap-
proaches may fail. In the case of pro-uPA, the full-length structure has only been determined
by SAXS [25]. Here, we used SAXS to determine the shape and dimensions of upanap-12.49
and upanap-12.49 in complex with pro-uPA. Upanap-12.49 is well-described by a rod-like
shape in solution, in good agreement with the elongated stem-loop structure proposed by
computational methods. Helical segments are also in accordance with regions of covariance
when comparing upanap-12 related sequences, while the hairpin and internal loop sequences
are highly conserved indicating potential areas of direct contact with uPA [14]. Interestingly,
the SAXS analysis shows that even though the molecular mass of upanap-12.49 is ~3 times less
than that of pro-uPA (~50 kDa), the estimated length of the folded 49 nucleotide aptamer de-
termined here (~90 A) would still allow it to span almost the entire length of pro-uPA (~110
A) (Table 1) [25]. In addition, the SAXS result demonstrates the relatively low compactness of
a folded polynucleotide chain compared to a polypeptide of similar molecular weight (radius of
gyration ~27 A and 30 A for the aptamer and pro-uPA, respectively) (Table 1). Therefore, it is
not surprising that the two uPA-binding aptamers are able to interfere extensively with uPA’s
molecular interactions. The estimated shape of the aptamer:pro-uPA complex, relative to those
of each of the two molecules separately, suggests that upanap-12.49, rather than protruding
away from pro-uPA into the solvent, packs extensively against the ATF and the interdomain
region between the catalytic domain and the ATF. The SAXS analysis suggests that the pro-
uPA-bound aptamer is in close proximity to the catalytic domain, thereby allowing for steric
interference with the access of plasmin to the cleavage site.

Conclusion

Here, we investigated the molecular mechanisms behind the pleiotropic effects of two uPA-
binding aptamers with binding sites in separate regions of the protease. Using mutational and
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functional analysis, we mapped the aptamer binding sites and demonstrate the high specificity
in binding and functionality of the aptamers. Our study shows that aptamers may interfere
with the binding of ligands at sites considered remote from the aptamer binding site. SAXS
structural analysis suggests that this may be a combination of two structural effects. First, the
size and shape of an aptamer may allow it to extend and interfere sterically with binding events
in the protein distant from its own binding site. Second, apparent distant functional sites of the
protein may be brought into proximity of the aptamer binding site by the overall domain orga-
nization of the protein target.

Experimental Procedures
Proteins and RNA

Recombinant purified human pro-uPA was generously provided by Abbott Laboratories (Ab-
bott Park). Recombinant PAI-1 was prepared as described before [29]. The ATF was prepared
by proteolytic cleavage of active uPA (Wakamoto) [30]. Human uPAR, and pro-uPA mutants
with single alanine substitutions in the ATF were prepared as described [20, 21], by expression
in Drosophila S2 cells. The GFD*™** domain was excised from recombinant pro-uPA by Glu-C
digestion and purified by size exclusion chromatography [31]. Pro-uPA mutants with alanine
substitutions in the catalytic domain were expressed in human embryonic kidney 293
(HEK293) 6E suspension cells after cloning of the cDNA encoding full-length uPA into the
pcDNA3.1 vector followed by site-directed mutagenesis. HEK293 6E cells were cultured in F17
media containing 4 mM L-glutamine, 0.1% FP68, 100 units/mL penicillin, 100 units/mL strep-
tomycin and 25 ug/mL G418 (Life Technologies). Transfection was carried out by pre-
incubating 22 pg linear polyethyleneimine (PEI) and 11 ug of vector in 1.1 mL PBS for 15 min-
utes, and then adding the solution to 10 mL of culture with a density of 10° cells/mL. Condi-
tioned media were harvested 5 days later and the concentration of pro-uPA in the media
estimated by SPR, using an anti-uPA antibody mAb-6 setup (see SPR analysis below), compar-
ing the binding response to a calibration curve of purified pro-uPA. No pro-uPA was detected
in mock-transfected media. No enzymatic activity was observed for any pro-uPA variant, using
0.5 mM of the uPA chromogenic substrate L-Pyroglutamyl-glycyl-L-arginine-p-Nitroaniline
hydrochloride (CS-61(44); Aniara) over 3 hours at 37°C in HEPES-buffered saline (HBS;

20 mM HEPES, 140 mM NaCl, pH 7.4) containing 2 mM MgCl,, 0.1% BSA, confirming that
variants were in the zymogen form. 2'-F-Y RNA aptamers were produced and purified as de-
scribed [14, 15]. Briefly, RNA was transcribed from dsDNA transcription templates containing
a 'T7 promotor followed by the aptamer sequence in reactions of 80 mM HEPES (pH 7.5),

30 mM DTT, 25 mM MgCl2, 2 mM spermidine-HCI, 2.5 mM ATP and GTP (Thermo Scientif-
ic), 2.5 mM 2'-F-dCTP and 2/-F-dUTP (TriLink Biotechnologies), 100 ug/mL BSA (Thermo
Scientific), 0.5-1 uM dsDNA template, and 150 pg/mL mutant T7 RNA polymerase Y639F.
RNA transcripts were purified by 8% denaturing polyacrylamide gel electrophoresis (National
Diagnostics), retrieved by passive elution followed by ethanol precipitation. Aptamer se-
quences can be found in S1 Table.

Localization of binding sites for uPA-binding aptamers by SPR analysis

Analysis was performed with a Biacore T200 (GE Healthcare). An anti-uPA antibody mAb-6
[32] was coupled onto an EDC/NHS-activated CM5 sensor surface to a level of 5000 RU,
using a buffer of 10 mM Na acetate pH 5. Pro-uPA variants were captured at levels of 200 RU,
followed by recording of the binding level response of 15 nM upanap-126, upanap-12 or a
control RNA [14]. RNA samples were prepared in running buffer (HBS, 2 mM MgCl,, 0.1%
BSA and 0.005% Tween 20). Sensor surfaces were regenerated with 10 mM glycine-HCI
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(pH 2.5) containing 0.5 M NaCl. The number of response units (RU) of bound RNA was di-
vided by the number of RU of captured pro-uPA, in order to identify mutations reducing
RNA binding.

SPR analysis of uPA aptamer interference with the binding of uPA
variants to uPAR

For studying aptamer competition with the binding of pro-uPA, ATF or GFD to uPAR, uPA
variants (4 nM) were passed over a sensor surface coupled with 1000 RU of uPAR (using

15 pg/mL uPAR in 10 mM Na acetate, pH 4.5) in the presence of increasing concentrations
of aptamer. Regeneration between cycles was accomplished with 10 mM glycin-HCI (pH 2.5),
0.5 M NaCl. The inhibition of pro-uPA variant binding to uPAR by aptamers was determined
based on the amount of bound pro-uPA after 80 s sample injections.

Binding of aptamers to the pro-uPA:uPAR complex was investigated using a sensor surface
coupled with 5000 RU anti-uPAR antibody R2 [24] (using 50 pg/mL R2 in Na acetate, pH 5).
uPAR and then pro-uPA were captured and the binding of 100 nM aptamer monitored. The
sensor surface was regenerated with 10 mM glycine-HCI (pH 2.5) containing 0.5 M NaCl.

Aptamer inhibition of plasmin-catalyzed pro-uPA activation

For immunoblotting analyses, purified pro-uPA (100 nM) was pre-incubated with or without
200 nM upanap-126, upanap-12, upanap-12.49, upanap-12.33 or a control RNA sequence
used previously [14] for 30 minutes in HBS with 2 mM MgCl,. Then, 2.5 nM plasmin (Ameri-
can Diagnostica) was added to the reaction mixtures (time 0). Samples were taken at different
time points, acidified with 30 mM HCI and analyzed by reducing SDS-PAGE and immunoblot-
ting using anti-uPA polyclonal antibody F1609 essentially as described [15].

In chromogenic assays, samples were prepared in HBS, 2 mM MgCl,, 0.1% BSA and 0.005%
Tween 20. 2 nM pro-uPA was incubated in the presence or absence of 10 nM uPAR for 20 min-
utes at room temperature prior to the addition of uPA aptamers or control RNA followed by
another 30 minutes of incubation. Plasmin (0.5 nM) was then added to the pro-uPA. After 30
minutes, the plasmin activity was quenched with 250 nM aprotinin. The amount of active uPA
generated was observed by the relative rate of cleavage (V;/V,) of the uPA substrate CS-61(44)
(0.5 mM) and plotted as a function of increasing concentrations of RNA.

The uPA—uPAR interaction and the effect of aptamers in cell culture

U937 cells were maintained in RPMI 1640 medium with L-glutamine, supplemented with 10%
fetal calf serum (FCS), 100 units/mL penicillin, and 100 units/mL streptomycin (Life Technolo-
gies). Purified pro-uPA was labeled with '2°T as described [33]. Samples containing 10° U937
cells per mL, 10 pM '**I-pro-uPA and 0-500 nM upanap-126, upanap-12 or control RNA con-
trol were prepared in culture medium and incubated for 1 or 24 hours at 4°C. The cells were
then pelleted and the amount of radioactivity in the pellet and the supernatant determined.
The bound "**I-pro-uPA was divided by total '*’I-pro-uPA.

Aptamer interference with the pro-uPA—LRP interaction

Murine LRP, kindly provided by Helle Heibroch Petersen, Novo Nordisk A/S, Malev, Den-
mark, was coupled (10 pg/mL in 10 mM glycine-HCI pH 2.8) to a SPR sensor surface to a level
0f 2500 RU. 25 nM of pro-uPA, pre-incubated with increasing concentrations of RNA aptamer,
was passed over the chip and the binding level response recorded after a 60 s injection. The sen-
sor surface was regenerated with 10 mM glycine-HCI (pH 2.5), 0.5 M NaCL

PLOS ONE | DOI:10.1371/journal.pone.0119207 March 20, 2015 17/22



@'PLOS ‘ ONE

Steric Interference by Multi-Functional Aptamers

Binding of pro-uPA:uPAR complexes to vitronectin

Monomeric vitronectin (Molecular Innovations) was immobilized (20 ug/mL in 10 mM Na ac-
etate, pH 4.5) on the surface of an SPR sensor surface. 10 nM of pre-formed pro-uPA-uPAR
complex, pre-incubated with increasing concentrations of RNA aptamer, was passed over the
chip and the binding level recorded after a 60 s injection. The sensor surface was regenerated
using 10 mM glycine-HCI (pH 2.5) supplemented with 0.5 M NaCl.

uPA inhibition by PAI-1

uPA (2 nM) was incubated in the presence or absence of aptamers (200 nM) for 30 min at
room temperature. PAI-1 was then added at various concentrations (0-5 nM) and the inhibi-
tion of uPA activity monitored over time using the chromogenic uPA substrate CS-61(44)
(1.5 mM).

Small-angle X-ray scattering data acquisition

SAXS data sets were collected at 25°C on a laboratory-based pin-hole instrument at Aarhus
University, Denmark [34]. All data sets were obtained with samples in HBS with 2 mM MgCl,.
Concentrations of upanap-12.49 and pro-uPA in aptamer alone and aptamer:protease complex
samples were 0.3 and 0.9 mg/mL, respectively. Background subtraction and conversion to ab-
solute scale of the data was done with water as a primary standard using the SUPERSAXS pro-
gram package (CLP Oliveira and JS Pedersen, unpublished).

SAXS data analysis and modeling

The pair distance distribution p(r) function was obtained by performing an indirect Fourier
transformation (IFT) of the data implemented in the program WIFT [35] (CLP Oliveira and JS
Pedersen, unpublished), from which, the maximum particle dimension, D,,,y, and the radius
of gyration, Ry, were derived. In addition, the forward scattering I(q = 0), calculated from p(r),
allows the calculation of the (‘protein equivalent’) molecular mass of the investigated sample
(whether it is pure protein or an aptamer sample) using an average scattering length density
difference per unit mass of protein of 2.0 x 10'° cm/g. Low resolution ab initio molecular sur-
face envelopes were calculated for upanap-12.49 and upanap-12.49 in complex with pro-uPA
using the program DAMMIF [36]. Ten DAMMIEF solutions were compared and averaged with
DAMAVER [37] resulting in a similarity measure (the average normalized discrepancy, NSD)
used to evaluate data quality and whether more than one population of structures dominates
the models. It should be noted that the ab initio method assumes the same scattering length for
all dummy atoms used to construct the low-resolution structural model and has a bias towards
compact objects. Thus, structural models for complexes of protein and RNA might have some
distortions, as the method attempts to assign more scattering length (i.e. to put more dummy
atoms) at the position of the RNA. The rigid-body optimization method does not have this
problem, as the individual components of the complex are assigned the correct scattering
length. The program CRYSOL [38] was used to compare theoretically calculated RNA 3D
model outputs from iFoldRNA [39, 40] to the experimental scattering data of the aptamers,
and the best solution was chosen for further modeling studies. Rigid-body modeling of the upa-
napl2.49:pro-uPA complex was performed using the selected iFoldRNA model of upanap-
12.49 and the previously determined model of pro-uPA by SAXS [25] using the program SAS-
REF [41]. A loose distance constraint between pro-uPA and upanap-12 was applied, corre-
sponding to % of the length (25 A) of the cylinder-symmetric low-resolution model of the free
aptamer, allowing any region of the aptamer to interact with the ATF of pro-uPA as suggested
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by the biochemical data. The constraint was specified between position Trp30 of the ATF (cen-
tered in the binding site) and the symmetry based position 17 of the upanap-12.49. For further
information on modeling of protein-RNA complexes in general [42]. All PDB files were visual-
ized in PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrodinger, LLC).

Supporting Information

S1 Table. RNA Aptamer sequences.
(PDF)

S1 Fig. SPR analysis overview of aptamer binding to pro-uPA mutants. Each of the 74 pro-
uPA alanine mutants were captured on a SPR sensor surface carrying immobilized kringle-
specific anti-uPA antibody mAb-6 at a level of around 200 RU. The binding level achieved
after 60 seconds of association of either 15 nM upanap-126 or upanap-12 was subsequently re-
corded. For each mutant, the exact number of RU of bound aptamer was divided by the num-
ber of RU of captured pro-uPA. The resulting number was normalized against the number for
pro-uPA wild type. The figure summarizes the results with A-chain mutants (A) and B-chain
mutants (B).

(TIF)

S2 Fig. Catalytic activity of mutants of uPA with reduced binding to upanap-126. Catalytic
activity of 5 nM wild type uPA (black squares) or uPA mutants Y284/127A (blue triangles),
R323/166A (red spheres), K338/179A (green diamonds) and R391/231A (purple triangles) to-
wards 250 uM of peptidic chromogenic uPA substrate after complete activation (2 hours with
2.5 nM plasmin). Absorbance at 405 nm was monitored over time and did not indicate any
major differences between variants in terms of catalytic activity. The results represent one of
three similar independent measurements.

(TIF)

$3 Fig. SPR sensorgram for the analysis of the binding of upanap-12 and upanap-126 to
uPAR-bound pro-uPA. A sensor surface was coupled with anti-uPAR antibody R2. uPAR was
subsequently passed over the sensor surface followed by pro-uPA. The association and dissocia-
tion of 100 nM upanap-12 (broken line) and upanap-126 (black line) upon injection is shown.
(TIF)

S4 Fig. SPR analysis of upanap-126 interference with the binding of uPA mutants to
uPAR. The SPR sensorgrams (A-C) show examples of the association and dissociation phases
for binding of 2 nM wt pro-uPA (A) as well as pro-uPA mutants R391/231A (B) or Y284/127A
(C) to uPAR on the sensor surface (black lines). In each figure coloured lines represent wild
type pro-uPA pre-incubated with either 3.13 nM (green), 12.5 nM (blue) or 50 nM (purple)
upanap-126 (A), or pro-uPA mutants pre-incubated with 200 nM (red) upanap-126 (B and C,
respectively).

(TIF)

S5 Fig. SPR analysis of upanap-12 interference with the binding of uPA mutants to uPAR.
4 nM of pro-uPA, ATF or GFD was passed over a CM5 surface with immobilized uPAR with
or without upanap-12. In A-C the black line represents binding to uPAR of either pro-uPA
(A), ATF (B) or GFD (C) alone without RNA. In A and B the coloured lines represent the
binding of pro-uPA or ATF to uPAR after pre-incubation with 0.78 nM (green), 3.13 nM
(blue) and 12.5 nM (purple) of upanap-12 (). In C, the red line represents binding of GFD to
uPAR after pre-incubation with 50 nM of upanap-12.

(TTF)
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S6 Fig. Supporting SAXS data. (A) SAXS data obtained for the free upanap-12.49 aptamer
(open circles) and the aptamer:pro-uPA complex (open triangels) with their corresponding IFT
model fits (black line). (B) SAXS data obtained for free upanap-12.49 (open circles) and upanap-
12.49:pro-uPA complex (open triangels) with their corresponding model fits (black line) for the
most representative ab initio model. The SAXS data for the complex in panel A and B is rescaled
with a scale factor of 10 to improve visualization of the data. (C) SAXS data obtained for pro-
uPA in the current study (closed circles) compared to pro-uPA from a previous study [25] (open
circles). (D) Rigid-body models for the upanap-12.49:pro-uPA complex with the full-length pro-
uPA structural model in red and the two most representative aptamer12.49 models in green and
blue. The semitransparent beads represent the ab initio space of the complex after subtraction of
the ab initio space of uPA, illustrating the residual space for the RNA to occupy.

(TTF)
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