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Abstract

The latest discoveries and advanced knowledge in the fields of
stem cell biology and developmental cardiology hold great promise
for cardiac regenerative medicine, enabling researchers to design
novel therapeutic tools and approaches to regenerate cardiac
muscle for diseased hearts. However, progress in this arena has
been hampered by a lack of reproducible and convincing evidence,
which at best has yielded modest outcomes and is still far from
clinical practice. To address current controversies and move
cardiac regenerative therapeutics forward, it is crucial to gain a
deeper understanding of the key cellular and molecular programs
involved in human cardiogenesis and cardiac regeneration. In this
review, we consider the fundamental principles that govern the
“programming” and “reprogramming” of a human heart cell and
discuss updated therapeutic strategies to regenerate a damaged
heart.
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Introduction

Heart disease is the leading cause of mortality in the industrialized

world, with insufficient therapeutic options and poor prognosis

(Lopez et al, 2006). The adult mammalian heart cannot sufficiently

regenerate or replace damaged cardiac tissue with new functional

muscle after injury. Given the drastic shortage of donor hearts for

transplantation, this calls for an urgent need to develop novel regen-

erative therapies to repair severely diseased hearts (Hansson et al,

2009). In this regard, cell transplantation approaches are attractive,

due to the potential of various stem cell populations to promote

cardiac regeneration and repair in experimental models of heart

disease and to their feasibility of use in the clinics (Sanganalmath &

Bolli, 2013). There have been a number of attempts to transplant

cells to diseased hearts using a wide range of cell types, such as

autologous/ allogenic non-cardiac somatic stem cells and putative

endogenous cardiac progenitor cells (CPCs). However, they have at

best yielded mixed results and are still far from clinical practice

(Ptaszek et al, 2012).

Meanwhile, recent revolutionary work in the fields of stem cell

biology and cardiac regenerative medicine has progressively moved

our understanding of human cardiac development and homeostasis

forward, opening novel paths toward cardiac regeneration. For

example, since the breakthrough discovery that fully differentiated

mouse and human fibroblasts can be reprogrammed into pluripotent

stem cells by retroviral transduction of four defined factors (Oct3/4,

Sox2, c-Myc, and Klf4) (Takahashi & Yamanaka, 2006; Takahashi

et al, 2007), modifications to this original protocol have been

developed to directly reprogram somatic cells into cardiac lineage

cells, bypassing the pluripotent state. Pioneering this field, the

Srivastava group showed successful direct conversion of murine

fibroblasts to cardiomyocyte-like cells in vitro and in vivo by a

specific combination of cardiac transcriptional factors (Gata4,

Mef2c, and Tbx5) (Ieda et al, 2010; Qian et al, 2012). Despite these

encouraging results, much more work will be needed to optimize

the technology before it is transferred to clinical testing. Some of the

critical issues that need to be resolved include the low reprogram-

ming efficiency and the possible risk of viral transduction-mediated

tumorigenesis, which remains a subject of debate.

Post-natal cardiomyocyte renewal/turnover in mammals is

another recent discovery in this field (Garbern & Lee, 2013). Over

the last decade, the classical 20th-century paradigm that the human

heart is a post-mitotic and terminally developed organ with no cell

renewal/replication capability has been overturned. Recent studies

from several laboratories have demonstrated that cardiomyocyte

turnover occurs throughout life in mammals, including humans

(Bergmann et al, 2009; Kajstura et al, 2010; Mollova et al, 2013;

Senyo et al, 2013). Although the estimated rate of mammalian

cardiomyocyte renewal varies from study to study depending on the

method used to measure it, most reports find a remarkably low

annual turnover rate of approximately 1%, which increases

modestly after injury but declines with age. This demonstrates

afresh that the inherent capability in humans to regenerate

myocardium with aging or after injury in adulthood is entirely insuf-

ficient, encouraging researchers to investigate strategies to increase

human cardiomyocyte renewal.
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So where are we now on the translational road map from stem

cell biology to true regenerative therapeutics for heart disease?

Importantly, even though much has been uncovered over the

decades, the key programs governing human heart development

and regeneration/replication remain undetermined. To address

current controversies and achieve authentic cardiac regeneration in

the clinical setting, it is mandatory for us to understand cardiac

development (“programming” a heart) and regeneration (“repro-

gramming” a diseased heart) on a much deeper level, by employ-

ing rigorous research to elucidate the core mechanisms underlying

these processes. In this review, we discuss the fundamental princi-

ples that govern the “programming” of a developing heart at the

cellular/molecular level. We then provide an overview of current

and novel therapeutic strategies for heart regeneration in humans,

including stem cell transplantation and cellular “reprogramming”

approaches, some of which are being tested clinically. Finally, we

consider current controversies and issues to be addressed, and

show where the field of cardiac regenerative biology and medicine

is headed.

Fundamental principles of cardiac development
and regeneration

Embryonic heart fields and multipotent CPCs

First and second heart field CPCs The human heart is a complex

organ system and is composed of highly diverse cell types, includ-

ing cardiomyocytes, conductive cells of the cardiac conduction

system (CS), vascular smooth muscle cells (SMCs), and endothe-

lial cells (ECs). All of these cells must be assembled into discrete

anatomic and functional structures at the earliest embryonic

stages (Hansson et al, 2009; Vincent & Buckingham, 2010). This

assembly is a complicated and sequential morphogenetic process

that depends on the spatiotemporally regulated contribution of

multipotent CPCs (Buckingham et al, 2005; Moretti et al, 2006;

Wu et al, 2006; Musunuru et al, 2010). The first differentiated

myocardial cells are detected in the cardiac crescent in the

splanchnic mesoderm at murine embryonic day (E) 7.5 (Fig 1).

The crescent region is referred to as the first heart field (FHF) and

is marked by expression of a broad heart field marker gene,

Nkx2-5 (Wu et al, 2006; Brade et al, 2013), and also by expres-

sion of the ion channel HCN4 (hyperpolarization-activated cyclic

nucleotide-gated channel 4) (Liang et al, 2013; Spater et al, 2013).

The crescent/FHF then fuses at the midline to form the primitive

heart tube that begins to pump blood. The second heart field

(SHF) is instead specifically marked by Isl1 expression (Cai et al,

2003) and lies medially and posteriorly to the crescent/FHF

(Fig 1). The SHF progenitors then migrate behind the heart tube

and extend anteriorly and posteriorly into the pharyngeal

mesoderm to form the looping heart tube at E9.0 in concert with

the FHF progenitors (Laugwitz et al, 2005; Moretti et al, 2006;

Nakano et al, 2008; Bu et al, 2009). As the embryo grows, FHF

derivatives give rise to left ventricular myocardium, with partial

contribution to the atria, whereas SHF derivatives contribute to

myocardium of the right ventricle, parts of the atria, and the

outflow tract, with some minor mutual contribution of FHF cells

to the right ventricle and SHF cells to the left ventricle

(Buckingham et al, 2005; Vincent & Buckingham, 2010). Lineage

tracing experiments in vivo and clonal analyses in vitro

demonstrated that the Isl1+ SHF progenitors can give rise to

various cardiac lineages, including cardiomyocytes, conductive

cells, vascular SMCs, and ECs (Moretti et al, 2006; Sun et al, 2007;

Bu et al, 2009). In contrast, the HCN4+ FHF progenitors appear to

be committed toward cardiomyocytes of the left ventricle and parts

of the atria, and conductive cells of the atrio-ventricular (AV) node

and ventricular CS (Liang et al, 2013; Spater et al, 2013). There is

still controversy around the embryonic origin of pacemaker cells in

the sino-atrial (SA) node. Interestingly, a recent study in chick

embryo found that chick pacemaker cells arise from a discrete region

outside the FHF/SHF, a so-called tertiary heart field (Fig 1A)

(Bressan et al, 2013).

The molecular cues that spatiotemporally regulate embryonic

CPC populations and promote their differentiation into diverse

cell types through putative intermediates are still under investiga-

tion (Fig 1A) (Soh et al, 2014). Given that the embryonic FHF/

SHF CPCs are multipotent, these CPCs are attractive therapeutic

targets for cardiac regeneration (Domian et al, 2009). However,

Isl1+ SHF progenitors are no longer present in the adult heart

(Laugwitz et al, 2005) and in addition, there is no convincing

evidence that they can be reactivated post-natally in situ to

produce sufficient quantities of cardiomyocytes to repair the

injured heart (Weinberger et al, 2012). In light of this, under-

standing the mechanisms that regulate CPC behavior during

embryogenesis and identifying the specific signals that govern the

transition between multipotent CPCs and fully differentiated

cardiac cells is essential to establish novel therapeutic avenues

for heart regeneration.

EPDCs and cNCCs In addition to FHF and SHF CPCs, other cell

populations also contribute to the formation of the heart. The

proepicardial organ (PEO) is a transitory mesenchymal structure

that forms near the posterior end of the heart tube at around

E9.0 (Fig 1B) and then develops into the epicardium, the outer

layer of the heart (Manner et al, 2001; Schlueter & Brand, 2012).

Some epicardial cells undergo epithelial-to-mesenchymal transition

(EMT) and enter the heart as epicardium-derived progenitor cells

(EPDCs), which contribute to SMCs, cardiac fibroblasts, and

possibly to ECs of the coronary vasculature (Fig 1A) (Christoffels

et al, 2009; Katz et al, 2012). Whether the EPDCs can also

contribute to myocardium is controversial. The PEO and epicar-

dium are marked by expression of Wt1 and Tbx18 (Cai et al,

2008; Zhou et al, 2008a). Whereas previous fate-mapping studies

in chick or mouse have shown no EPDC contribution to the

myocardium (Winter & Gittenberger-de Groot, 2007), more recent

reports using a Wt1-Cre or Tbx18-Cre conditional reporter mouse

line suggest that EPDCs might contribute to a small population of

cardiomyocytes (Cai et al, 2008; Zhou et al, 2008a). It should,

however, be noted that Wt1 and Tbx18 expression may not be

specific to the epicardium alone, thus making it difficult to

unequivocally interpret the results of these fate-mapping experi-

ments (Christoffels et al, 2009; Ruiz-Villalba et al, 2013). Never-

theless, the suggestion that embryonic EPDCs may contribute to a

certain extent not only to the coronary SMCs/ECs but also to the

myocardium is important. Unlike Isl1+ SHF progenitors, EPDCs

are maintained throughout life in the adult heart and may

ª 2015 The Authors The EMBO Journal Vol 34 | No 6 | 2015

Makoto Sahara et al Programming and reprogramming a heart The EMBO Journal

711



Oct4+

Pluripotent
stem cell

Bry+

FHF

ML

SHF

Mesodermal
precursor

Cardiac crescent E7.5

MOUSE EMBRYOB

A

Looping heart tube E9.0

Mesp1+

cNCC

OFT

RV LV

PEO

PM

Primordial
cardiovascular

precursor

Nkx2.5+

Isl1+

SHF
progenitor

Nkx2.5+

HCN4+

FHF
progenitor

Pax3+

EMT

cNCC

EPDC

FB, EC,
SMC, (CM)

IN
T

E
R

M
E

D
IA

T
E

S
?

LV-CM, 
A-CM,

cardiac CS

Pacemaker
cell?

RV-CM, 
A-CM,

OFT-CM,
SMC, EC, 
cardiac CS

Sinus venosus cell
& venous EC

Cardiac FB

OFT vascular SMC
Endocardial cushions

Tertiary HF
progenitor?

WT+

Tbx18+

CD31+

EphB4+

Arterial EC

CD31+

EphrinB2+

CM

cTnT+

SMC

Pacemaker (SA nodal) cell

SM-MHC+

Tbx3+

AV nodal cell

Ventricular CS

Tbx3+

Cx40+

Cardiac CS

HCN4+

CD90+

(Pro-) epicardial
cell

Nestin+

Ectoderm precursor

Figure 1. Fate map of cardiac cell lineages during development.
(A) A cellular flow chart shows the stepwise commitment of pluripotent stem cells via various cardiac progenitor cells, including the first and second heart field (FHF and SHF)
progenitors, epicardium-derived progenitor cells (EPDCs) and so-called tertiary heart field (HF) progenitors, and putative intermediates toward mature cardiac cell types
during heart development. Mature cardiac cells include cardiomyocytes (CMs), vascular smooth muscle cells (SMCs), arterial and venous endothelial cells (ECs), fibroblasts
(FBs), and conductive cells of the cardiac conduction system (CS), which include pacemaker (sino-atrial [SA] nodal) cells, atrio-ventricular (AV) nodal cells, and the ventricular
CS cells (ex. Purkinje fibers). The gray boxes in the middle indicate the major mature cell types that each cardiac progenitor differentiates into. Cardiac neural crest cells
(cNCCs) originating from the ectoderm also contribute to vascular SMCs of the outflow tract (OFT) and thereby to OFT separation and patterning. (B) Cardiac development at
the early stage of the mouse embryo. Developing hearts at murine embryonic day (E) 7.5 and 9.0 are shown. A, atria; EMT, epithelial-to-mesenchymal transition; LV, left
ventricle; ML, midline; PEO, proepicardial organ; PM, pharyngeal mesoderm; and RV, right ventricle.
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potentially represent an endogenous source of newly formed

cardiomyocytes following injury.

Cardiac neural crest cells (cNCCs) originate from the dorsal

neural tube and migrate through the posterior pharyngeal arches to

the arterial pole of the heart tube at around E9.5 (Fig 1). cNCCs and

their derivatives give rise to SMCs of the pharyngeal arch arteries

and the outflow tract of the heart, contributing to septum and valve

formation and thereby resulting in outflow tract separation and

patterning into the pulmonary trunk and aorta (Hutson & Kirby,

2007; Hildreth et al, 2008).

Adult endogenous CPCs Cardiac progenitor cells are usually defined

as self-renewing, clonogenic, and multipotent cells that can differen-

tiate into cardiomyocytes, SMCs, and ECs both in vitro and in vivo

(Beltrami et al, 2003; Garbern & Lee, 2013; Sanganalmath & Bolli,

2013). To date, various kinds of putative endogenous CPCs have

been isolated from adult rodent and human hearts, although the

magnitude of their contribution to heart homeostasis and repair

remains controversial (Chong et al, 2014a). The presence of the tyro-

sine kinase receptor c-kit is often used to identify CPCs (Beltrami

et al, 2003; Bearzi et al, 2007). c-kit+ cardiac cells isolated from

adult human heart and injected into infarcted rodent myocardium

were shown to promote functional and structural cardiac improve-

ment (Bearzi et al, 2007). However, whether endogenous c-kit+

cardiac cells can contribute to differentiated cardiomyocytes during

aging or after injury in adulthood is highly debated (Bolli et al, 2011;

Jesty et al, 2012; Ellison et al, 2013; Molkentin & Houser, 2013,

2014; Torella et al, 2014). In mice, the ability of these cells to give

rise to cardiomyocytes is elevated shortly after birth, but decreases

significantly over time and is virtually negligible in adult animals

(Zaruba et al, 2010). A recent study using genetic lineage tracing

experiments with a Kit-Cre conditional reporter mouse line showed

that the generation of new cardiomyocytes from endogenous c-kit+

cells is a rare event (0.027%), even after cardiac injury, whereas

c-kit+ cells amply contribute to cardiac ECs (van Berlo et al, 2014).

This is consistent with previous reports showing that c-kit+ cardiac

cells transplanted into injured rodent hearts are not likely to be the

predominant source of newly formed cardiomyocytes, but instead

promote cardiac proliferation/regeneration by secreting paracrine

cytokines and growth factors (Tang et al, 2010; Loffredo et al,

2011). The cardiac-resident c-kit+ CPCs originally described by

Beltrami et al could originate from extra-cardiac sources, as shown

by the fact that 74% of c-kit+ cells found in the heart after myocar-

dial infarction (MI) appear to be bone marrow derived (Fazel et al,

2006). As c-kit is broadly expressed in various cell types, including

hematopoietic lineage cells (Smith et al, 2014), the use of this single

marker to isolate CPCs from adult mammalian hearts is challenging

and susceptible to contamination from non-CPC populations.

Aside from c-kit+ CPCs, other types of CPCs, such as Sca1+

cardiac cells (Oh et al, 2003; Matsuura et al, 2004), cardiospheres

and cardiosphere-derived cells (Messina et al, 2004), and cardiac

side population cells (Martin et al, 2004), have also been reported.

Similar to c-kit+ CPCs, they are heterogeneous, and whether they

can be a reproducible source of newly generated cardiomyocytes

after cardiac injury remains controversial. Furthermore, clear

evidence that they can have clinically beneficial effects on global

heart function and cardiac repair is still lacking (Garbern & Lee,

2013; Sanganalmath & Bolli, 2013).

Essential signaling pathways and molecular drivers

of cardiogenesis

Extracellular signaling pathways and their interaction with tran-

scriptional regulators are tightly regulated during embryonic cardio-

genesis and control patterning of embryonic CPCs, including the

FHF/SHF progenitors. The major signaling cascades involved in

cardiac muscle creation include canonical Wnts, the transforming

growth factor (TGF)b superfamily such as bone morphogenetic

proteins (BMPs) and Activin/Nodal, fibroblast growth factors

(FGFs), non-canonical Wnts, and Hedgehog and Notch pathways,

all of which function sequentially and cooperatively (Fig 2). A

complex network of these signaling pathways and transcriptional

regulators controls cardiac progenitor specification, proliferation,

and differentiation into diverse cardiac cell lineages, ultimately

giving rise to the entire heart, as further reviewed elsewhere

(Vincent & Buckingham, 2010; Noseda et al, 2011).

Mesodermal formation and cardiac specification Bone morphoge-

netic protein signaling is necessary for gastrulation and primitive

mesoderm formation in mammals. Germline deletion of Bmp4 or

the BMP type I receptor (Bmpr1a) causes embryonic death before

E9.5 (Mishina et al, 1995; Winnier et al, 1995). Abnormal cardiac

morphogenesis occurs in mice upon conditional deletion of Bmp4

using Tnnt2-Cre or Nkx2-5-Cre lines (Jiao et al, 2003; Liu et al,

2004; Jayawardena et al, 2012). When conditional deletion of

Bmpr1a was introduced with a Mesp1-Cre allele, the cardiac crescent

(FHF) was not formed, and the FHF markers Hand1 and Tbx5 were

also absent (Klaus et al, 2007). This indicated an indispensable role

of BMP signaling for cardiac specification in the mammalian heart.

Activin and Nodal belong to the TGFb superfamily (Kitisin et al,

2007). This signaling pathway is essential in early mouse embryos

for positional patterning, gastrulation, primitive streak, and meso-

derm/endoderm formation, and later for cardiac myogenesis

(Conlon et al, 1994; Schier, 2003). Activin A, in concert with BMPs,

has been shown to successfully induce cardiac myogenesis in mouse

and human embryonic stem cells (ESCs) and in human inducible

pluripotent stem cells (iPSCs) (Burridge et al, 2007; Takahashi et al,

2007; Flaim et al, 2008).

The “canonical” Wingless-Int (Wnt) ligands include Wnt1, -2a,

-3a, and -8, which require b-catenin for signaling translation into

nuclei (Clevers, 2006; Gordon & Nusse, 2006). Before gastrulation,

canonical Wnt/b-catenin signals are involved in primitive streak

formation and the induction of primitive mesoderm and endoderm

(Rivera-Perez & Magnuson, 2005; Barrow et al, 2007). However,

after gastrulation, these signals are inhibited by a secreted Frizzled-

related protein (sFRP) and Dickkopf1 (Dkk1), which are produced

in the adjacent endoderm and are essential for further cardiac speci-

fication in the mesoderm (Foley & Mercola, 2005; Mii & Taira,

2009). This biphasic effect of canonical Wnt/b-catenin signals has

been recapitulated in cultured mouse ESCs and human ESCs/iPSCs,

collectively referred to as pluripotent stem cells (PSCs). The Wnt/

b-catenin pathway is necessary for mesoderm and endoderm forma-

tion from mouse/human PSCs, cultured with Wnt3A-conditioned

medium or the inhibitor of glycogen synthase kinase (GSK) 3b that

phosphorylates and degrades b-catenin, yet the same signaling path-

way inhibits cardiac myogenesis once mesoderm has been created

(Lindsley et al, 2006; Naito et al, 2006; Ueno et al, 2007; Yoshida &

Yamanaka, 2011).
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The FGF pathway involves approximately 20 ligands and 4 trans-

membrane receptor tyrosine kinases (FGFRs) (Itoh & Ornitz, 2004;

Turner & Grose, 2010). Studies using hypomorphic alleles or condi-

tional deletion of Fgf8 with a Tbx1-Cre allele demonstrated impaired

outflow tract aligning and septation, indicating that mesodermal

Fgf8 expression is crucial for SHF development (Frank et al, 2002;

Ilagan et al, 2006). At the cellular level, Fgf8 regulates expression of

the SHF marker genes Isl1 and its target Mef2c (Park et al, 2006),

leading to proliferation of the SHF progenitor population. Fgf10 is

also expressed in the SHF (Marguerie et al, 2006). In human ESCs,

FGF2, in combination with Activin and BMP4, is known to specifi-

cally promote mesoderm-committed precursor formation (Evseenko

et al, 2010).

HF progenitor maintenance and cardiac cell maturation/pattern-
ing Canonical Wnt/b-catenin signaling also plays important roles at

later stages of embryonic cardiogenesis, in proliferation/mainte-

nance of SHF progenitors and prevention of their differentiation

(Cohen et al, 2008). Wnt/b-catenin signaling is activated in the

SHF, and b-catenin can directly enhance expression of the SHF tran-

scription factors Isl1 and Fgf10 (Cohen et al, 2007; Lin et al, 2007).

Conditional deletion in the SHF of the b-catenin gene by using an

Isl1-Cre or Mef2c-Cre driver mouse line causes right ventricular and

outflow tract hypoplasia, probably due to impaired SHF prolifera-

tion. Conversely, stable expression of b-catenin in the Isl1+ or

Mef2c+ SHF progenitor population leads to right ventricular enlarge-

ment and hyperplasia (Ai et al, 2007; Kwon et al, 2007; Lin et al,

2007; Qyang et al, 2007). Of interest, canonical Wnt signaling blocks

differentiation of SHF progenitors. Isl1+ cells in which b-catenin is

specifically stabilized down-regulate the gene encoding Myocardin,

which promotes myocardial and smooth muscle differentiation in

concert with serum response factor (SRF) (Evans et al, 2010).

Consequently, maintenance of Isl1+ cells in the outflow tract causes

a delay in cardiac differentiation (Kwon et al, 2009).

Bone morphogenetic protein signaling promotes cardiac specifi-

cation and myocardial differentiation (Tirosh-Finkel et al, 2006).

Conditional deletion of Bmpr1a in Isl1+ SHF progenitors at late

embryonic stages causes right ventricle and outflow tract hypoplasia

with increased numbers of Isl1+ cells, indicating failure of the SHF

progenitors to differentiate (Yang et al, 2006; Klaus et al, 2007).

BMP signaling, mainly through BMP2, BMP4, and BMP7, is hence

likely to affect myocardium maturation. FGF signaling also affects

the myocardium maturation step. FGF9 and its relatives FGF16 and

FGF20 are expressed in both endocardium and epicardium at mid-

gestation and contribute to myocardial proliferation (Lavine et al,

2005). Conditional deletion of the Fgfr1 and Fgfr2 genes with the

ventricle-specific driver Mlc2v-Cre causes severe ventricular defects

(Lavine et al, 2005).

Patterning of the SHF along the anterior/posterior axis is regu-

lated by retinoic acid (RA) signaling (Sirbu et al, 2008). RA, a

biologically active derivative of vitamin A, is produced by retinalde-

hyde dehydrogenase (Raldh) 2, and in the Raldh2-mutant mouse

embryos, the anterior SHF marker genes such as Tbx1 and Fgf8/10

show abnormal expression patterns, which expand posteriorly
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(Ryckebusch et al, 2008). In mice, RA and its receptors are essential

for normal cardiac morphogenesis, with atrial development being

more affected by loss of Raldh2 than ventricular development

(Niederreither et al, 2001).

Hedgehog ligands bind to patched 12-span transporter-like recep-

tors that inhibit the function of Smoothened (Smo) serpentine recep-

tors in the absence of ligands (Wilson & Chuang, 2010). In

zebrafish, Hedgehog signaling has been shown to promote cardio-

myocyte formation (Thomas et al, 2008), whereas in mice, it is

involved in the establishment of left/right asymmetry, coronary

vasculature, atrial septation, and outflow tract morphogenesis

(Kolesova et al, 2008; Lavine et al, 2008; Hoffmann et al, 2009).

Hedgehog signals have been shown to be crucial for normal induc-

tion of Nkx2-5 or its equivalent in both zebrafish and mice (Zhang

et al, 2001).

Non-canonical Wnt signaling (Wnt5a and Wnt11) is associated

with cardiac specification and differentiation (Pandur et al, 2002;

Palpant et al, 2007). Wnt5a- or Wnt11-null mice have pharyngeal

artery patterning and outflow tract defects. However, expression of

Isl1 and other SHF markers, such as Mef2c, is normal, suggesting

that Wnt5a and Wnt11 control outflow tract maturation by affecting

the cNCCs, but not the SHF (Schleiffarth et al, 2007; Zhou et al,

2007).

Notch signaling is associated with a wide range of developmental

processes, including cell fate decisions in various cell types

(Andersson et al, 2011). During embryonic cardiogenesis, Notch

signaling affects both the SHF and the cNCCs, hence controlling

right ventricle and outflow tract formation, vascular smooth muscle

development, chamber specification, and trabeculation (McCright

et al, 2001; High et al, 2007, 2008; Xin et al, 2007; Varadkar et al,

2008). SHF-specific deletion of Notch1 with an Isl1-Cre line

promoted proliferation of Isl1+ progenitors and caused over-

expression of b-catenin in the SHF, resulting in defects of the

arterial pole including the right ventricle (Cohen et al, 2007). Thus,

Notch signaling interferes with canonical Wnt/b-catenin signaling in

the SHF, thereby inhibiting proliferation of SHF progenitors and

promoting their differentiation.

The Epstein group recently showed that forced expression of

Notch signaling in vitro can reprogram neonatal murine cardiomyo-

cytes to display a conduction-like phenotype, including action

potential characteristics (Rentschler et al, 2012). This suggests that

Notch signaling, similar to T-box transcription factor Tbx3, Tbx5,

and Tbx18 (Hoogaars et al, 2007; Bakker et al, 2008; Wiese et al,

2009), plays an important role in the specification of cardiac

conductive cells (Fig 2). Recent reports also showed that forced

expression of Tbx18 or Tbx3 could reprogram mature ventricular

cardiomyocytes to a pacemaker-like phenotype in vitro and in vivo

(Bakker et al, 2012; Kapoor et al, 2013). The Mikawa group

reported that the fate of pacemaker cells, derived from the “tertiary”

heart field in the chick embryo, is controlled by canonical Wnt

signaling at early stages (Fig 2) (Bressan et al, 2013).

Finally, chromatin remodeling has also been shown to be a key

event in establishing the cardiomyogenic program. The Bruneau

group demonstrated that a cardiac-specific subunit of the chromatin

remodeling complex Baf60c (BRG1-associated factor 60c), in combi-

nation with the cardiac transcription factors Gata4 and Tbx5, can

ectopically trans-differentiate mouse mesoderm into beating cardio-

myocytes (Takeuchi & Bruneau, 2009).

Heart regeneration/replication capabilities

The long-standing concept that human heart cells exit the cell cycle

after birth and are unable to renew themselves with aging or after

injury has been drastically overturned by a growing body of contra-

dictory evidence recently reported (Garbern & Lee, 2013), although

the estimated rate of mammalian cardiomyocyte renewal is remark-

ably low, even in the injured heart (Bergmann et al, 2009; Kajstura

et al, 2010; Mollova et al, 2013; Senyo et al, 2013). This indicates

that the inherent capacity of the mammalian heart to replenish

damaged myocardium is far from being sufficient to exploit in a clin-

ical setting. In this section, we discuss recent knowledge and

advances in cardiac regeneration/replication in various model

organisms, including lower vertebrates (zebrafish and amphibians),

and consider their relevance for cardiac regenerative medicine

(Fig 3).

Cardiac regeneration in zebrafish and amphibians Urodele amphib-

ians, such as salamanders and newts, have a remarkable capacity to

regenerate injured tissues, including the heart (Brockes & Kumar,

2005; Roy & Gatien, 2008). Early studies showed that newts could

survive after resection of a significant portion (up to 50%) of apical

myocardium and that cardiomyocyte regeneration was evident 30

days after injury (Becker et al, 1974; Oberpriller & Oberpriller, 1974;

Oberpriller et al, 1988). Furthermore, recent studies showed that

newts are able to fully regenerate cardiac tissue within 60 days after

amputation of 10–25% of apical myocardium (Witman et al, 2011;

Mercer et al, 2013). Following the initial response to injury, which

includes blood/fibrin clot formation, macrophage and lymphocyte

infiltration, and deposition of extracellular matrix, DNA synthesis is

detected within cardiomyocytes at the injury site at day 16 after

injury. Although subject of debate, recent evidence suggests that

urodele heart regeneration likely occurs via partial dedifferentiation

of mature cardiomyocytes into progenitor-like cells (Laube et al,

2006). How urodele cardiomyocytes reenter the cell cycle and regen-

erate cardiac tissue following injury remains unclear. In this regard,

FGFs, platelet-derived growth factors (PDGFs), thrombin, BMP

signaling, and miRNAs such as miR-128 have all been proposed to

be involved (Singh et al, 2010; Witman et al, 2013). Unlike

mammalian cardiomyocytes, which are mostly multinucleated and/

or polyploid (4n), 98% of uninjured urodele cardiomyocytes are

mononucleated and diploid, and this may contribute to their inher-

ent regenerative capacity (Neff et al, 1996).

Decades after the early urodele amphibian studies, similar obser-

vations were made in zebrafish. The adult zebrafish heart can

regenerate completely within 60 days after resection of up to 20% of

apical myocardium (Poss et al, 2002; Raya et al, 2003). Other types

of injury were also employed, such as genetic ablation (Wang et al,

2011) and cardiac cryoinjury (Chablais et al, 2011; Gonzalez-Rosa

et al, 2011), to evaluate whether the same regenerative responses

appeared (Fig 3). Genetic ablation is based on conditional expres-

sion of the cytotoxic diphtheria toxin A gene under the control of

tamoxifen-inducible Cre recombinase driven by the promotor for the

contractile gene cardiac myosin light chain-2 (cmlc2), which allows

to specifically ablate up to 60% of cardiomyocytes (Wang et al,

2011). For cardiac cryoinjury, a nitrogen-cooled probe is used to

damage 20–30% of the ventricular myocardium, together with endo-

cardium and epicardium. As a first response, all of these injury

models induce the reactivation of genes expressed during embryonic
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heart development, such as Gata4, Nkx2-5, Raldh2, Wt1, and

Tbx18, followed by activation of endocardium and epicardium,

including EMT of epicardial cells (Kikuchi & Poss, 2012). While

genetic ablation of cardiomyocytes does not induce deposition of

collagen matrix but only formation of a blood/fibrin clot after ampu-

tation, the cryoinjury model produces massive, but transient, scar-

like fibrosis around the injured area. Scar formation is mediated by

the TGF-b/Activin signaling pathway and might be necessary for

heart regeneration in this model, as, unlike the fibrotic scar that

forms in injured mammalian hearts, it is later degraded (Fig 3)

(Chablais & Jazwinska, 2012). Following scar formation and/or

EMT of epicardial cells, which causes FGF- and PDGF-driven

revascularization into the myocardium (Lepilina et al, 2006; Kim

et al, 2010), proliferating cardiomyocytes appear around the injured

sites. Several paracrine signals, including RA, synthesized by the

epicardium and endocardium, and C-X-C motif chemokine 12a

(CXCL12a, also referred to as stromal cell-derived factor 1 [SDF-1]),

expressed in epicardial cells, have been suggested to promote

cardiomyocyte proliferation (Kikuchi et al, 2011; Gonzalez-Rosa &

Mercader, 2012; Itou et al, 2012b). In summary, although the injury

models differ in the recovery process in regard to transient fibrotic

tissue accumulation and time span required to obtain complete
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heart regeneration, ranging from 30 days in the genetic ablation

model to 60 days in the apical resection model to 130 days in the

cryoinjury model (Poss et al, 2002; Schnabel et al, 2011; Wang

et al, 2011), all of them ultimately lead to full regeneration of the

ablated myocardium (Fig 3).

Importantly, zebrafish regenerative potential does not decrease

with age (Itou et al, 2012a). The source of post-injury regenerated

cardiomyocytes is a subject of debate. Genetic fate-mapping

approaches, using a zebrafish strain in which tamoxifen-inducible

Cre is driven by cmlc2, revealed that regenerated cardiomyocytes

derive from preexisting mature cardiomyocytes that undergo partial

dedifferentiation, as shown by disassembly of their sarcomeric

structure and expression of Gata4, a regulator of embryonic heart

development, and thereafter re-enter the cell cycle (Jopling et al,

2010; Kikuchi et al, 2010). Although the mechanisms through which

cardiomyocytes dedifferentiate and then proliferate following injury

have not been fully determined, recent studies suggest that mitotic

checkpoint kinase Mps1 and polo-like kinase 1 (Plk1) positively

regulate heart regeneration in zebrafish, whereas cardiomyocyte

proliferation is inhibited by miR-133 and p38 mitogen-activated

protein kinase (MAPK) (Jopling et al, 2010, 2012; Yin et al, 2012).

Of note, a recent report showed that an in vivo cardiac reprogramming

event, the atrial-to-ventricular cardiomyocyte trans-differentiation,

contributes to heart regeneration in zebrafish embryos, but not in

adults (Zhang et al, 2013). The authors used a ventricle-specific

genetic ablation system, in which metronidazole was administered

to ablate transgenic ventricular cardiomyocytes expressing nitrore-

ductase driven by the ventricular myosin heavy chain (vmhc)

promoter. Ventricle-specific ablation of cardiomyocytes was

performed 3–4 days post-fertilization, when the zebrafish heart has

completed cardiac looping and cardiac chamber cardiomyocytes have

fully differentiated (de Pater et al, 2009). Re-expression of key cardio-

genic transcription factors, such as Gata4, Nkx2-5, Hand2, Tbx5/20,

and Mef2c, occurs in injured hearts, and atrial cardiomyocytes adja-

cent to the atrio-ventricular canal dedifferentiate into intermediate

reprogramming stages and then trans-differentiate into ventricular

cardiomyocytes, thereby contributing to ventricular regeneration. This

trans-differentiation capacity was shown to be age dependent and

partly mediated by Notch signaling activation in the atrial endo-

cardium following ventricular ablation (Fig 3) (Zhang et al, 2013).

Mammalian cardiomyocyte turnover There is now agreement that

cardiomyocyte turnover does occur throughout life in mammals,

including humans, although this turnover capacity is considerably

limited (Bergmann et al, 2009; Kajstura et al, 2010; Mollova et al,

2013; Senyo et al, 2013). In a groundbreaking study, the Frisén

group determined the birth date of cardiomyocytes in humans by

measuring nuclear carbon-14 (14C) content with accelerator mass

spectrometry (Bergmann et al, 2009). They showed that new cardio-

myocytes form in the human heart at a rate of around 1.5% per year

at 25 years of age and that this turnover rate declines with age, and

concluded that approximately 50% of human cardiomyocytes are

replaced during an entire life span. Their data are consistent with

those of newer studies in both mouse (Malliaras et al, 2013; Senyo

et al, 2013) and human (Mollova et al, 2013). Using cardiomyocyte-

specific fluorescent reporter mouse lines and multi-isotope imaging

mass spectrometry, which monitors DNA synthesis at high resolu-

tion using the rare stable isotope of nitrogen (15N), the Lee group

showed that in a healthy mouse during normal aging (≥10 weeks

old), the annual birth rate of cardiomyocytes is 0.76%, whereas

8 weeks after MI, roughly 3.2% of the cardiomyocytes adjacent to

the infarct undergo cell division (Senyo et al, 2013). Although there

is some variation among different reports (Laflamme & Murry,

2011), the estimated rate of mammalian cardiomyocyte turnover is

approximately 1% per year, which increases modestly in response

to injury, but declines with aging.

Multiple sources have been proposed to explain the origin of

newly generated cardiomyocytes during both normal homeostasis

and repair, including preexisting mature cardiomyocytes and quies-

cent CPCs (Garbern & Lee, 2013). Recent studies suggest that at least

during normal homeostasis, preexisting cardiomyocytes that

undergo dedifferentiation followed by proliferation might be the

predominant source of newly formed cardiomyocytes (Mollova

et al, 2013). However, CPCs may also participate in cardiomyocyte

generation following injury (Porrello et al, 2011; Senyo et al, 2013).

Importantly though, these two scenarios are not mutually exclusive,

and both constitute possible avenues for increasing de novo cardio-

myocyte generation for cardiac regenerative medicine.

Mammalian heart regenerative/proliferative response to injury In

mammals, unlike zebrafish and amphibians, cardiac injury such as

MI induces permanent cardiomyocyte cell death and the formation

of an irreversible fibrotic scar. This leads to electrical uncoupling

to the remaining myocardium, causing arrhythmias, unfavorable

remodeling of ventricular walls, reduction of ventricular function,

and finally heart failure (Fig 3) (Hasenfuss, 1998). Challenging this

dogma, recent evidence suggests that similar to zebrafish and

amphibian hearts, the 1-day-old neonatal mouse heart can regener-

ate completely 21 days after resection of approximately 15% of

apical ventricular tissue (Porrello et al, 2011; Strungs et al, 2013;

Naqvi et al, 2014). This regenerative capacity of the mouse heart

is rapidly lost by 7 days after birth, when the injured heart devel-

ops fibrotic scars instead, as seen in adult mice and humans

(Porrello et al, 2011; Mahmoud et al, 2013). A newer study,

however, showed that in 1-day-old neonatal mice undergoing apical

resection, the regeneration process is incomplete and accompanied

by fibrotic scar formation, thereby questioning the cardiac regenera-

tive capacity of the neonatal mouse (Andersen et al, 2014). Never-

theless, these experiments clearly show the highly activated

regenerative capacity of the 1-day-old neonatal mouse heart, the

extent of which diminishes rapidly after the first few days of life,

suggesting that key programs/mechanisms regulating inherent

regeneration must exist in the first week of life in mammals

(Kotlikoff et al, 2014). Of interest, another recent study showed that

during preadolescence (at post-natal day 15 in mice), a transient

burst of cardiomyocyte proliferation occurs, with an increase in

cardiomyocyte numbers by around 40%. Proliferation seems to be

driven by a surge in the levels of thyroid hormones, which appear

to activate the IGF-1/IGF-1-R/Akt pathway, although the causal

relationship between thyroid hormones, IGF signaling, and this

proliferative burst was not fully clarified (Naqvi et al, 2014). This

indicates that, to a certain extent, mammalian cardiomyocyte prolif-

erative capacities may persist beyond the perinatal period.

Why can the adult mammalian heart not regenerate? To under-

stand the rapid regenerative loss upon birth and identify the mecha-

nisms involved, multiple hypotheses are currently being
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investigated (Fig 3). miRNAs, Hippo signaling, oxidative stress, and

the transcription factor Meis1 have recently attracted attention in

this regard and are described in detail below (see, “Cell-free thera-

pies” section). In addition, cardiac regeneration following injury in

the neonatal mouse is preceded by stronger activation of Wt1 and

Tbx18 expression than observed in the adult, indicating that the

enhanced epicardial response might play an important role in heart

regeneration (Smart et al, 2011). A role of the epicardium as source

of paracrine signals, including vascular endothelial growth factor-A

(VEGF-A), SDF-1, and FGFs, is supported by experiments show-

ing the efficacy of transplanted EPDCs or administered EPDC

supernatant in promoting regeneration in injured mouse hearts

(Winter et al, 2007; Zhou et al, 2011).

Therapeutic strategies for human
cardiac regeneration

It has been estimated that after MI, a patient loses on average

around one billion cardiomyocytes (Laflamme & Murry, 2005)—a

massive amount that the human body cannot replace on its own,

given the extremely low cardiomyocyte turnover rate (as discussed

in the previous section). There are multiple different approaches to

promote cardiomyocyte regeneration/proliferation in human injured

hearts, including transplantation of autologous non-cardiac/cardiac

somatic stem cells, injection of in vitro-derived cardiomyocytes,

direct lineage conversion (“reprogramming”) of cardiac fibroblasts

into cardiomyocytes in vivo, stimulation of dedifferentiation/prolif-

eration of preexisting cardiomyocytes, and activation of endogenous

CPC populations (Fig 4). These therapeutic strategies, classified as

either cell-based or cell-free, are currently being investigated

for their cardiac regenerative potential and feasibility of clinical

application (Vunjak-Novakovic et al, 2011). Here, we review recent

advances in both groups of therapies.

Cell-based therapies

Cell-based therapies involve transplantation into the injured heart of

cells that have the ability to repopulate the damaged myocardium

and integrate functionally with preexisting tissue, ultimately restor-

ing normal cardiac activity. Two types of cells can be employed: (i)

in vitro-derived cardiomyocytes, obtained via PSC differentiation or

via direct conversion of terminally differentiated somatic cells, or
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(ii) adult stem/progenitor cells, which can differentiate into

cardiomyocytes in vivo (Fig 4, left). In both cases, cells can be first

expanded in vitro so that large amounts of starting material are

readily available for manipulation and transplantation.

Directed cardiomyocyte differentiation from pluripotent stem
cells The first way to derive cardiomyocytes for transplantation

purposes is through directed differentiation from PSCs, such as

ESCs. Alternatively, cardiomyocytes can be obtained from termi-

nally differentiated non-cardiac somatic cells, provided that they

are first converted into iPSCs via reprogramming (Takahashi &

Yamanaka, 2006). Compared to ESCs, iPSCs have a critically

important advantage: They can be derived from the somatic cells of

any patient, thus circumventing graft rejection problems often asso-

ciated with non-autologous cell transplants. A multitude of cardio-

myocyte differentiation protocols have been developed over the

years. Since their aim is to recapitulate embryonic development in a

dish, protocol optimization requires a detailed understanding of the

key signaling pathways that orchestrate heart development in vivo

(Fig 2). Cardiomyogenic differentiation methods generally employ

one of two alternative techniques, depending on whether the PSCs

are cultured in three-dimensional aggregates, termed embryoid

bodies (EBs), or in monolayer format.

In one of the first efforts to derive cardiomyocytes in vitro,

spheres of human ESCs were generated in suspension cultures and

allowed to spontaneously recapitulate early embryonic development

(Kehat et al, 2001). The process, however, was extremely ineffi-

cient, with spontaneously contracting areas appearing in only 8% of

EBs. It was clear that the timed addition of extracellular molecules

acting on specific cardiogenic signaling pathways was going to be

needed to improve the efficiency of differentiation. Key drivers of in

vivo cardiogenesis have been described above and include Activin/

Nodal-, BMP-, FGF-, and Wnt-mediated signaling cascades. The

same pathways also play pivotal roles in promoting cardiomyogenic

differentiation from PSCs. More than 30% cardiomyocytes can be

obtained from human ESCs by exposure to Activin A and BMP4

(Laflamme et al, 2007). However, optimal levels of Activin, Nodal,

and BMP signaling are required for cardiac lineage formation from

different human ESC and iPSC lines (Kattman et al, 2011). Combi-

nations of Activin A, BMP4, basic FGF (bFGF), VEGF-A, and Dkk1

have also been used to generate cardiovascular progenitors from

human ESCs. This progenitor population, identified by low kinase

insert domain receptor (KDR) expression and absence of c-kit, was

able to give rise to more than 50% contracting cardiomyocytes

(Yang et al, 2008). More recently, dual Nodal and BMP inhibition

by antagonist ligand Cerberus-1 (Cer1) was shown to drive

cardiomyocyte differentiation from both mouse and human ESCs

(Cai et al, 2013).

Unlike EB differentiation, monolayer differentiation protocols

involve culturing PSCs in standard two-dimensional format. Sequen-

tial treatment of high-density monolayer ESC cultures with Activin

A and BMP4 was reported to yield more than 30% cardiomyocytes

(Laflamme et al, 2007; Melkoumian et al, 2010), although not

consistently. A different study in fact noted that the Activin

A-/BMP4-directed differentiation protocol is not always successful

and can sometimes yield less than 5–10% cardiomyocytes (Paige

et al, 2010). The authors went on to show that efficient mesoderm

induction and subsequent cardiac differentiation from human ESCs

require fine-tuning of the cross talk between Activin A/BMP4 and

Wnt/b-catenin signaling pathways (Paige et al, 2010). Recently, a

robust cardiomyocyte differentiation protocol has been developed:

By culturing pluripotent cells as monolayers and manipulating

canonical Wnt signaling, around 80% cardiomyocytes can be repro-

ducibly obtained from different human ESC lines (Lian et al, 2012,

2013).

Cardiomyocyte enrichment protocols have also been described

that are able to yield, independently of the efficiency of differentia-

tion, up to 99% pure PSC-derived cardiomyocytes. Different strate-

gies have been used so far for such enrichment steps, including the

use of mitochondria-specific fluorescent dyes that preferentially bind

to cells with high mitochondrial content such as cardiomyocytes

(Hattori et al, 2010), cell sorting with an antibody against the

cardiomyocyte-specific marker SIRPA (signal-regulatory protein

alpha) (Fujioka et al, 1996; Kharitonenkov et al, 1997; Dubois et al,

2011), and a biochemical purification method based on differences in

sugar metabolism between cardiomyocytes and non-cardiomyocytes

(Tohyama et al, 2013).

To date, there is no clinical test of human PSC-derived cardio-

myocyte transplantation into human patients, but the first clinical-

scale transplantation of in vitro-derived cardiomyocytes into a non-

human primate (monkey) has been reported very recently (Chong et al,

2014b). One billion human ESC-derived cardiomyocytes were

produced via the Activin A- and BMP4-mediated monolayer differ-

entiation protocol (Laflamme et al, 2007) and delivered intra-

myocardially into the infarcted heart of a non-human primate

model. After transplantation, the authors observed remusculariza-

tion of the damaged monkey heart, with formation of new muscle

grafts that were electromechanically coupled to the host cardiomyo-

cytes and rapidly perfused by the host vasculature (Chong et al,

2014b). However, the transplanted cells appeared quite diverse in

terms of atrial–ventricular electrophysiological properties and were

only partially mature, bearing more resemblance to fetal rather than

adult cardiomyocytes. As a consequence, non-lethal ventricular

arrhythmias were observed in the recipient monkeys. Other

concerns, regarding the small number of animals studied, insuffi-

cient analyses of cardiac mechanics, and failure to provide evidence

that transplanted cardiomyocytes improve cardiac function, have

been raised and are discussed elsewhere (Anderson et al, 2014;

Murry et al, 2014). While this study sheds hope on the possibility of

remuscularizing a damaged human heart with a similar approach

(Lian et al, 2014), it also highlights some of the crucial issues we

need to address before in vitro-derived cardiomyocyte transplantation

therapies can truly move into the clinical setting, as discussed below.

Direct conversion of differentiated somatic cells into cardiomyo-
cytes In recent years, an alternative method to produce cardiomyo-

cytes in vitro has been developed. It is often referred to as direct

conversion, because it involves a cell fate switch from a fully differ-

entiated cell type into another, without going through the pluripo-

tent state (Sancho-Martinez et al, 2012). In analogy to conventional

reprogramming, in which somatic cells are converted into pluripo-

tent ones by overexpressing pluripotency-associated transcription

factors (Takahashi & Yamanaka, 2006), direct conversion is

achieved by forcing expression of key lineage-specific factors. The

first experiment of this kind was performed almost 30 years ago,

when overexpression of a single gene, the myogenic transcription
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factor MyoD, was shown to be sufficient to convert fibroblasts into

skeletal muscle cells (Davis et al, 1987). Similarly, overexpression

of the smooth muscle coactivator myocardin (Myocd) can force

fibroblasts into adopting a smooth muscle cell fate (Wang et al,

2003). Successful direct lineage conversions have since been

reported for a plethora of cell types, including the hematopoietic

system (Xie et al, 2004; Laiosa et al, 2006; Szabo et al, 2010),

pancreatic exocrine cells (Zhou et al, 2008b), the hepatic system

(Huang et al, 2011; Sekiya & Suzuki, 2011), and neuronal lineages

(Vierbuchen et al, 2010; Caiazzo et al, 2011). Unfortunately, no

single “master regulator” of cardiomyocyte development has been

identified to date, but lessons from both iPSC generation and direct

conversions in other systems suggest that combinations of specific

factors can alter the gene expression profile of the donor cell and

induce its conversion into cardiac cell types.

The therapeutic implications of being able to produce cardiomyo-

cytes via direct conversion, rather than via PSC differentiation, are

multiple. Firstly, the ability to bypass the pluripotent state may

reduce the potential risk of tumorigenesis after transplantation.

Secondly, similar to iPSC differentiation, immunologically matched

tissue can be produced from a patient’s own cells to circumvent graft

rejection. Finally, the ability to directly convert non-cardiomyocytes

into cardiomyocytes in vitro offers the enticing possibility to do

the same in vivo and reprogram resident cardiac fibroblasts by

introducing defined factors directly into the patient’s heart.

A variety of recipes designed to steer fibroblast cells into a cardi-

omyogenic fate have been published so far, each employing a

unique combination of cardiac-specific transcription factors,

miRNAs, and/or chemical molecules (Table 1). The first study

started out by testing fourteen different factors for their ability to

induce a cardiomyocyte-like phenotype from mouse post-natal fibro-

blasts. Three were deemed sufficient for reprogramming: Gata4,

Mef2c, and Tbx5, hereafter referred to as GMT factors (Ieda et al,

2010). The trans-differentiation process was found to be direct, with

no transition through a multipotent cardiac progenitor-like state.

Successful conversion into the cardiomyocyte lineage was judged by

up-regulation of a cardiac-specific reporter gene, which occurred in

up to 25% of transfected cells. Differentiation into cardiomyocyte-

like cells was also observed when transduced fibroblasts were

transplanted into immunocompromised mouse hearts 1 day after

introduction of GMT factors. However, only 1% of induced cardio-

myocytes (iCMs) displayed spontaneous contractions in vitro,

suggesting overall inefficient conversion into fully mature, func-

tional cardiomyocytes. Two additional studies later examined the

utility of GMT factors for cardiac reprogramming (Chen et al, 2012;

Inagawa et al, 2012). In one of them, expression of the three

transcription factors via a single polycistronic vector, rather than

three separate constructs, was found to enhance differentiation of

iCMs obtained from mouse cardiac fibroblasts (Inagawa et al,

2012). When the GMT factors were delivered as separate viral

vectors, most reprogrammed cells expressing cardiac markers

remained smaller than endogenous ventricular cardiomyocytes and

never displayed clear cross striations, even after 1 month from

transduction. However, cardiomyocyte maturation was greatly

enhanced upon GMT factor delivery as a single polycistronic vector

– with cross striations appearing in 30% of transduced cells –

highlighting the importance of choosing the appropriate delivery

method and optimizing transcription factor dosage for optimal

reprogramming. Interestingly, the second study that attempted to

recapitulate findings by Ieda et al obtained markedly different

results (Chen et al, 2012). GMT-mediated reprogramming efficiency

was tested in fibroblasts derived from multiple transgenic mouse

lines. In all of them, cardiac-specific gene expression was only

marginally elevated as a result of GMT transduction. Importantly,

the efficiency of reprogramming was extremely variable according

to which reporter gene was chosen as read-out: 35% of GMT-

transfected fibroblasts expressed cTnT, but none of these cells

showed activation of two other cardiac-specific markers, aMHC and

Nkx2.5. Unlike what reported by Ieda et al, GMT-overexpressing

cells exhibited no spontaneous action potential in vitro and, when

transplanted into injured mouse hearts, displayed poor survival and

minimal activation of cardiac gene expression (Chen et al, 2012).

While the reasons for such discrepancies may lie in the different

experimental protocols and reagents used to achieve GMT overexpres-

sion, findings by Chen et al point out that the choice of reporters,

cell types, and methods used to evaluate cardiac phenotypes have

profound influences on the assessment of reprogramming efficiency

and should therefore be standardized through further investigation.

Lipid-based transient transfection of four cardiac-specific

miRNAs (miR-1, -133, -208, -499) was reported to convert mouse

fibroblasts into cardiomyocytes in vitro, and the conversion effi-

ciency enhanced up to almost 30% by inhibiting the JAK1 kinase

(Jayawardena et al, 2012). However, no cardiac marker gene was

activated when the same miRNAs were virally transduced into

mouse fibroblasts by another group (Nam et al, 2013). Another

example of experimental variables leading to markedly different

reprogramming efficiencies is a study by the Olson laboratory (Song

et al, 2012). In an effort to identify a better combination of cardiac

reprogramming factors, they also transduced mouse fibroblasts with

virally encoded GMT factors, followed by evaluation of the number

of cells expressing both aMHC and cTnT reporter genes. Unlike Ieda

et al, who reported a reprogramming efficiency of more than 20%,

they found that GMT factors could only induce cardiac reprogram-

ming, as assessed by expression of their two reporter genes, in

around 6% of transfected cells. Adding one more cardiac transcrip-

tion factor – Hand2 – to the reprogramming cocktail, then referred

to as GMTH, did however induce up to 20% of cells to become posi-

tive for both aMHC and cTnT expressions (Song et al, 2012). The

importance of verifying the expression of multiple, lineage-specific

genes when assessing reprogramming efficiency was also pointed

out by another study, in which all triplet combinations of ten candi-

date factors were screened for their ability to induce a variety of

cardiac-specific genes, whose expression reflects multiple heart

functions (Protze et al, 2012). Interestingly, the broadest spectrum

of cardiac genes was up-regulated not upon transfection of the GMT

factors, but when Gata4 was substituted with Myocd, suggesting

that the GMT factors do not achieve full reprogramming of fibro-

blasts into cardiomyocytes. In conclusion, the ability to quantify

reprogramming events necessarily relies on a reporter gene

expressed in the desired final cell type, but such a reporter must

accurately reflect the fully reprogrammed state. Overexpressing

certain transcription factors might cause induction of the reporter

(such as the aMHC-GFP reporter analyzed by Ieda et al), but not of

the fully differentiated cell program. To avoid selecting for factor

combinations that only achieve partial reprogramming, it is there-

fore essential to screen for other hallmarks of a differentiated
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cardiomyocyte, such as global cardiac gene expression, sarcomeric

structure, and action potentials (Protze et al, 2012).

Cardiac reprogramming of fibroblast cells can be achieved by

direct conversion, with no appearance of an intermediate cardiac

precursor-like state, as reported by some of the studies above (Ieda

et al, 2010; Song et al, 2012), or by an indirect switch in cell fate,

which transitions through a cardiac progenitor state. By adapting

the conventional iPSC reprogramming protocol, Efe et al achieved

partial dedifferentiation of mouse embryonic fibroblasts, followed

by differentiation into cardiomyocytes through a mitotically active

intermediate expressing early (Mesp1, Flk1) and then mid-stage

(Nkx2.5, Gata4, Isl1) cardiac progenitor markers (Efe et al, 2011).

After initial overexpression via inducible viral vectors of the pluripo-

tency factors Oct4, Sox2, and Klf4, cells were exposed to the small-

molecule JAK inhibitor JI1, followed by culturing in a chemically

defined medium containing the cardiomyogenic growth factor

BMP4. With this protocol, the conventional reprogramming route

toward pluripotency was shortcut and directed toward cardiac cyto-

genesis instead, with a conversion efficiency of 40% (Table 1) (Efe

et al, 2011). In a similar recent study, mouse fibroblasts were initi-

ally transduced with Oct4 alone and then exposed to a cocktail of

lineage-specific soluble signals, including an anaplastic lymphoma

kinase (ALK) inhibitor and a GSK3b inhibitor, to achieve trans-

differentiation into the cardiac lineage (Wang et al, 2014). Despite

initial Oct4 overexpression from an inducible viral construct,

converted cells never enter the pluripotent state but transition

through a cardiac progenitor-like stage (as determined by expression

of Flk1, Mesp1, Isl1, and Gata4) before turning into differentiated

cardiomyocytes. Finally, viral-mediated co-expression of Mesp1 and

Ets2 transcription factors or cell treatment with MESP1 and ETS2

recombinant proteins was reported to reprogram human dermal

fibroblasts into cardiac progenitors, marked by expression of core

cardiac transcription factors (Nkx2-5, Isl1, Tbx5, Mef2c, Gata4)

(Islas et al, 2012).

Given the increased complexity of gene regulatory pathways in

human cells, cardiomyocyte generation from human fibroblasts

requires more factors than those needed to reprogram mouse fibro-

blasts. This observation is in line with what is reported for the

generation of human iPSCs or neuronal cells, which also require

different culture conditions and/or additional transcription factors

compared to mouse cells. Species-specific requirements likely reflect

differences in gene expression and regulation between mouse and

human fibroblasts and different susceptibility of lineage-specific

genes to activation in different cell types. For example, both GMT

and GMTH factor combinations are insufficient for cardiac repro-

gramming of human fibroblasts (Islas et al, 2012; Nam et al, 2013;

Wada et al, 2013). By employing a combination of four transcription

factors (Gata4, Hand2, Tbx5, Myocd) and two miRNAs (miR-1, miR-

133), human neonatal and adult fibroblasts were successfully

converted into cardiomyocyte-like cells characterized by cardiac

gene activation and sarcomeric-like structures (Nam et al, 2013).

Despite initial high reprogramming efficiency (up to 45% depending

on readout and fibroblast origin), human iCMs required longer

maturation time compared to their murine counterparts and

displayed low-amplitude calcium transients in response to electrical

stimulation and extremely rare spontaneous contractions. Moreover,

human iCMs appeared to be heterogeneous, with each cell express-

ing different levels of cardiac and non-cardiac genes (Nam et al,

2013). This heterogeneity may partly be ascribed to the mixed age

and genetic background of the human fibroblasts tested, which will

influence cell-to-cell variability in epigenetic landscapes and there-

fore in susceptibility to the reprogramming process. Importantly,

utilizing different combinations of reprogramming factors does not

seem to improve the outcome considerably. Induced cardiomyo-

cytes generated by overexpressing GMT factors plus Mesp1 and

Myocd in human cardiac or dermal fibroblasts are functionally

immature, as indicated by cell morphology, expression of embry-

onic cardiomyocyte marker genes, and slow calcium oscillations

(Wada et al, 2013). Similar findings were reported when fibroblasts

were transduced with GMT plus Esrrg (estrogen-related receptor

gamma), Mesp1, Myocd, and Zfpm2 (zinc finger protein, FOG family

member 2) (Fu et al, 2013). Despite the appearance of a cardiomyo-

cyte-like phenotype, with cardiac-specific gene up-regulation and

sarcomere assembly, only a few of the reprogrammed cells fired

action potentials upon electrical stimulation and none of them

displayed any spontaneous contractions, even after a long time in

culture.

Immediately after the first successful attempts at in vitro cardio-

myocyte reprogramming of fibroblast cells were reported, several

groups began to try the same in vivo, by injecting cardiac repro-

gramming factors directly into mouse hearts (Table 1). Intramyocar-

dial delivery of retroviral vectors expressing the GMT factors in a

mouse model of MI was shown to reprogram resident fibroblasts

into cardiomyocyte-like cells (Qian et al, 2012). Interestingly, the

initial reprogramming efficiency achieved in vivo (10–15%) was

similar to that observed by the same group during in vitro conver-

sion experiments, but in vivo-derived iCMs appeared more fully

reprogrammed and more similar to endogenous cardiomyocytes

than in vitro-derived ones (Ieda et al, 2010; Qian et al, 2012)

(Table 1). This would suggest that factors within the native milieu

that are absent in a cell culture dish – such as extracellular matrix

and secreted proteins – enhance the cell fate switch. Importantly, in

vivo cardiac reprogramming was accompanied by an improvement

in cardiac function and a reduction in scar size following injury, but

the functional improvement of GMT-injected hearts seemed greater

than what one might expect from the relatively inefficient repro-

gramming of adult cardiac fibroblasts in vitro. This could mean that

the observed benefits may arise from a combination of new muscle

formation and other non-cell-autonomous effects, such as growth

factor secretion. A similar conclusion was made when the GMTH

factors were employed, as they only reprogrammed 1–8% of trans-

duced cardiac fibroblasts but caused a much more pronounced

improvement in heart function (Song et al, 2012). In another study,

injection of GMT-expressing retroviral constructs in vivo only

caused 1% of transduced fibroblasts to convert into cardiomyocyte-

like cells, a strikingly lower reprogramming efficiency than the

10–15% claimed by Qian et al (Inagawa et al, 2012). As pointed out

above for the in vitro studies, these differences may be due to a

number of experimental variables that affect the efficiency of

conversion in vivo, such as the mouse strain employed or the trans-

gene expression levels achieved. Moreover, the study by Inagawa

et al used immunosuppressed nude mice, because the number of

retrovirus-infected cells was dramatically reduced 2 weeks after MI

in immunocompetent mice (Inagawa et al, 2012), whereas no loss

of reprogrammed cells was seen in the immunocompetent mice

used by Qian et al, even four weeks post-infection (Qian et al,
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2012). It is clear that additional experiments are needed to redeem

these controversies before any conclusion concerning the utility of

in vivo reprogramming therapies can be made.

Somatic stem cell transplantation therapies Since the realization

that adult somatic stem cells can be isolated from many different

tissue sources and can spontaneously differentiate in vivo in response

to endogenous cues, the idea to use these cells to repair cardiac injury

has been all the rage and translational efforts have proceeded at the

speed of light (Hansson & Lendahl, 2013; Matar & Chong, 2014). Here,

we briefly discuss some of the somatic stem cell transplantation thera-

pies for heart diseases that have undergone clinical testing. A detailed

review is obtained elsewhere (Rosen et al, 2014).

The first somatic stem cells to be tested were skeletal myoblasts

(Taylor et al, 1998; Menasche et al, 2001). Upon muscle injury,

skeletal muscle progenitor cells proliferate and promote regenera-

tion by differentiating into new muscle fibers, making them attrac-

tive candidates for cardiac regeneration tools. The MAGIC

(myoblast autologous grafting in ischemic cardiomyopathy) clinical

trial examined the effects of intra-myocardial injection of skeletal

myoblasts in 97 patients with severe ischemic heart failure (HF)

(Menasche et al, 2008) (Table 2). Smaller clinical trials had previ-

ously yielded encouraging results, but MAGIC did not corroborate

these findings. Although the occurrence of malignant arrhythmias

between the myoblast-treated patients and controls was the same, at

the end of the 6-month-long observation period, myoblast treatment

did not cause any significant improvement in cardiac function or

clinical status. Due to the overall discouraging results of the MAGIC

trial, the risk of arrhythmias associated with skeletal myoblast trans-

plantation as shown by the MARVEL (myoblast implantation into

myocardium post myocardial infarction) trial (Povsic et al, 2011)

(Table 2), and the availability of more attractive cell sources, inter-

est in skeletal myoblasts has waned in recent years.

The majority of preclinical and clinical studies of somatic stem

cell therapy for HF patients employed bone marrow-derived stem

cells, including hematopoietic and non-hematopoietic stem cell

populations, which can differentiate into diverse cellular pheno-

types. Cells used in clinical trials include unfractionated bone

marrow mononuclear cells (BMMNCs), CD34+ and/or CD133+

hematopoietic and endothelial stem/progenitor cells, and mesenchy-

mal stem cells (MSCs). BMMNCs have been investigated multiple

times in animal models of acute MI with encouraging results

(Balsam et al, 2004; Murry et al, 2004). In the clinical setting,

however, conflicting results have been obtained in patients with

ischemic/non-ischemic HF treated with BMMNCs. The REPAIR-AMI

(intracoronary progenitor cells in acute myocardial infarction) trial

aimed to investigate the effects of intracoronary injection of autolo-

gous bone marrow cells in patients within 7 days after the onset of

acute MI and successful reperfusion therapy. Published results

reported improved ventricular function and event-free survival in

cell-treated patients compared to the placebo group, up to 5 years

post-transplantation (Schachinger et al, 2009; Assmus et al, 2014).

However, other trials have failed to confirm the beneficial effects of

intracoronary delivery of BMMNCs in ischemic HF (Ang et al, 2008;

Yao et al, 2008). To definitively examine whether BMMNCs can reduce

mortality after MI, a large multicenter European clinical trial called

BAMI (the effect of intracoronary reinfusion of BMMNCs on all cause

mortality in acute myocardial infarction) has been initiated (Table 2).

BMMNCs contain a low percentage (0.5–2.5%) of hematopoietic

stem cells and endothelial progenitor cells, which are marked by cell

surface markers CD34 and/or CD133 (Mackie & Losordo, 2011).

Autologous CD34+ cells have been transplanted into patients

affected by either ischemic (Patel et al, 2005) or non-ischemic

(Vrtovec et al, 2013) cardiomyopathy, and found to improve cardiac

function. While transplanted CD34+ cells are unlikely to trans-

differentiate into cardiomyocytes (Murry et al, 2004), they might be

inducing cardiac repair by promoting neovascularization via both

direct engraftment and indirect paracrine effects (Mackie & Losordo,

2011). The RENEW study is planning to assess efficacy and safety of

intramyocardial autologous CD34+ cell transplantation in patients

with refractory angina (Table 2) (Povsic et al, 2013). Effects of bone

marrow-derived CD133+ cells were examined in patients with ische-

mic HF (Stamm et al, 2007). Preliminary results indicate that intra-

myocardial CD133+ cell transplantation improves perfusion and

contractile function of the infarcted myocardium, presumably

because of increased neovascularization. A larger study, termed

PERFECT (intramyocardial transplantation of bone marrow stem

cells in addition to coronary artery bypass graft surgery), is now

planning to enroll 142 patients to determine the potential of bone

marrow-derived CD133+ cells to promote cardiac regeneration

(Donndorf et al, 2012) (Table 2).

Mesenchymal stem cells (MSCs) are non-hematopoietic multipo-

tent stem cells marked by expression of the cell surface markers

CD105, CD73, CD90, and CD146 and by absence of the hemato-

poietic markers CD45, CD34, and CD14/CD11b (Barry & Murphy,

2004). MSCs can differentiate into adipocytes, osteoblasts, chondro-

cytes, and skeletal muscle cells and have also been shown to differ-

entiate into endothelial cells and possibly cardiomyocytes (Pittenger

et al, 1999; Reyes et al, 2002; Toma et al, 2002; Reinecke et al,

2008). Encouraged by animal studies reporting that transplanted

MSCs could increase vascularization of the damaged heart and

improve cardiac function (Silva et al, 2005), scientists initiated the

PROMETHEUS (prospective randomized study of mesenchymal stem

cell therapy in patients undergoing cardiac surgery) trial, in which

autologous bone marrow-derived MSCs were administered to

patients with chronic ischemic HF (Table 2). Recently published

results show that intra-myocardial MSC injection resulted in scar size

reduction, improvement in contractile function, and increased perfu-

sion (Karantalis et al, 2014). However, it must be noted that the

study was only conducted on a very limited sample population of six

patients. The effects of bone marrow-derived MSCs on chronic ische-

mic HF were also examined by the POSEIDON trial (percutaneous

stem cell injection delivery effects on neomyogenesis). Importantly,

although initial results reported that MSCs exert favorable effects on

ventricular remodeling, functional capacity, and patient quality of

life (Hare et al, 2012), the POSEIDON trial failed to show an

improvement in global ventricular function (Suncion et al, 2014).

Much controversy surrounds clinical trials employing putative

CPCs, such as those marked by c-kit expression. Despite the heated

debate around the origin and cardiomyogenic potential of c-kit+

cells, SCIPIO (stem cell infusion in patients with ischemic cardiomy-

opathy)—the first CPC clinical trial—was initiated (Bolli et al, 2011)

(Table 2). Autologous c-kit+ CPCs were isolated from cardiac tissue

obtained during surgery, expanded ex vivo, and delivered via intra-

coronary infusion in patients affected by ischemic HF. Although the

planned two-year follow-up period still awaits completion, interim

ª 2015 The Authors The EMBO Journal Vol 34 | No 6 | 2015

Makoto Sahara et al Programming and reprogramming a heart The EMBO Journal

723



Ta
b
le

2.
Se

le
ct
ed

cl
in
ic
al

tr
ia
ls

of
st
em

ce
ll
th
er
ap

y
fo
r
ca

rd
ia
c
re
ge

n
er
at
io
n
.

Tr
ia
l
n
am

e/
R
ef
er
en

ce
s

C
la
ss
if
ic
at
io
n

C
el
lt
yp

e
D
el
iv
er
y
m
et
h
od

Pa
ti
en

t
n
u
m
b
er

Fo
llo

w
-u
p

p
er
io
d

O
u
tc
om

e
Si
d
e
ef
fe
ct
s

M
AG

IC
(M

en
as
ch
e
et

al
,2
00

8)
Ph

as
e
I/
II

SK
M
s

In
tr
am

yo
ca
rd
ia
l

in
je
ct
io
n
du

ri
n
g

C
AB

G

97
6
m

U
n
ch
an

ge
d
LV
EF

an
d

re
gi
on

al
w
al
lm

ot
io
n
/d
ec
re
as
ed

LV
ED

V
in

pa
ti
en

ts
re
ce
iv
in
g

h
ig
h
do

se

Ve
n
tr
ic
u
la
r
ar
rh
yt
h
m
ia
s
in

9
of

63
pa

ti
en

ts
,a
n
d
9
of

63
pa

ti
en

ts
di
ed

M
AR

VE
L
(P
ov
si
c
et

al
,2
01

1)
Ph

as
e
I/
II

SK
M
s

Tr
an

sc
at
h
et
er

in
tr
am

yo
ca
rd
ia
l

20
3,
6
m

Im
pr
ov
ed

6-
m
in
u
te

w
al
k
di
st
an

ce
Ve
n
tr
ic
u
la
r
ta
ch
yc
ar
di
a
in

7
of

14
pa

ti
en

ts

R
ep
ai
r-
AM

I
(A
ss
m
u
s
et

al
,2
01

4
)

(S
ch
ac
h
in
ge
r
et

al
,2
00

9)
Ph

as
e
III

B
M
M
N
C
s

In
tr
ac
or
on

ar
y

20
4

4
,1
2
m
;2
,5

y
R
ed
u
ce
d
LV

re
m
od

el
in
g/
Im

pr
ov
ed

ve
n
tr
ic
u
la
r
fu
n
ct
io
n

5
of

10
1
pa

ti
en

ts
h
os
pi
ta
liz
ed

fo
r
h
ea
rt
fa
ilu

re
,a
n
d
7
of

10
1

pa
ti
en

ts
di
ed

B
AM

I
(N
C
T0

15
69
17
8)

Ph
as
e
III

B
M
M
N
C
s

In
tr
ac
or
on

ar
y

30
00

3
y

C
u
rr
en

tl
y
re
cr
u
it
in
g

R
EN

EW
(P
ov
si
c
et

al
,2
01

3)
Ph

as
e
III

B
M
-d
er
iv
ed

C
D
34

+
st
em

ce
lls

In
tr
am

yo
ca
rd
ia
l

4
4
4

12
m

C
u
rr
en

tl
y
on

go
in
g

PE
R
FE

C
T
(D
on

n
do

rf
et

al
,2
01

2)
Ph

as
e
III

B
M
-d
er
iv
ed

C
D
13
3+

st
em

ce
lls

In
tr
am

yo
ca
rd
ia
l

in
je
ct
io
n
du

ri
n
g

C
AB

G

14
2

6
m

C
u
rr
en

tl
y
re
cr
u
it
in
g

PO
SE
ID
O
N
(H
ar
e
et

al
,2
01

2)
(S
u
n
ci
on

et
al
,2
0
14

)
Ph

as
e
I/
II

B
M
-d
er
iv
ed

M
SC

s
In
tr
am

yo
ca
rd
ia
l

(t
ra
n
se
n
do

ca
rd
ia
l)

30
13

m
U
n
ch
an

ge
d
LV
EF

/d
ec
re
as
ed

LV
ED

V
an

d
sc
ar

m
as
s/
im

pr
ov
ed

ph
ys
ic
al

pe
rf
or
m
an

ce

3
pa

ti
en

ts
h
os
pi
ta
liz
ed

fo
r

h
ea
rt
fa
ilu

re

PR
O
M
ET

H
EU

S
(K
ar
an

ta
lis

et
al
,2
01

4
)

Ph
as
e
I/
II

B
M
-d
er
iv
ed

M
SC

s
In
tr
am

yo
ca
rd
ia
l

in
je
ct
io
n
du

ri
n
g

C
AB

G

6
3,
6,
18

m
In
cr
ea
se
d
LV
EF

/r
ed
u
ce
d
sc
ar

m
as
s

N
o
m
aj
or

co
m
pl
ic
at
io
n
s

re
po

rt
ed

TA
C
-H

FT
(H
el
dm

an
et

al
,2
01

4
)

Ph
as
e
I/
II

B
M
M
N
C
s
vs
.

B
M
-d
er
iv
ed

M
SC

s
In
tr
am

yo
ca
rd
ia
l

(t
ra
n
se
n
do

ca
rd
ia
l)

65
3,
6,
12

m
U
n
ch
an

ge
d
LV
EF

an
d
LV

vo
lu
m
es
/im

pr
ov
ed

re
gi
on

al
LV

fu
n
ct
io
n
an

d
de
cr
ea
se
d

in
fa
rc
t
si
ze

(o
n
ly
w
it
h
M
SC

s)

N
o
m
aj
or

co
m
pl
ic
at
io
n
s

re
po

rt
ed

AD
VA

N
C
E
(N
C
T0

12
16
99
5)

Ph
as
e
II

Ad
ip
os
e-
de
ri
ve
d
M
SC

s
In
tr
ac
or
on

ar
y

21
6

6,
12

m
;3

y
C
u
rr
en

tl
y
on

go
in
g

SC
IP
IO

(C
h
u
gh

et
al
,2
01

2)
Ph

as
e
I

c-
ki
t+

C
PC

s
In
tr
ac
or
on

ar
y

33
4
,1
2
m

In
cr
ea
se
d
LV
EF

/r
ed
u
ce
d
in
fa
rc
t

si
ze
/in

cr
ea
se
d
vi
ab

le
m
as
s

N
o
m
aj
or

co
m
pl
ic
at
io
n
s

re
po

rt
ed

AL
C
AD

IA
(N
C
T0

09
81

00
6)

Ph
as
e
I

C
PC

s
In
tr
am

yo
ca
rd
ia
l

in
je
ct
io
n
du

ri
n
g

C
AB

G

6
12

m
C
u
rr
en

tl
y
on

go
in
g

C
AD

U
C
EU

S
(M

al
lia
ra
s
et

al
,2
0
14

)
Ph

as
e
I

C
ar
di
os
ph

er
e-
de
ri
ve
d

C
PC

s
In
tr
ac
or
on

ar
y

25
6,
12

m
U
n
ch
an

ge
d
LV
EF

an
d
LV

vo
lu
m
es
/r
ed
u
ce
d
sc
ar

m
as
s/
in
cr
ea
se
d

vi
ab

le
m
as
s

Se
ri
ou

s
ad

ve
rs
e
ev
en

ts
in

6
of

17
pa

ti
en

ts
,a
n
d
1

of
17

pa
ti
en

ts
di
ed

AL
LS
TA

R
(N
C
T0

14
58
4
05
)

Ph
as
e
I/
II

C
ar
di
os
ph

er
e-
de
ri
ve
d

C
PC

s
In
tr
ac
or
on

ar
y

27
4

12
m

C
u
rr
en

tl
y
re
cr
u
it
in
g

Fo
r
on

go
in
g
tr
ia
ls
w
it
h
n
o
pu

bl
is
h
ed

re
su
lt
s,
th
e
C
lin

ic
al
Tr
ia
ls
.g
ov

Id
en

ti
fie

r
(N
C
T.
..
)
h
as

be
en

in
di
ca
te
d.

B
M
,b
on

e
m
ar
ro
w
;B

M
M
N
C
s,
bo

n
e
m
ar
ro
w

m
on

on
u
cl
ea
r
ce
lls
;C

PC
s,
ca
rd
ia
c
pr
og

en
it
or

ce
lls
;M

SC
s,
m
es
en

ch
ym

al
st
em

ce
lls
;S
KM

s,
sk
el
et
al

m
yo
bl
as
ts
;C

AB
G
,c
or
on

ar
y
ar
te
ry

by
pa

ss
gr
af
t;
LV
,l
ef
t
ve
n
tr
ic
u
la
r;

LV
ED

V,
le
ft
ve
n
tr
ic
u
la
r
en

d-
di
as
to
lic

vo
lu
m
e;
LV
EF

,l
ef
t
ve
n
tr
ic
u
la
r
ej
ec
ti
on

fr
ac
ti
on

;m
,m

on
th
s;
y,
ye
ar
s.

The EMBO Journal Vol 34 | No 6 | 2015 ª 2015 The Authors

The EMBO Journal Programming and reprogramming a heart Makoto Sahara et al

724



observations indicate that infusion of c-kit+ cells is associated with

LVEF improvement and infarct size reduction that persist after one

year (Bolli et al, 2011; Chugh et al, 2012). It must be noted though

that concerns regarding patient randomization and the integrity of

certain data generated during the SCIPIO trial have recently been

raised (Nowbar et al, 2014; The Lancet Editors, 2014).

Another prominent clinical trial of autologous human CPC trans-

plantation involved the use of cardiosphere-derived cardiac stem

cells. Cardiospheres are multipotent cardiac-derived cells that can

grow as self-adherent clusters and differentiate into all three major

cardiac lineages in vitro (Messina et al, 2004). Cardiospheres

isolated from human endomyocardial biopsies can be cultured in

vitro to generate cardiosphere-derived cells (CDCs) (Smith et al,

2007). CDCs retain their cardiomyogenic differentiation potential in

vitro and are able to promote cardiac regeneration and improve heart

function in vivo in both murine and porcine MI models (Smith et al,

2007; Johnston et al, 2009). The regenerative potential of CDCs in

human beings has been addressed by the CADUCEUS (cardiosphere-

derived autologous stem cells to reverse ventricular dysfunction)

trial (Table 2). Autologous CDCs derived from endomyocardial biop-

sies were expanded in vitro, followed by intracoronary infusion into

patients with a recent episode of MI. CDC administration led to a

reduction in scar size, an increase in the amount of viable myocar-

dium but only regional improvement in left ventricular function

(Makkar et al, 2012; Malliaras et al, 2014). Data from the CADU-

CEUS trial do not definitively prove CDC-mediated cardiac regenera-

tion, and the clinical effects of CDCs thus remain unclear. It should

also be noted that both cardiospheres and CDCs are heterogeneous

mixtures containing different types of cells that express endothelial

and mesenchymal antigens (Messina et al, 2004). Which of these

cell types is responsible for the observed effects on heart remodeling

and function is at this point unknown. A larger clinical trial, termed

ALLSTAR (allogeneic heart stem cells to achieve myocardial regener-

ation), is now planning to investigate the effects of allogeneic CDC

therapy in approximately 300 patients (Table 2).

In summary, although a multitude of clinical trials have been

performed to date, their results remain ambiguous and no single-

cell-based therapy for heart disease has been conclusively proven

effective so far, particularly in improving life expectancy in patients.

Trial outcomes are frequently affected by noise, poor trial design

(especially the absence of blinding), and normal human tendencies

toward optimism and denial, making it difficult to justify and

conclude them clearly (Rosen et al, 2014). Rigorous long-term

studies with adequate patient population size will have to be

conducted in the future to solve the many controversies.

Cell-free therapies

Lessons from cell-based therapies indicate that, rather than trans-

planting cells that directly engraft and differentiate/proliferate in the

host tissue, delivering paracrine factors alone to the damaged heart

may be sufficient to activate repair mechanisms. This hypothesis

has opened new avenues for cell-free therapies in cardiac regenera-

tive medicine (Fig 4, right). Factors of choice can be delivered to the

heart in one of multiple forms, including viral and non-viral DNA

vectors, modified mRNAs, small-molecule chemical compounds, and

recombinant proteins. Studies of mammalian and non-mammalian

heart injury models have taught us that there are multiple mecha-

nisms involved in cardiac regeneration/replication (Fig 3) and these

pathways/modulators can be exploited to develop novel, non-

cell-based therapies for heart disease. Current efforts are thus trying

to identify clinically useful factors or molecules that can regenerate

the damaged heart by (i) inducing proliferation of preexisting

cardiomyocytes, (ii) reprogramming cardiac fibroblasts into cardio-

myocytes by direct conversion in vivo (as described above)

(iii) trans-differentiating one type of cardiomyocyte or other resident

cardiac cell into another, or (iv) activating endogenous CPCs toward

their differentiation. These mechanisms, together with other indirect

ones acting on non-cardiomyocytes, such as the induction of angio-

genesis and new vessel formation and the reduction of fibrotic scars,

are likely to promote cardiac repair in a cooperative fashion (Fig 4).

Preexisting cardiomyocyte proliferation As detailed above (Fig 3),

the neonatal mouse heart possesses a robust but transient regenera-

tive capacity that rapidly disappears after the first few days of life.

Manipulating the signaling pathways/drivers that control post-natal

loss of cardiomyocyte proliferation represents an attractive strategy

to reactivate proliferation mechanisms in the injured adult mamma-

lian heart. One such target is the p38 MAPK signaling pathway, as

cardiomyocytes seem to control cell cycle progression by modulat-

ing p38 MAPK activity. Overexpression of p38 was shown to block

proliferation of rat fetal cardiomyocytes, whereas its inhibition in

adult cardiomyocytes could promote cell division (Engel et al,

2005). However, p38 MAPK inhibition alone was not able to rescue

heart function in adult rodent models of myocardial injury (Engel

et al, 2006). An improvement in cardiac function was only observed

when animals were also treated with FGF1, which may promote

survival of newly generated cardiomyocytes by improving angiogen-

esis. A p38 MAPK inhibitor and FGF1 could therefore be employed

together as therapeutic agents for cardiac regeneration.

High-throughput functional screening for human miRNAs has

identified a subset of miRNAs, represented by miR-590 and miR-

199a, as being able to induce both DNA synthesis and cytokinesis in

neonatal mouse and rat cardiomyocytes (Eulalio et al, 2012).

Following MI in mice, these miRNAs stimulated marked cardiac

regeneration and significantly improved cardiac function. In

contrast, miR-15 was shown to be up-regulated after the first post-

natal week in mice, coinciding with the rapid loss of regenerative

capacity (Porrello et al, 2013). miR-15 inhibition in mice improves

cardiac function after injury, suggesting its potential as a therapeutic

target.

The homeodomain transcription factor Meis1 has been identified

as a critical transcriptional regulator of cardiomyocyte cell cycle and

proliferation through activation of the cyclin-dependent kinase

(CDK) inhibitors p15, p16, and p21 (Mahmoud et al, 2013). Meis1

represses neonatal cardiomyocyte proliferation and notably, Meis1

deletion was sufficient to extend the post-natal proliferative window

of cardiomyocytes in mice (Mahmoud et al, 2013), indicating that

inhibition of this pathway may have therapeutic potential for

cardiac regeneration/proliferation.

The oxygen-rich post-natal environment has been shown to

induce cardiomyocyte cell cycle arrest through DNA damage

response and to be associated with the post-natal loss of regenera-

tive capacity (Puente et al, 2014). After birth, mammalian cardio-

myocytes switch from a glycolytic to an oxidative metabolism.

These post-natal metabolic changes are associated with marked

increases of reactive oxygen species (ROS), oxidative DNA damage,
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and DNA damage response markers in the heart. Of interest, inter-

fering with these processes by reducing oxidative stress was shown

to successfully increase cardiomyocyte proliferation beyond its

normally permissive time frame, suggesting that the reduction of

oxidative stress may be a novel mechanism to stimulate mammalian

cardiomyocyte proliferation (Puente et al, 2014).

Hippo signaling, an ancient organ size control pathway, inhibits

developing cardiomyocyte proliferation (von Gise et al, 2012) and a

recent study showed that inactivation of this pathway prompts adult

mouse cardiomyocytes to re-enter the cell cycle and undergo cytoki-

nesis, promoting cardiac regeneration following injury in both adult

and neonatal mice (at post-natal day 8) (Heallen et al, 2013). In

concert with this finding, Yes-associated protein (YAP), the terminal

effector of the Hippo signaling pathway, was shown to be crucial for

regulating mouse cardiomyocyte proliferation (Lin et al, 2014) and

thus might also become a novel therapeutic target for cardiac repair.

Positive regulators of cardiomyocyte proliferation include

members of the neuregulin-1 (NRG1)/ERRB4 and periostin (POSTN)

signaling cascades. Increasing signaling through the NRG1/ERBB4

pathway may represent a novel therapeutic strategy to promote

cardiac regeneration, as shown by the beneficial effects of NRG1

injection in adult mice, which induced cardiomyocyte proliferation

and improved heart function after MI (Bersell et al, 2009). Similarly,

POSTN ligand can stimulate differentiated cardiomyocytes to re-

enter the cell cycle by binding the cell surface integrin receptors aV,
b1, b3, and b5 and inducing downstream PI3K activation, which is

sufficient to promote cardiomyocyte renewal in the absence of

POSTN (Kuhn et al, 2007). POSTN/PI3K-mediated cardiomyocyte

proliferation was shown to have beneficial effects on heart morphol-

ogy and function after MI (Kuhn et al, 2007).

Trans-differentiation of cardiomyocytes or other cardiac cells
Direct cardiac reprogramming efforts have mainly focused on

converting resident cardiac fibroblasts into cardiomyocytes, but

there is no reason why the technology should be limited to these cell

types. Successful trans-differentiation of cardiomyocytes into

conduction system cells has been reported both in vitro and in vivo

(Table 1) and may revolutionize current clinical treatment of

cardiac conduction system disorders, which generally involves the

implantation of costly electronic pacemakers. Ectopic activation of

the pacemaker cell-related transcription factor Tbx3 causes cardio-

myocytes to change their gene expression profile from that of work-

ing myocardium to that of pacemaker myocardium (Bakker et al,

2012). Unfortunately, although induced sinoatrial-like cells display

pacemaker characteristics in vitro, no biological pacemaker activity

was created in vivo. Tbx18 transduction also converts cardiomyo-

cytes into sinoatrial-like cells and appears to be superior to Tbx3 in

generating both automaticity in vitro and biological pacemaker

activity in vivo (Kapoor et al, 2013). Finally, a third study recently

reported in vitro and in vivo cardiomyocyte reprogramming

into Purkinje-like cells by activating the Notch signaling cascade

(Rentschler et al, 2012).

As described above (Fig 3), a recent study in zebrafish embryos

showed that differentiated atrial cardiomyocytes can trans-

differentiate into ventricular cardiomyocytes and contribute to

ventricular regeneration upon injury, and that this process depends

on Notch signaling activation (Zhang et al, 2013). Although it

remains to be elucidated whether mammalian atrial cardiomyocytes

have similar lineage plasticity, recent studies have shown that a cardio-

myocyte progenitor population in mammalian fetal hearts is indeed

enriched in the atrial chambers (Laugwitz et al, 2005; Bu et al, 2009;

Genead et al, 2010). Together, these observations suggest that the

trans-differentiating atrial cardiomyocytes found in zebrafish may be

analogous to the atrial-resident multipotent CPCs found in mammals.

Finally, it has been recently shown that cardiac fibroblasts can

trans-differentiate into endothelial-like cells after cardiac injury

(Ubil et al, 2014). After acute ischemic heart injury, some cardiac

fibroblasts rapidly adopt an endothelial-cell-like phenotype in

response to p53 activation and contribute to neovascularization,

which overall improves cardiac function. This native fibroblast-to-

endothelial cell conversion could thus represent a novel therapeutic

target to enhance cardiac repair.

Endogenous cardiac progenitor cell activation and differentia-
tion Recent studies suggest that the predominant source of post-

injury formed cardiomyocytes is preexisting cardiomyocytes

(Garbern & Lee, 2013; Mollova et al, 2013). However, there is still

the possibility for an alternative cardiac progenitor source to

contribute to new generation of cardiomyocytes after injury (Senyo

et al, 2013). Thus, activation of endogenous CPCs toward differenti-

ation into cardiac cells is another important therapeutic strategy for

cardiac repair.

The mammalian heart develops from multipotent cardiovascular

progenitors, including the FHF and SHF CPCs, and EPDCs (Fig 1).

The clinical utility of FHF- and SHF-derived progenitors is limited

by their absence in the adult heart, making it unlikely that they

could serve as a source of new cardiac cells after myocardial

damage (Weinberger et al, 2012). Conversely, a number of resi-

dent cardiac progenitor populations have been identified in the

adult epicardium, including EPDCs marked by expression of Wt1

(Zhou et al, 2008a; Smart et al, 2011; Zangi et al, 2013), Tbx18

(Cai et al, 2008; Zhou et al, 2011), or Tcf21 (Braitsch et al, 2013).

All of these EPDCs play a role in forming the fibrotic scar that

arises after MI, and it remains unclear how to drive these cells

away from the cardiac fibroblast fate and into a more useful cardi-

omyogenic cell fate. Wt1+ EPDCs, for instance, are present at very

low numbers in the normal adult heart and can readily differenti-

ate into cardiac fibroblasts or smooth muscle cells in response to

appropriate stimuli. However, they have limited potential to differ-

entiate into endothelial cells and little, if any, capacity to form

cardiomyocytes in both normal and pathological conditions (Smart

et al, 2011; Zhou et al, 2011; Zangi et al, 2013). Priming, or

pretreatment, of adult mouse hearts with the peptide thymosin b4
(Tb4) was shown to drive endogenous EPDCs into a vascular cell

fate that could promote neovascularization (Smart et al, 2007). In

a follow-up study, the same group described Tb4 priming before

injury as a way to mobilize Wt1+ progenitor cells and stimulate

their differentiation into novel cardiomyocytes that can integrate

structurally and functionally with the surrounding muscle after MI

(Smart et al, 2011). Hence, Tb4 has been heralded as a means to

enhance response of the adult mammalian heart to injury, via initi-

ation of a novel cardiomyogenic program. Unfortunately, the

process is relatively inefficient and the Tb4 peptide does not repro-

gram EPDCs into cardiomyocytes when administered after injury,

making its use as a novel therapeutic agent extremely unlikely

(Zhou et al, 2012).
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Recently, direct injection after MI of a chemically modified

mRNA (modRNA) encoding a single paracrine factor, VEGF-A, was

shown to induce reactivation of the quiescent adult endogenous

Wt1+ EPDCs. The transient pulse of VEGF-A overexpression was

sufficient to promote EPDC proliferation and to drive them away

from the fibroblast, scar-forming fate, and toward an endothelial/

smooth muscle cell fate that could ultimately improve cardiac func-

tion (Zangi et al, 2013). VEGF-A also appeared to stimulate adult

EPDCs to differentiate toward the cardiomyocyte lineage, although

the number of generated cardiomyocytes was extremely low (Zangi

et al, 2013). It is likely that a number of other paracrine factors,

aside from VEGF-A, will be able to activate endogenous progenitor

cells and promote their cardiomyocyte differentiation once delivered

into the infarcted mammalian heart via modRNA injection. It is

therefore worth screening paracrine factor libraries to identify the

best candidate for this novel, cell-free therapeutic approach (Chien

et al, 2014; Lui et al, 2014).

Unresolved issues in human cardiac regenerative therapeutics

As described above, various cell-based and cell-free therapeutic

strategies for cardiac regeneration achieved encouraging results in

animal experiments, often leading to their rapid promotion to clini-

cal testing. However, the benefits of such treatments, if any, remain

controversial and these therapies are still far from widespread clini-

cal application (Garbern & Lee, 2013; Hansson & Lendahl, 2013;

Sanganalmath & Bolli, 2013; Matar & Chong, 2014; Nowbar et al,

2014). Before proceeding these strategies toward realistic clinical

translation, many critical issues will have to be addressed.

Cell type and scalability Many different types of cells, including

various CPCs, non-cardiac somatic stem cells, human PSC (hPSC)-

derived cardiomyocytes, and more recently, directly reprogrammed

cardiomyocyte-like cells have been considered for exogenous deliv-

ery. However, there is no consensus on the ideal cell type to adopt

for cell transplantation in the setting of cardiac regenerative thera-

peutics for heart disease. Very few studies compared different cell

types in regard to their therapeutic efficacy (Mathieu et al, 2009;

Shintani et al, 2009; Mazo et al, 2010). In such studies, it is often

hard to definitively conclude which cell type would be superior to

others, given the difficulty to define the dose–response relationship

for each cell type before the comparison is initiated. Conceptually,

the ideal cell type should tolerate autologous transplantation,

expand rapidly in vitro, differentiate specifically into cardiomyo-

cytes, and couple electrically with the host cardiomyocytes. In addi-

tion, previous preclinical studies suggest that combinations of

different cell types may be more efficient in promoting cardiac

regeneration and function than a single-cell therapy, due to the

complementary or even synergistic actions of different cell types

(Bonaros et al, 2006; Williams et al, 2013), although further studies

are needed.

The dose–response relationship and appropriate frequency of

administration for each cell therapy are other undetermined issues

that very few clinical studies tried to address so far (Menasche et al,

2008; Hare et al, 2012). Producing scalable cultures of hPSC-derived

cells is challenging, but recent advances allow for large-scale

production of hPSC-derived cardiomyocytes (Zhang et al, 2012; Lian

et al, 2013) and/or endothelial progenitors (Sahara et al, 2014).

Such technological advances encourage studies to determine the

relationship between the number/frequency of cells administered

and their effects on cardiac regeneration and function.

Mechanism by which cell therapy promotes cardiac regenera-
tion The mechanisms of action by which cell therapy contributes to

the generation of new cardiomyocytes and/or to an improvement in

cardiac function remain unclear (Fig 4). It is possible that injected

cells do so by engrafting directly into the damaged heart, proliferat-

ing, and differentiating into mature cardiac cell types, although

previous studies suggest that these events are relatively rare (Tang

et al, 2010; Loffredo et al, 2011). When c-kit+ CPCs were trans-

planted into rats 1 month after coronary occlusion followed by

reperfusion, the rats exhibited more viable myocardium in the

injured region, less fibrosis, and improved ventricular function 5

weeks after transplantation. However, the number of transplanted

c-kit+ cell derivatives contributing to the newly formed myocardium

was too small to account for the observed beneficial effects (trans-

planted c-kit+ cell-derived cardiomyocytes only accounted for 2.6%

of the total cardiomyocyte population in the injured region and

1.1% in the non-infarcted region) (Tang et al, 2010). Similar find-

ings were also reported in a porcine ischemic model (Bolli et al,

2013). Collectively, these observations suggest that, rather than by

direct engraftment and differentiation into cardiac lineages, trans-

planted cells may exert their salutary effects indirectly, by secreting

paracrine signals that act on surrounding cells (Gnecchi et al, 2008).

Paracrine signals such as cytokines and growth factors may promote

cardiac repair through a variety of mechanisms, including preexist-

ing cardiomyocyte dedifferentiation/proliferation, recruitment/ acti-

vation of endogenous CPCs, induction of angiogenesis and new

vessel formation, reduction of fibrotic scars, and inhibition of apop-

tosis, ultimately resulting in enhanced cardiac function and myocar-

dial repair. To develop future cell-based and/or cell-free therapies

for cardiac regeneration, it is important to define the extent to which

direct cell engraftment followed by differentiation/proliferation or

rather the paracrine effects of transplanted cells account for

observed beneficial effects.

Subtype of generated cardiomyocytes Recent advanced differentia-

tion protocols from hPSCs allow the generation of cardiomyocytes

with unprecedentedly high efficiency (approximately 80%) (Zhang

et al, 2012; Lian et al, 2013). However, the resultant cardiomyo-

cyte populations are a heterogeneous and frequently uncharacter-

ized mixture of different subtypes, such as atrial, ventricular, and

conductive cells, which can be distinguished by their gene expres-

sion profile and electrophysiological properties (Xu et al, 2012;

Weng et al, 2014). To obtain better effects on cardiac function and

prevent arrhythmias after transplantation to the ventricle, it may

be essential to selectively produce the ventricular subtype of

cardiomyocytes through directed differentiation of hPSCs. In this

regard, recent studies have reported that down-regulation of reti-

noic acid signaling (Zhang et al, 2011), or hypoxic conditions plus

sequential addition of BMP4/Activin and a Wnt inhibitor (Weng

et al, 2014) successfully generate ventricular cardiomyocytes, but

not other subtypes, from hPSCs. Directed differentiation approaches

need to be further optimized in this way to purify each subtype

of cardiomyocytes for therapeutic transplantation purposes.

hPSC-derived cardiomyocytes, as well as directly reprogrammed

cardiomyocyte-like cells, exhibit structural and functional features
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of neonatal, rather than adult, cardiomyocytes (Ieda et al, 2010;

Song et al, 2012; Lundy et al, 2013), which could lead to

increased risk of arrhythmias, lower long-term stability, and poor

integration into the host myocardium after transplantation. Struc-

tural and functional maturation to adult-like cells can be achieved

by longer in vitro culture times (Lundy et al, 2013), but the extent

to which cells need to be matured in vitro before transplantation

to achieve post-transplantation efficacy and safety remains an

important unanswered question.

Electrical coupling One major caveat associated with cardiac cell

therapy is the risk of arrhythmias, due to incomplete electrical

coupling of transplanted cells with host cardiomyocytes. Ideally,

transplanted cells have to align, engraft, and couple with host cardio-

myocytes in an ordered fashion, although how this process is orches-

trated is unclear. A recent study has shown that human ESC-derived

cardiomyocytes can engraft into injured guinea pig hearts with 1:1

host–graft coupling, and this results in reduced risk of arrhythmias

and improved cardiac function, indicating human ESCs as a poten-

tially safe tool for cardiac regeneration (Shiba et al, 2012). As

described above, human ESC-derived cardiomyocytes also seem to

generate new muscle grafts when transplanted into the infarcted

monkey heart (Chong et al, 2014b). However, non-fatal ventricular

arrhythmias were observed in engrafted primates and further investi-

gations are required to understand why electromechanical coupling

appears to be incomplete (Anderson et al, 2014; Murry et al, 2014).

Teratoma formation Another concern upon transplantation of

hPSC-derived cells is the risk of teratoma formation (Lensch et al,

2007), which is obviously harmful to cardiac function and electrical

homeostasis. When unpurified human ESC-derived cardiomyocytes

were transplanted into non-human primates following cardiac

injury, microteratomas formed in the scar region (Blin et al, 2010).

However, when cells were committed to the cardiac lineage, as iden-

tified by expression of stage-specific embryonic antigen-1 (SSEA-1),

there was no evidence of teratoma formation at 2 months after

transplantation (Bel et al, 2010; Blin et al, 2010), suggesting that

adequate purification of hPSC-derived cardiac lineages before trans-

plantation might be sufficient to prevent tumor formation.

Delivery systems In many preclinical and clinical tests, molecules

and/or cells are often directly injected into the myocardium during

open-heart surgery (Fig 4). A less invasive delivery system, such as

transcatheter injection, is however desirable in the clinical setting.

There are two kinds of transcatheter approaches, involving either

intramyocardial (transendocardial) or intracoronary injection, both

of which have advantages and disadvantages associated with cell

engraftment efficacy and side effects (tissue disruption, microvascu-

lar embolism, etc.) (Beeres et al, 2007; Ang et al, 2008; Li et al,

2011). Further investigations are needed to determine which deliv-

ery system is the most appropriate for maximal efficacy and safety

(Sanganalmath & Bolli, 2013).

Virus issues For direct fibroblast conversion into cardiomyocyte-like

cells in vitro and in vivo, viral transduction of reprogramming

factors is currently the main approach. Some viral vectors, however,

integrate into the host genome, thereby carrying a potential risk of

tumorigenicity. Before any clinical trial involving transplantation of

induced cardiomyocytes can be designed, it is therefore imperative

to develop non-integrative gene transfer approaches that can

achieve efficient cell fate conversion without compromising on

safety. Such non-integrative approaches include plasmid vectors,

modRNAs, miRNAs, and chemical molecules (Fig 4) and are

currently under investigation (Kim et al, 2009; Warren et al, 2010;

Jayawardena et al, 2012).

Long-term engraftment and tissue engineering Another major

issue in cell therapy is how to improve engraftment, because most

cells transplanted into the heart do not survive long term. Indepen-

dently of cell type and delivery system, more than 90% of injected

cells disappear in the first few days and only 1–2% can still be

detected 4 weeks after transplantation (Zeng et al, 2007; Hong et al,

2013). Massive loss of transplanted cells is likely to limit the efficacy

of any type of cell therapy and may be one of the reasons behind

the modest success and/or controversial results in the past trials of

cardiac cell therapy (Sanganalmath & Bolli, 2013; Matar & Chong,

2014). To improve long-term cell engraftment in the ischemic heart,

several strategies are under investigation, including pretreatment of

transplanted cells by genetic modification or pharmacological

preconditioning (Penn & Mangi, 2008), regression of fibrotic scar

tissue (Chablais & Jazwinska, 2012), and cardiac tissue engineering

(Hirt et al, 2014). Genetic modification strategies involve overex-

pression of anti-apoptotic genes, such as heme oxygenase-1 (HO-1)

or proto-oncogene serine/threonine-protein kinase (Pim-1), which

have been shown to improve the survival of mesenchymal or

cardiac stem cells transplanted into ischemic hearts (Tang et al,

2005; Fischer et al, 2009). In addition, reestablishment of adequate

vascularization might be essential for long-term engraftment of

transplanted cardiac cells (Terrovitis et al, 2010).

Cardiac tissue engineering, which involves three-dimensional

heart muscle constructs, has undergone remarkable progress in the

past decades. Combining cells with natural or synthetic biomateri-

als, such as collagen, matrigel, fibrin, alginate, gelatin sponges, and

polyglycolic acid, improves local cell retention and engraftment

(Segers & Lee, 2011; Ye et al, 2011). More recently, biodegradable

scaffolds/decellularized heart tissue (Schmidt et al, 2007; Ott et al,

2008) and cardiac patches/cell sheets containing cardiac cells (Wei

et al, 2008; Kubo et al, 2013) have received much attention. Further

details have been reviewed elsewhere (Cimetta et al, 2013; Hirt

et al, 2014). Although cardiac tissue engineering is still in develop-

ment, these approaches will enhance cell engraftment and likely

result in better outcomes of cardiac cell therapy.

Future perspectives

Recent discoveries in the fields of stem cell and regenerative biology

hold great promise for cardiac regenerative medicine. Some of the

most recently developed therapeutic strategies, such as cardiac/

somatic stem cell transplantation, have been or are currently being

clinically tested. Despite encouraging results in experimental/

preclinical settings, the clinical benefits of many of these therapies

remain controversial. Moreover, there is no consensus on the strat-

egy to use, including which cell type to transplant, which delivery

system to adopt, and/or which biomaterials to co-administer, to

improve efficacy and safety. Similarly, standardized protocols to

produce hPSC-derived or directly reprogrammed cardiomyocytes

exhibiting “appropriate” maturation levels and engraftment are
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lacking. These controversies might be attributable, at least in part,

to our incomplete understanding of how the human heart develops

and can regenerate, and of which intrinsic factor(s) account for the

ultimate differences in regenerative capacities between lower verte-

brate or neonatal mammalian hearts and adult mammalian hearts.

The key to successful human cardiac regeneration in the near future

lies in our continuing efforts to explore these core issues and to

unravel the essential pathways and factors that govern the program-

ming and reprogramming of a human heart cell. Latest experimental

and therapeutic tools, involving modRNA, cellular reprogramming,

cardiac tissue engineering, and next-generation sequencing of

genomes and transcriptomes at the single cardiac cell levels, as well

as different model organisms such as lower vertebrates and non-

human primates, will help advance our understanding of human

cardiogenesis and heart repair, opening novel paths toward an ulti-

mate goal of establishing cardiac regenerative therapeutics.
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