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Abstract With the advent of antiretroviral therapy that can
control virus replication below the detection levels of conven-
tional assays, a new clinical landscape of AIDS emerged, in
which non-AIDS complications prevail over AIDS-defining
conditions. These comorbidities are diverse and affect multi-
ple organs, thus resulting in cardiovascular, kidney,
neurocognitive and liver disease, osteopenia/osteoporosis,
and cancers. A common feature of these conditions is that they
are generally associated with accelerated aging. The mecha-
nism behind these comorbidities is chronic excessive inflam-
mation induced by HIV infection, which persists under anti-

retroviral therapy. Progressive simian immunodeficiency vi-
rus (SIV) infection of nonhuman primates (NHPs) closely
reproduces these comorbidities and offers a simplified
system in which most of the traditional human risk fac-
tors for comorbidities (i.e., smoking, hyperlipidemia) are
absent. Additionally, experimental conditions can be
properly controlled during a shorter course of disease
for SIV infection. As such, NHPs can be employed to
characterize new paradigms of AIDS pathogenesis and
to test the efficacy of interventions aimed at alleviating
non-AIDS-related comorbidities.
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Introduction: the New Clinical Landscape of AIDS

The advent of antiretroviral therapies (ART) is one of the most
prominent accomplishments of modern medicine, which dra-
matically changed the clinical landscape of human immuno-
deficiency virus (HIV) infection. With therapies, the life ex-
pectancy of a motivated patient has increased to 59 years,
albeit not yet fully restored [1]. ART has other multiple limi-
tations: (a) it requires life-long adherence preventing effective
treatment from being delivered in a sustainable way to all in
need; (b) it is associated with short- and long-term toxicity; (c)
it does not completely restore immune integrity; and (d) it is
not curative and does not eradicate HIV-1 [1]. Additionally,
patients that are effectively treated have a higher risk of non-
AIDS-related overall morbidity and mortality compared to
uninfected individuals of the same age [2••]. Non-AIDS co-
morbidities are diverse and affect multiple organs thus
resulting in cardiovascular (CV), kidney, neurocognitive and
liver disease, osteopenia/osteoporosis, and cancers. A com-
mon feature of these conditions is that they are generally as-
sociated with aging. Indeed, HIV-infected patients experience
frailty and other geriatric signs earlier than the general popu-
lation [2••].

Several pathogenic mechanisms are at the origin of non-
AIDS comorbidities observed in the HIV-infected patient on
ART, such as higher frequency of risk factors (substance
abuse, diet, obesity, hypertension), drug side effects and tox-
icity, and, most importantly, virus-induced immune dysfunc-
tion and chronic inflammation. In infected patients in whom
HIV-1 replication is controlled with ART, the failure of im-
mune recovery is associated with high levels of T cell activa-
tion [3], inflammatory monocyte activation [4], and increased
levels of inflammatory biomarkers [5, 6, 4]. Furthermore, the
biomarkers of hypercoagulability are also increased in chron-
ically infected patients. The elevations of inflammatory and
coagulation biomarkers are independent predictors of signifi-
cant increases in morbidity and mortality in HIV-infected pa-
tients compared to the general population [6, 4]. These fea-
tures are so consistently observed in HIV-infected patients that
it was recently proposed that they can comprise a new HIV-
associated syndrome [7•].

Understanding how chronic inf lammation and
hypercoagulation occur in HIV-infected subjects may gener-
ate new therapeutic paradigms to control end-organ diseases.

These new approaches must be tested preclinically in animal
models. Here, we discuss the utility of nonhuman primate
(NHP) models for the study of HIV-related comorbidities
and of therapeutic strategies aimed at controlling them.

NHP Models for AIDS Research

NHP models are instrumental for studies of pathogenesis,
transmission and prevention of HIV infection. Both HIVs
have a simian origin, with HIV-1 originating from
chimpanzees/gorillas and HIV-2 originating from multiple
cross-species transmissions from sooty mangabeys [8]. As
both chimpanzees and sooty mangabeys are highly endan-
gered and therefore cannot be used for controlled studies,
alternative models are used that mainly rely on the use of
Asian macaques [9]. Macaques are not naturally infected with
simian immunodeficiency virus (SIV) in the wild, but upon
experimental infection with SIVs, they develop a clinical syn-
drome that is remarkably similar to AIDS in humans [9]. SIV
infection in macaques recapitulates the most important fea-
tures of HIV infection: (i) the development of a chronic pro-
gressive infection that eventually progresses to simian AIDS
(characterized by opportunistic infections, cancers, and neu-
ropathology-neuro-AIDS); (ii) the occurrence of a controlled
infection in a minority of macaques harboring specific MHC
class I alleles, similar to human elite controllers; (iii) similar
viral replication and CD4+ T cell depletion patterns and alter-
ation of the same memory T cell subsets; (iv) the failure of
immune responses to contain the virus; (v) the similar patho-
genic consequences of viral replication, with mucosal dys-
function, microbial translocation, and persistent immune acti-
vation and inflammation; and (vi) the persistence of the virus
in cellular reservoirs even after complete suppression with
antiretroviral therapy [9, 10].

As such, it is considered that macaques infected with SIV
represent one of the best animal models for a human disease in
the history of modern medicine [9, 10]. The only major limi-
tation to the use of this model is that HIV-1 does not infect
macaques because of multiple host restriction factors [11].
This limitation has largely been surpassed by using SIV for
macaque infection, as multiple SIV strains infect macaques.
SIVsmm/SIVmac, which are derived from sooty mangabeys,
similar to HIV-2 [12] are the most widely used. SIVagm
strains, which are derived from African green monkeys
(AGMs) [8], are used for infecting pigtailed macaques
(PTMs), in which upon passage induces a progressive infec-
tion [13, 14], and rhesus macaques, in which SIVagm is func-
tionally cured [15]. Furthermore, artificial chimeras including
HIV-1 genes in a backbone of SIVmac, called simian-human
immunodeficiency viruses (SHIVs), have been constructed
for vaccine and therapeutic studies [16]. More recently, HIV-
1-like chimeras were constructed with only minimal SIV
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content included only to counteract the host restriction factors
[17].

Over the years, the use of the NHP model for AIDS per-
mitted major advances in the field of HIV transmission, path-
ogenesis, prevention, and therapy [9, 10]. Comparative studies
between pathogenic SIV infections in macaques and non-
pathogenic SIV infections in their natural hosts (i.e., sooty
mangabeys and AGMs) decisively contributed to the new par-
adigms of HIV pathogenesis in which chronic immune acti-
vation, dysfunction of the lymphoid tissues, and preferential
depletion/preservation of different CD4+ Tcell subsets are key
contributors to AIDS progression [18, 9]. In this context, one
of the key questions in the field is whether or not NHPmodels
will be useful to study the HIV comorbidities that form the
current clinical landscape of AIDS. In this review, we will
provide compelling evidence that NHPmodels can and should
be employed tomodel HIV comorbidities and new therapeutic
approaches.

Use of NHPs to Study Immune Activation
and Inflammation AssociatedWith Chronic SIV Infection

Chronic immune activation and inflammation are the best pre-
dictors of HIV disease progression to AIDS [19]. In HIV-
infected patients, immune activation is characterized by in-
creased T cell turnover, high frequency of T cells that express
an activated phenotype, polyclonal innate cell (B cells, mono-
cytes/macrophages/myeloid, and plasmacytoid dendritic
cells) activation, high levels of plasma cytokines and
chemokines, and increased levels of inflammatory mediators
[20, 2••].

The causes of chronic immune activation and inflammation
in HIV-infected patients are multiple and intricate, therefore
difficult to tackle: (i) the virus itself induces immune activa-
tion directly, with the levels of the “set-point” immune activa-
tion being at least partially correlated to those of virus repli-
cation [20], (ii) coinfection with other viral pathogens, includ-
ing different herpesviruses [21], (iii) HIV-induced alterations
of the mucosal barrier that results in the chronic translocation
of the microbial products from the intestinal lumen to systemic
circulation [22–25], and (iv) dysfunctional immunoregulatory
factors [2••]. The chronic inflammation caused by the intricate
action of these factors will in turn produce the early fibrosis of
lymphoid tissues resulting in CD4+ T cell regenerative failure
and disease progression to AIDS [26]. Inflammation is par-
tially reversed by ART, but reversion is incomplete, and resid-
ual inflammation is responsible for the reported comorbidities.

Over the years, the use of NHP models was instrumental
for generating this paradigm of HIV infection, in which in-
flammation is at the core of HIV pathogenesis [2••, 7•, 8–27].
Very strong support for the role of chronic immune activation
and inflammation in the pathogenesis of AIDS came from the

field of SIV infection in their natural hosts. In these species,
which do not develop AIDS despite high levels of virus rep-
lication, an acute increase in the levels of immune activation
and inflammation [18–28] is resolved to preinfection levels
during chronic infection [29]. Furthermore, chronic SIV infec-
tion in natural hosts does not undermine the integrity of mu-
cosal barrier, and consequently, there is no increase in micro-
bial translocation [30, 31]. Therefore, there is a general con-
sensus that lack of disease progression in natural hosts is due
to their ability to avoid the negative consequences of SIV-
related inflammatory responses. We confirmed the impact of
chronic immune activation and inflammation on driving dis-
ease progression by administering Ontak (an IL-2 coupled
with a diphtheria toxin, which targets CD25, a molecule
expressed on Treg surface) to chronically SIVagm-infected
AGMs. Ontak administration resulted in the increased levels
of immune activation and inflammation and consequently en-
hanced viral replication and mucosal CD4+ T cell depletion
[32]. In other sets of experiments, we mimicked microbial
translocation by administering lipopolysaccharide (LPS) to
chronically SIVsab-infected AGMs, both in single dose [32]
and in prolonged administration [33••]. In both experiments,
LPS increased the levels of systemic immune activation and
inflammation and boosted viral replication [33••, 32]. Finally,
in an unpublished work, we demonstrated that alcohol-
induced mucosal alterations (and microbial translocation) re-
sulted in increased levels of systemic immune activation and
inflammation in chronically infected AGMs. Altogether, these
experiments provided strong support to the fact that immune
activation/inflammation are key factors of disease progres-
sion. Moreover, these studies validate microbial translocation
as a major driver of immune activation.

Conversely, macaques infected with SIVrecapitulate all the
biological features of chronic HIV infection, and thus present
with increased levels of chronic immune activation, inflam-
mation, and microbial translocation [34, 14, 33••, 31]. The
macaque model is therefore ideally suited for testing therapeu-
tic strategies aimed at breaking the vicious circle of HIV path-
ogenesis and contribute to the normalization of chronic in-
flammation and immune activation, which may complement
ART in HIV-infected patients [35••, 36••, 37].

Use of NHPs to Model HIV-related Aging

With more than half of HIV-infected patients in the USA an-
ticipated to be over 50 years of age by 2015, the overall risk of
noninfectious complications will be significantly higher and
will become an important challenge for the management of
chronic HIV infection [38]. Chronic inflammatory disease be-
comes apparent by the fifth decade of life, coinciding with the
end of most procreation and raising a family [39]. Certain
chronic infections (such as the cytomegalovirus infection)
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which have no discernible effect on young and middle-aged
individuals are clearly associated with complications of aging
and mediating diseases in individuals at risk [40]. Further-
more, T cell activation does not appear to have a direct effect
on HIV disease progression in young adults but has a discern-
ible effect in patients over 50 years [2••].

Interestingly, the inflammatory and coagulation abnormal-
ities, as well as the levels of associated biomarkers (i.e., D-
dimer, IL-6, C-reactive protein, sCD14) predictive for HIV
disease progression and mortality in middle-aged HIV-infect-
ed patients, are strikingly similar to those observed in much
older uninfected subjects, in which the same markers are
known to be predictive of morbidity and mortality [41].

In older HIV-infected patients, a higher risk of death is
related to a higher incidence of noninfectious complications,
including CV disease and other chronic diseases related to
aging [42]. Furthermore, treatment initiation at an older age
is consistently associated with a less effective CD4+ T cell
restoration and a higher risk for development of non-AIDS
related complications [42]. This prompted the US Department
of Health and Human Services (DHHS) to recommend the
initiation of ART in all HIV-infected patients >50 years of
age, regardless of their CD4+ T cell counts (http://aidsinfo.
nih.gov/guidelines/html/1/adult-and-adolescent-arv-
guidelines/10) [43]. However, ART alone does not eliminate
the increased risk of death due to non-AIDS comorbidities in
elderly patients, which is currently a major clinical problem
for the management of HIV infection. Yet, to date, there is no
efficient therapeutic solution to this situation.

In macaques, aging is associated with similar immune senes-
cence, with a switch toward a proinflammatory status [44].
While there is a reduction in the overall levels of white blood
cells (WBCs) [45], some cell subtypes (i.e., lymphocytes, mono-
cytes, and polymorphonuclear cells) increase with age. One
study reported no significant decline in NK and T cells but a
significant decline of B cells in aged macaques [46]. Changes in
the macaque T cell subsets include significant declines in CD4+

and CD8+ naïve T cells and increases of the CD4+ and CD8+

effector memory T cells occurring with age [46].
Interestingly, an age-related expression of IL-8 and IL-6

was reported to occur in airway epithelium after LPS exposure
in macaques confirming the age-related proinflammatory
status [47].

This overall proinflammatory switch characteristic of aged
macaques might increase the levels of target cells for the virus
and thus result in a more pathogenic infection. In other virus
infections, such as influenza or SARS, higher levels of viral
replication were reported to occur in aged animals [48].

These increases in the proinflammatory status are shared
between pathogenic and nonpathogenic models of SIV infec-
tion. In our unpublished studies, we observed that the age-
related alterations in immune cell populations were similar
between uninfected macaques and AGMs. We also

documented age-related increases in the levels of D-dimer in
wild AGMs [49]. Interestingly, while SIV infection is gener-
ally nonpathogenic in natural hosts, we and others have de-
scribed a handful of AIDS cases in AGMs, mandrills, sooty
mangabeys, and black mangabeys [50], the vast majority of
which occurred in older NHPs. Another interesting observa-
tion was that all these animals had increased persistent levels
of immune activation (i.e., significantly increased Ki-67 ex-
pression in the lymph nodes) [50]. This was surprising, as it is
well established that the levels of immune activation markers
do not significantly change from the baseline in chronically
SIV-infected NHPs that are natural hosts [50]. Finally, a com-
mon pathological feature in the old African NHPs that
progressed to AIDS was a condition characterized by the se-
vere accumulation of infected macrophages in tissues known
as “giant cell disease” [50]. Significant increases in neopterin,
an inflammatory marker related to monocyte activation, were
also observed in the AIDS cases occurring in the elder NHP
hosts. Altogether, these findings suggest that increased levels
of immune activation and inflammation (particularly macro-
phage activation) that occur in older animals may drive pro-
gression to AIDS even in species that are generally resistant to
disease progression.

In summary, similar to humans [38], NHPs develop chronic
systemic inflammation with age. While this age-related in-
flammatory status results in the development of well-
documented degenerative effects in elderly patients [38], the
impact of age-related inflammation on HIV/SIV pathogenesis
is not well studied.

Use of NHPs to Model and Control Gastrointestinal (GI)
Tract and Liver Dysfunction

The GI tract is one of the systems most affected by HIV
infection. The intestine contains the largest number of CD4+

T lymphocytes [22]. Even more important, the predominant
CD4+ T cell subset in the gut is the effector memory cell,
which expresses high levels of CCR5, the main HIV co-
receptor [22]. As such, the intestine is the main site of HIV
replication and CD4+ T cell depletion [22] early in the disease
course. In addition to these direct effects, HIV exerts a major
indirect effect in the gut by inducing epithelial cell activation
and apoptosis [22]. Altogether, these processes result in a loss
of mucosal integrity and translocation of microbial products
from the intestinal lumen to systemic circulation [22]. Antire-
troviral therapy may alleviate these effects, but control of mi-
crobial translocation is incomplete with ART [22] and is a
leading cause of residual inflammation, which in turn results
in incomplete immune restoration, hypercoagulation, and co-
morbidities. The role of microbial translocation in inducing
inflammation and hypercoagulability was directly validated
in NHP models [51•, 36••].
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Intestinal permeability is also increased in multiple patho-
genic conditions, such as inflammatory bowel disease, pan-
creatitis, graft-versus-host disease, excessive alcohol con-
sumption, as well as obesity and diabetes or with age [25,
22]. The extensive studies of this process show that microbial
products can stimulate the innate and adaptive effectors both
locally and systemically. In addition to these effects on the
immune system, microbial products may also stimulate non-
immune cells (i.e., endothelial cells of the CV system) [52]. In
HIV-infected patients, microbial translocation has characteris-
tic features: thus, generalized immune activation is associated
with preferential loss of cell subsets involved in maintaining
epithelial integrity at mucosal surfaces and antimicrobial im-
munity, such as the CD4+ T cells secreting IL-17 and IL-22
[53, 54]. These features were established by comparative stud-
ies of the pathogenesis of SIV infection in progressive and
nonprogressive animal models.

Studies have also shown that HIV may induce gut
dysbiosis, with an enrichment of microbial species that can
catabolize tryptophan through the kynurenine pathway, and
thus promote the loss of Th17 cells [55–57]. It was also re-
ported that pathogenic, but not nonpathogenic, nonprogres-
sive SIV infection also altered the enteric viral communities
[58•]. Furthermore, dysbiosis may increase the production of
trimethylamine-N-oxide, a potent proatherogenic factor [59],
which would provide a mechanistic pathway between micro-
bial translocation and the high incidence of CV disease in
HIV-infected people [60].

In addition to gut leakage, microbial translocation may oc-
cur through inefficient metabolism of microbial products in
the liver. Liver dysfunction is frequent in HIV-infected pa-
tients and may play a significant role in the pathogenesis of
other comorbidities. Hepatic dysfunction may alter multiple
critical coagulation factors which are produced by the liver,
which may explain some of the coagulation abnormalities
associated with HIV infection. It was indeed shown that HIV
replication leads to short-term alterations of both pro- and
anticoagulant factors [61]. To date, however, the effect of liver
dysfunction on the overall outcome of HIV infection is not
known. In the SIVsab PTM model, we observed frequent
inflammatory infiltrates with mononuclear cells in the hepatic
sinusoids or in the portal spaces and around the central vein.
Sometimes, these infiltrates are severe (Fig. 1a) bridging sev-
eral portal spaces, similar to the lesions observed in chronic
active hepatitis. As a result, in some of the animals, we ob-
served hepatic fibrosis that moderately alters the hepatic ar-
chitecture (Fig. 1b). The effect of these modifications on NHP
liver function is not yet known.

There are multiple mechanisms of liver dysfunction in
HIV-infected patients: (i) effects of HIV infection: direct in-
fection of Kupffer and stellate cells; indirect-through microbi-
al translocation, chronic inflammation, and coagulopathy
[2••]; (ii) action of cofactors, such as chronic alcohol

consumption or coinfection with hepatitis C virus [62]; and
(iii) ART toxicity [61].

Due to the key role played by the gastrointestinal tract in
the pathogenesis of AIDS, multiple therapeutic approaches
aimed at controlling immune activation and inflammation,
microbial translocation, and dysbiosis are currently being
evaluated, including in NHP models. Prebiotics and
probiotics, to alter the bowel flora and reduce the levels of
potentially pathogenic bacteria, have shown promising results
in both NHP models [35••] and humans [63]. The administra-
tion of bovine colostrum, which binds LPS and may prevent
translocation, had no clinical effect in HIV-infected subjects
[64]. Sevelamer administration to acutely SIV-infected NHPs
improved the levels of immune activation and coagulation
[36••]; in chronically HIV-infected patients, sevelamer did
not reduce microbial translocation but had a statistical effect
on soluble tissue factor, low-density lipoprotein (LDL) cho-
lesterol, and oxidized LDL cholesterol [65]. In SIV-infected
macaques, treatment with IL-21 resulted in a better preserva-
tion of the intestinal Th17 cells and reduced microbial trans-
location [66]. None of these studies provided a clear clinical
improvement, but they collectively provided strong support
for pursuing interventions aimed at alleviating the GI alter-
ations in order to improve the clinical outcome of HIV
infection.

Use of NHPs to Model CV Comorbidities

Accumulating evidence suggests that HIV-infected individuals
have a higher rate of CVevents versus uninfected persons. The
proportion of deaths from heart disease doubled between 1996
and 2006, and health insurance claims data indicated a dramatic
increase of acute myocardial infarction (MI) and coronary dis-
ease incidence in HIV-infected patients (sevenfold higher inci-
dence compared to general population). CV conditions associ-
ated with HIV infection also include hypertension, metabolic
disease (hyperglycemia, lipid disorders), and accelerated ath-
erosclerosis leading to premature coronary artery disease. In-
terestingly, the increased risk of MI in patients with HIV infec-
tion versus age-matched uninfected patients is observed even
after adjusting for Framingham risk factors and other comor-
bidities, suggesting that traditional models for estimating CV
risk may underestimate risk in HIV patients and that there may
be pathways in the pathogenesis of CV disease that are specific
to HIV-infected patients [67].

The etiology, pathophysiology, and determinants of CV
disease in HIV-infected patients are poorly understood, and
the relative contributions of HIV itself, conventional risk fac-
tors, and ART to CV risk are unknown, thus constraining
strategies to mitigate HIV-related CV disease. ART itself
may contribute to CV disease (directly or through effects on
lipid profiles); however, the discontinuation of ARTappears to
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increase CV risk, implicating viral replication in the pathogen-
esis of CV disease. Furthermore, studies in NHPs clearly
showed that CV disease occurs in the absence of ART thus
reinforcing an independent role of SIV infection in the devel-
opment of CV disease [33••]. Although traditional risk factors
(smoking, hypertension, dyslipidemia) are highly prevalent in
HIV-infected subjects, evidence strongly suggests that chronic
inflammation is the main factor behind CV disease, as
indicated by elevations in soluble and cellular biomarkers of
inflammation, endothelial dysfunction, and hypercoagulation,
processeswhich contribute to the pathogenesis of “conventional”
CV disease.

The abnormal levels of coagulation factors have been con-
sistently observed in HIV-infected patients for over 20 years
[68, 69]. D-dimer (produced during clot lysis) has been asso-
ciated with mortality and CV disease in HIV-infected patients

[70, 6] and predicts venous thromboembolic disease in these
patients [71]. D-dimer increases and hypercoagulation occur
in both untreated patients [72, 6] as well as in patients receiv-
ing ART (albeit administration of ART results in a partial
reduction in D-dimer levels [73, 74]). With regard to the
sources of alteration in coagulation status, a general consensus
is emerging in the field in support of a role of chronic inflam-
mation characteristic to chronic HIV infection [70, 75]. Acti-
vated coagulation on the other side has the capacity to enhance
inflammation thus creating a vicious circle of inflammation/
hypercoagulation.

Our studies in NHPs established a strong correlation be-
tween chronic inflammation, monocyte activation, and
hypercoagulation and HIV disease progression. In these stud-
ies, we compared pathogenic and nonpathogenic SIV infec-
tions (which, in spite of comparable levels of viral replication,

Fig. 1 Liver and kidney lesions detected in SIVsab-infected NHPs. a
Severe bridging mononuclear infiltrate peri portal and around the central
veins (SIVsab/PTM, HE); b hepatic fibrosis (SIVsab/PTM, HE); c no
kidney lessons are detected in SIVagm-infected African green monkeys;
d microthrombi in the glomerular capillaries and afferent arterioles
(SIVsab/PTM, IHC for fibrinogen); e parietal epithelial cell hyperplasia
associated with collapsed capillaries (a condition involved in the
development of focal, segmental glomerulosclerosis) (SIVsab/PTM, HE);

f interstitial nephritis—diffuse mononuclear infiltration associated with
hyaline casts in the renal tubules (SIVsab/PTM, HE); g interstitial
pseudogranulomatous nephritis (SIVsab/PTM, HE)—interstitial nephritis
with focal collections of lymphocytes with a germinal center-like area
surrounded by other mononuclear cells; h interstitial nephritis (detail—
dilated tubules with hyaline casts); i interstitial nephritis (detail—dilated
tubules with cellular casts—adherent desquamated epithelial cells of the
tubule lining (SIVsab/PTM, HE)

Curr HIV/AIDS Rep (2015) 12:54–67 59



have different levels of chronic immune activation and inflam-
mation). These studies have shown that in AGMs and sooty
mangabeys, the resolution of immune activation and inflam-
mation are associated with normal levels of coagulation, while
in pathogenic SIV infection of the PTMs, chronic inflamma-
tion and disease progression are associated with high levels of
hypercoagulopathy [33••]. Both the increased levels of D-
dimer (DD) and thrombin-antithrombin complex (TAT)
strongly predicted disease progression and death in NHPs
[33••], similar to HIV-infected patients [33••].

Also, our experimental studies demonstrated that interven-
tions aimed at controlling persistent inflammation also
lowered the biomarkers of hypercoagulation [33••, 34, 35••,
36••] in SIV-infected NHPs thus reinforcing a causative rela-
tionship between these two parameters.

The major limitation for addressing CV complications in
HIV-infected patients is the interference of a plethora of con-
founding factors that cannot be dissected. First, CV disease
may be due either to HIV infection or to ART itself [76, 6].
Hence, ART may have a dual effect on CV complications:
either reducing the risk of CV events by reducing inflamma-
tion and coagulation or by increasing the CV risk through
adverse metabolic effects (lipid changes) and vascular toxic
effects. While the effects of the virus and treatments can be
theoretically dissociated, this task is difficult to achieve, since
most of HIV-infected patients are treated. Furthermore, the
nature of the risk factors of CV disease (i.e., diet, alcohol
and cigarette usage, sedentarism, obesity) further complicates
these studies making patient matching between groups very
difficult. It is thus not surprising that to date, our understand-
ing of the relationship between HIV infection, ART, and CV
disease is unclear and incomplete, which is a critical barrier
toward identifying interventions to reduce CV disease-related
mortality in HIV patients with HIV.

Therefore, the use of the NHP models, which minimize the
confounding factors, can provide an excellent model for the
study of the interrelation between immune activation and in-
flammation, hypercoagulation, and CV disease in HIV-1 in-
fected subjects.

Besides hypercoagulation, progressive SIV infection in the
macaque model faithfully reproduces the large array of CV
abnormalities described in HIV patients. We analyzed multi-
ple tissues from SIV/PTMs and SIV/AGMs to identify and
compare CV lesions between pathogenic and nonpathogenic
SIV infections. In contrast to the natural hosts which do not
present with CV lesions (Fig. 2a) the SIV/PTM model closely
reproduces the spectrum of CVabnormalities reported in HIV-
infected patients, i.e., thrombotic microangiopathy (TMA),
arteriopathy, myocardial hypertrophy and fibrosis, atheroscle-
rosis (ATS), infarction, and myocarditis [77–80]. Many of
these pathological conditions were previously reported in per-
sistent progressive SIV/HIV-2 infected rhesus macaques
(RMs) and PTMs [81–84].

Most frequently and in agreement with their hypercoagu-
lable status described above, SIVsab/PTMs have extensive in
situ coagulopathies: similar to the renal TMA described in
HIV-infected patients, numerous thrombi are accumulating
in the glomerular capillary loops (Fig. 1d), afferent and effer-
ent arterioles (Fig. 1d), and small arteries in the kidneys of
SIV-infected PTMs. TMA can also be detected in the small
vessels in the intestine, lung, and brain [33••], thus explaining
the frequent neurological disease observed in PTMs [10].
Microthrombosis may play a significant role in tissue fibrosis
development and thus may contribute to lower immune resto-
ration at a certain tissue site or to end-stage organ disease
development.

Similar to HIV-infected patients, SIV-infected macaques
present with myocardial hypertrophy (enlargedmyocytes with
irregular nuclei), fibrosis, with increased collagen deposition
(Fig. 2b) that replaces either small groups of drop-out
myocytes or larger areas of infarction and myocarditis, with
infiltration with mononuclear cells (Fig. 2c), and
myocytolysis. Arteriopathy characterized by thickened arterial
wall, infiltrated with mononuclear cells and obstructed lumen
(Fig. 2d) was also detected in several organs such as the heart
and kidney. Finally, although atherosclerosis (ATS) lesions are
very rare in SIV-negative PTMs, fatty streak (the first visible
lesions in the development of ATS) composed by foamy mac-
rophages were found to accumulate in the tunica intima, un-
derneath the aorta endothelium in several SIV-infected PTMs
(Fig. 2e) [33••]. In rare cases, we also detected fibrotic ATS
plaques complicated with thrombosis (Fig. 2f).

To conclude, our studies in pathogenic and nonpathogenic
NHP models of AIDS clearly showed that CV disease is spe-
cifically associated to pathogenic SIV infection and absent in
nonpathogenic SIV infection. SIV-associated comorbidities
occur in the absence of conventional risk factors for CV dis-
ease and in the absence of ARTand can be linked to persistent
inflammation characteristic to pathogenic HIV/SIV infection.
Therefore, our studies point to a causal relationship between
the two conditions and suggest that strategies targeting persis-
tent inflammation may alleviate CV disease. Therefore, the
animal model proves instrumental for the study of CV
comorbidities.

Use of NHPs to Model Respiratory Comorbidities

In the past, one of the hallmarks of AIDS clinical presentation
was Pneumocystis carinii (now jiroveci) and bacterial pneu-
monia. With the advent of ART and the improvement of the
immune status in patients receiving ART, infectious compli-
cations of AIDS are now better controlled. Currently, nonin-
fectious lung diseases, like chronic obstructive pulmonary
disease (COPD), are emerging as key clinical conditions [85].
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COPD, an impairment of expiratory airflow limitation, is
one of the leading causes of global death and of global years
lived with disability. The prevalence of COPD in HIV-infected
patients ranges between 3 and 23 % in cross-sectional studies.
In prospective studies, the identified prevalence of COPD is
10 % which increases to 19 % at 4.4 years of follow-up, sug-
gesting that higher life expectancy of HIV-infected patients
creates the premise for COPD to emerge as a major comorbid-
ity [85]. This is not unexpected, as the frequency of COPD
increases with age and often presents in later adulthood even
in the noninfected individuals. Therefore, it is expected that
COPD prevalence will dramatically increase in HIV-infected
patients whose average age is significantly increasing [2••].

To date, it is not known how HIV increases the risk for
COPD. Its main triggers are chronic inflammation, respiratory
infections, oxidative stress, and ART. The role of bacterial
pneumonia in COPD is not clear, some studies reporting a clear
association between the two conditions while others finding no
such association. Altered respiratory microbiome is also postu-
lated to be responsible for the HIV-associated COPD and such

studies are currently in progress. P. jiroveci colonization of the
lung is frequent in patients with AIDS, and in uninfected pa-
tients, more severe forms of COPD have high frequency of
colonization [2••]. While these results are strictly observational
and not causal, P. jiroveci can induce matrix metalloproteinase
activity thus causing lung tissue destruction which contribute to
the pathogenesis of COPD in HIV-infected patients [85].

It was also reported that the CD8+ T cells accumulated in
the lungs of COPD patients interact with macrophages and
neutrophils, releasing chemokines, cytokines, and growth fac-
tors in the lungs, thus contributing to chronic inflammation.
Thus, the levels of CD8+ T cells in bronchoalveolar lavages
correlate to the degree of viral RNA and both correlate with
the severity of alveolitis [85].

NHP models of pathogenic SIV infection closely recapitu-
late pulmonary lesions observed in HIV-infected patients. In
PTMs infected with SIVsab, we observed a large range of
pulmonary lesions (Fig. 2). In earlier stages of infection, most
frequently, massive mononuclear infiltrates may be seen in the
lung parenchyma (Fig. 2g) or in the vicinity of the large bronchi

Fig. 2 Cardiovascular and lung lesions detected in the SIVsab-infected
NHPs. a Lack of mononuclear infiltration, fibrosis, and microthrombosis
in the chronically SIVsab-infected AGM lung (SIVsab/AGM, collagen
staining); bmyocardial fibrosis with subsequent myocardial hypertrophy
(SIVsab/PTM, collagen staining); c massive mononuclear cell infiltrates
in the myocardium (SIVsab/PTM, collagen staining); d arteritis—small
artery with thickened wall and obstructed lumen (SIVsab/PTM, collagen
staining); e incipient atherosclerosis plaque (SIVsab/PTM, HE); f ad-
vanced fibrotic plaques complicated with thrombosis (SIVsab/PTM,

HE); g massive mononuclear infiltration in the lung parenchyma
(SIVsab/PTM, HE); h mononuclear infiltration in the large bronchi wall
(SIVsab/PTM, HE); i localized emphysema characterized by destruction
and dilatation of the airways distal to terminal bronchioles (SIVsab/PTM,
HE); j thickened alveolar walls infiltrated with mononuclear cells and
numerous thrombi in capillaries (SIVsab/PTM, HE); k disruption of the
lung architecture, hyaline membranes, and fibrosis (SIVsab/PTM, HE); l
lack of mononuclear infiltration, fibrosis, and microthrombosis in the
chronically SIVsab-infected AGM lung (SIVsab/AGM, HE)
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(Fig. 2h). With disease progression, localized emphysema
(Fig. 2i) and most frequently thickened alveolar walls
(Fig. 2j) due to mononuclear infiltration can be seen. The com-
plete disruption of the lung architecture, hyaline membranes
depositions, and consequent lung fibrosis is also a characteristic
of late chronic SIV infection in PTMs (Fig. 2k). In high con-
trast, the natural host maintains a healthy lung architecture dur-
ing chronic SIVsab infection (Fig. 2l). The prospective studies
of COPD in SIV-infected monkeys with progressive disease
have yet to be completed. The animalmodel permits us to refine
the system for risk factors, as one of the major trigger of COPD
and potentially confounding factor of such studies, cigarette
smoking, is not present in the model. Also, NHP studies will
enable a more invasive approach that permits clear conclusions
regarding the mechanisms and possible interventions aimed at
preventing respiratory comorbidities in HIV-infected patients.

Use of NHPs to Model Kidney Comorbidities

Although kidney disease has not been recognized as a priority
noncommunicable disease (NCD) by the 2011 United Nations
General Assembly, the meeting recognized the linkage be-
tween NCDs and HIV/AIDS and called for an integrated mod-
el of response to these two conditions [86].

Acute kidney injury defined by a sudden loss of kidney func-
tion (hours to days) and characterized by the accumulation of
urea and creatinine, decreased urine output, or both is common
in patients with HIV. Acute kidney injury has been shown to
predispose to end-stage renal disease and increased mortality in
HIV patients [87]. Chronic kidney disease defined by either
structural or functional kidney damage (abnormal urinalysis, im-
aging studies, or histology) with a duration of at least 3 months
with or without a decreased glomerular filtration rate or de-
creased kidney function, with or without evidence of kidney
damage, [87] was also described in HIV patients. Chronic kid-
ney disease can be caused, accelerated, or complicated by HIV.

HIV-associated nephropathy (HIVAN) is most frequently
characterized by collapsing focal glomerulosclerosis with
microcystic tubular dilatation [88]. In addition, other histo-
pathological lesions associated with kidney disease in HIV
patients are immune complex glomerulonephritis with “lu-
pus-like” features, IgA nephropathy, cryoglobulinemia, and
amyloidosis. HIVAN is common inHIV-infected patients with
less than 200 CD4+ T cells/μl and associated with significant
proteinuria. Untreated, HIVAN rapidly progresses to end-
stage renal disease and death (50 % mortality at 4.47 months
in patients that do not receive ART) [87].

The mechanisms responsible for kidney disease develop-
ment are poorly understood. Both HIV infection and immune
suppression in general are considered risk factors for renal im-
pairment.While the pathway by which a low CD4+ Tcell count
impacts renal function independent of HIV viremia or

opportunistic infections is not known, there is a general consen-
sus in the field that the main mechanism behind this association
is persistent inflammation [89]. The preservation of the immune
function through early initiation of ARTseems to be essential to
minimize the risk of renal disease in HIV-infected patients [89].

The complex interactions between HIV infection and kidney
disease development can be dissected by using NHP progres-
sive models. Natural hosts do not develop kidney impairment
(Fig. 1c), while the clinical presentation of kidney disease as-
sociated with progressive SIV infection in macaque recapitu-
lates the features of HIV infection. A clinical syndrome equiv-
alent to HIVAN was described in macaques infected with SIV,
characterized by focal and segmental glomerulosclerosis and
collapsing glomerulopathy [90]. We have recently confirmed
similar features in SIVsab-infected PTM, our model of patho-
genic SIV infection, in which we identified histological lesions
similar to HIVAN, i.e., the hyperplasia of the epithelial lining of
the Bowman capsule (Fig. 1e) associated with collapsing/
glomerulosclerosis glomerulopathy (Fig. 1e), diffuse (Fig. 1f)
or pseudogranulomatous (Fig. 1g) interstitial nephritis associat-
ed with dilated microtubules containing either hyaline (Fig. 1h)
or cellular casts (Fig. 1i). As described for HIV patients, the
SIVsab-infected PTMs presented with SIV-arteriopathy in the
kidney and other organs, i.e., thickened wall arteries and vessel
occlusion (Fig. 2) [33••]. Other SHIV-infected macaques pre-
sented with nephrotic syndrome, characterized by peripheral
edema, hypoalbuminemia, and proteinuria [91]. A case of
immunoglobulin-A nephropathy with crescentic glomerulone-
phritis was described in a PTM coinfected with SIVmac and
Mycobacterium tuberculosis [92]. Finally, we previously de-
scribed a high frequency of thrombotic microangiopathy
(TMA) in the SIVsab-infected PTMs [33••], a condition de-
scribed in HIV patients which is associated with a poor prog-
nostic and accelerated death [67]. TMA is characterized by the
presence of numerous microthrombi in the glomerulus capil-
laries [33••] and in the afferent and efferent arterioles (Fig. 1d).

Considering that the NHP kidney presents similar histopa-
thologies as HIV-infected patients, the NHP appears perfectly
suited to model and understand the pathogenesis of renal co-
morbidities. Furthermore, the NHPmodel can be used to assess
the safety, efficacy, and impact that complementary therapies
aimed at controlling the deleterious consequences of persistent
immune activation and inflammation can have on the kidneys.

Use of NHPs to Model HIV-associated Neurocognitive
Disorders

Neuropathogenesis of HIV infection dramatically changed af-
ter the advent of ART. Nowadays, most of the neuro-AIDS
features are due to persistent low level of HIV, chronic inflam-
mation, potential drug toxicity, and accelerated aging (which
is associated with neurodegeneration) [93]. In patients
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receiving ART, associated neuropathology ranges from
asymptomatic neurocognitive impairment (ANI) and mild
neurocognitive disorder (MND), to HIV-associated dementia
(HAD) [94]. Altogether, these clinical conditions are called
HIV-associated neurocognitive disorder (HAND).

Prior to the general introduction of ART, HAD was domi-
nating the clinical spectrum of HAND. HAD is a progressive
disabling subcortical dementia that presents with progressive
loss of attention and concentration, motor impairment, and
various behavioral components that lead to death in less than
a year [93]. HAD associates pathologic changes in the brain
including generalized atrophy, changes in white matter caus-
ing a leukoencephalopathy, microglial nodules characteristic
to viral encephalitis, and multinucleated giant cells. Interest-
ingly, in untreated patients, the severity of dementia is more
closely associated with inflammatory response markers than
with plasma viral load.

In the ART era, however, HAND is driven by ANI and
MND [94]. These clinical entities are defined by
neuropsychometric testing abnormalities with or without
functional impairment in activities of daily living. There are
authors that question the utility of ANI due the fact that func-
tional impairment is imprecise and therefore may represent a
confounding factor [93].

In addition to the clinical signs, HAND is predicted by
several biomarkers: the levels of CD4+ T cells at the nadir,
the levels of sCD14 and of sCD163, as well as those of viral
DNA in the circulating monocytes [93]. Cardiovascular bio-
markers, such as D-dimer, as well as metabolic risk factors
were also reported to be predictive of HAND. In the cerebro-
spinal fluid, markers associated with chronic inflammation
and neuronal injury are predictive for HAND [94].

In longitudinal studies, the prevalence of HAND ranges from
18 to 25 %. The risk of HAND is increased by severe comor-
bidities (co-infections, drug abuse, other neurological
conditions) or failure of ART [94]. Other studies could not doc-
ument the significant deterioration of the neurocognitive impair-
ment in patients on ART. Neurocognitive deterioration persists
in some HIV patients in spite of effective ART [94].

Due to the nature of the lesions behind HAND, invasive
studies are not possible in humans, and the only available data
can be collected at the necropsy. Therefore, animal models
that permit more invasive approaches and even animal sacri-
fice for the study of the magnitude of the lesions in relation
with the stage of disease progression are critical for the study
of HAND [95]. Multiple animal models have been developed
over time, and, similar to other comorbidities, SIV-infected
PTMs appear to be the model of choice for the study of
neurocognitive comorbidities [95]. They have the advantage
not only of a more condensed duration of progression but also
of a higher prevalence of neurocognitive disorders.

In macaques, the SIV invasion of the brain occurs early in
infection and is mediated by infected mononuclear cells and T

cells that cross the blood brain barrier [96]. Virus replication in
the brain macrophages correlates with virus ability to replicate
productively in cultured macrophages derived from peripheral
blood of RMs with encephalopathy. As such, studies in the
NHP models confirmed that only the SIV strains able to rep-
licate in macrophages can cause encephalitis [96].

The study of the early stages of the neurocognitive disorders
in macaques can permit understanding the cellular and molec-
ular mechanisms of disease progression and to understand the
role of viral and host factor functions and interactions during
both active and latent infection. Furthermore, the study of NHP
models will help with a better understanding of the issues relat-
ed to ARV penetrability in CNS. The consequences of drug
abuse on neurocognition and encephalitis can also be modeled
in NHPs. To date, modeling HIV infection in macaques per-
mitted to establish both the efficacy and the limitations
of therapies targeting immune activation in the CNS.

Use of NHPs to Model HIV-associated
Osteopenia/Osteoporosis

Bone disorders are common in HIV-infected patients with
>50%ofHIV-infected adults being osteopenic (presentingwith
low bone mineral density), with 15 % more being osteoporotic
(associating to low bone mineral density distorted micro-
architecture and high risk for fracture) [97]. The pathophysiol-
ogy underlying HIV-associated bone abnormalities is not
completely understood [98]. Among the factors contributing
to bone abnormalities are (i) comorbidities (i.e., kidney disease,
hypogonadism, and hypovitaminosis D) that predispose to bone
catabolism; (ii) the virus, which may contribute by altering
immune B cell function and enhancing bone resorption [97];
(iii) antiretroviral therapy, through immune reconstitution, sup-
pressive effects on bone cells, and alteration of vitamin D me-
tabolism; and (iv) chronic inflammation that fuels all the other
factors [99]. Understanding the mechanisms of the bone disor-
der is a subject of intense research and can largely benefit from
studies in animal models, because it is generally acknowledged
that lifestyle factors (absent in the animal models) may at least
contribute to the maintenance of these alterations [99].

To date, no studies have modeled bone pathology in either
pathogenic or nonpathogenic SIV infections. Yet, macaques
have been used in the past for the study of metabolic disorders
[9, 10] and may constitute models for osteopathy associated
with HIV infection.

Conclusion

NHP models can and should be employed for the study of
non-AIDS comorbidities associated with HIV infection. As
presented here, NHP models recapitulate most of the key
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features of these comorbidities. NHPs have the advantage of a
simplified system in which most of the risk factors for comor-
bidities are absent and experimental conditions (i.e., timing of
infection, stage of acute or chronic SIV infection, certain diets,
etc.) can be properly controlled. Similar to other areas of
AIDS research, such as pathogenesis, cure or vaccine re-
search, and pre- and postexposure prophylaxis [100], NHP
models may be instrumental for the study of non-AIDS co-
morbidities to characterize and better define the new land-
scape of AIDS pathogenesis and to test the efficacy of inter-
ventions aimed to alleviate non-AIDS-related comorbidities.
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