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Abstract
Cardiovascular disease, nervous system disorders, and 
cancer in association with other diseases such as diabetes 
mellitus result in greater than sixty percent of the global 
annual deaths. These noncommunicable diseases also 
affect at least one-third of the population in low and 
middle-income countries and lead to hypertension, 
elevated cholesterol, malignancy, and neurodegenerative 
disorders such as Alzheimer’s disease and stroke. With 
the climbing lifespan of the world’s population, increased 
prevalence of these disorders is expected requiring 
the development of new therapeutic strategies against 
these disabling disease entities. Targeting stem cell 

proliferation for cardiac disease, vascular disorders, 
cancer, and neurodegenerative disorders is receiving 
great enthusiasm, especially those that focus upon 
SIRT1, a mammalian homologue of the yeast silent 
information regulator-2. Modulation of the cellular activity 
of SIRT1 can involve oversight by nicotinamide/nicotinic 
acid mononucleotide adenylyltransferase, mammalian 
forkhead transcription factors, mechanistic of rapamycin 
pathways, and cysteine-rich protein 61, connective tissue 
growth factor, and nephroblastoma over-expressed 
gene family members that can impact cytoprotective 
outcomes. Ultimately, the ability of SIRT1 to control 
the programmed cell death pathways of apoptosis and 
autophagy can determine not only cardiac, vascular, and 
neuronal stem cell development and longevity, but also 
the onset of tumorigenesis and the resistance against 
chemotherapy. SIRT1 therefore has a critical role and 
holds exciting prospects for new therapeutic strategies 
that can offer reparative processes for cardiac, vascular, 
and nervous system degenerative disorders as well as 
targeted control of aberrant cell growth during cancer.
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Core tip: SIRT1, a mammalian homologue of the yeast 
silent information regulator-2, holds exciting prospects 
for new therapeutic strategies that can offer reparative 
processes for cardiac, vascular, and nervous system 
degenerative disorders as well as targeted control of 
unchecked cell growth during cancer.
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THE IMPACT OF CARDIOVASCULAR 
DISEASE, CANCER, AND 
NEURODEGENERATIVE DISORDERS
Life expectancy is increasing in developed countries 
such as the United States and has been accompanied 
by a one percent decrease in the age-adjusted death 
rate from the years 2000 through 2011[1]. Yet, a 
number of disorders on a global scale continue to 
plague the population with increased morbidity and 
mortality from cardiovascular disease, disorders of 
the nervous system, and cancer. The World Health 
Organization reports that in 2008, greater than 
60% of 57 million global deaths were primarily 
due to cardiovascular diseases, diabetes, cancer, 
and respiratory disorders[2]. Almost 80% of these 
noncommunicable diseases (NCDs) occur in low 
and middle-income countries. These NCDs affect 
approximately 30% of the population under 60 in low 
and middle-income countries. In contrast, in high-
income countries, 13% of the population under 60 is 
affected. Hypertension and elevated cholesterol are 
significant risk factors for cardiovascular disease with 
hypertension alone contributing to approximately 
13% of all deaths[3]. Disorders such as hypertension 
and elevated cholesterol also contribute to acute 
neurodegenerative disease such as stroke, the fourth 
leading cause of death[4,5]. With the increasing lifespan 
of the world’s population and advancing age, it is 
expected that the incidence of neurodegenerative 
disorders also will grow. As an example, ten percent 
of the global population over the age of 65 is now 
affected with the sporadic form of Alzheimer’s disease, 
but this is expected to increase significantly[6-8]. 
Continued development of new therapeutic strategies 
directed against the NCDs of cardiovascular disease, 
neurodegeneration, and cancer are necessary to 
increase our armamentarium against the complexity of 
these disease entities.

THE SIRT1 PATHWAY
In this arsenal directed against cardiovascular 
disease, neurodegenerative disorders, and cancer, 
multiple therapeutic strategies are being advanced 
that involve novel stem cell applications. Targeting 
stem cell proliferation is being considered for cardiac 
disease[9], vascular disorders[10,11], cancer[12,13], and 
neurodegenerative disease[14-16]. However, it is the 
investigation of stem cells that focus upon sirtuins, 
mammalian homologues of the yeast silent information 
regulator-2 (Sir2), that are proving to be extremely 

exciting.
Sirtuins are histone deacetylases that transfer 

acetyl groups from ε-N-acetyl lysine amino acids on 
the histones of DNA to regulate transcription[17-19]. This 
family of histone deacetylases also mediates post-
translational changes of proteins involved with cellular 
proliferation, survival, and senescence[20-23]. There are 
seven identified mammalian homologues of Sir2 that 
include SIRT1 through SIRT7. Of these, SIRT1 has been 
tied to the modulation of multiple cellular functions 
that include protection against oxidative stress[24-28], 
development of atherosclerosis[29,30], modulation 
of vascular survival and senescence[17,20,21,31,32], 
proliferation of cancer cells[33-36], changes in diabetic 
cellular metabolism[33-36], control of vascular tone 
through the transient receptor potential cation channel 
A1[37], promotion of neuronal survival and cognitive 
function[21,38-41], and the extension of lifespan[25,42,43]. 
Furthermore, SIRT1 appears to be necessary for 
efficient post-reprogramming of telomere elongation, 
the maintenance of pluripotency, and the modulation of 
differentiation in induced pluripotent stem cells[44].  In 
differentiated cells, SIRT1 also controls telomere length 
and maintenance[45].

SIRT1 is dependent upon NAD+ as substrate[17,38,46,47]. 
Through the salvage pathway of NAD+ synthesis, 
nicotinamide phosphoribosyltransferase (NAMPT) 
catalyzes the conversion of nicotinamide to nicotinamide 
mononucleotide[48]. Nicotinamide mononucleotide 
is subsequently converted to NAD+ by enzymes 
in the nicotinamide/nicotinic acid mononucleotide 
adenylyltransferase (NMNAT) family. NAMPT is a rate-
limiting enzyme in mammalian NAD+ biosynthesis 
pathway. Elevated levels of NAMPT activity increase 
cellular NAD levels as well as the activity of SIRT1 
transcription. 

The level of SIRT1 activity and its modulation 
in these cellular processes is considered to be an 
important factor in determining cell survival and 
protection against toxic insults. Insufficient SIRT1 
activity can have a detrimental affect upon vascular 
cell survival[22,23,49], protection against cardiovascular 
disease[31], and prevention of neuronal injury[28,50,51]. 
Yet, a reduction in SIRT1 activity also may be required 
to promote cellular survival in systems involving 
trophic factors such as as insulin growth factor-1[52].

Several biological systems can control the activity of 
SIRT1 (Figure 1). For example, NMNAT can modulate 
the deacetylating activity of SIRT1. In addition, 
mammalian forkhead transcription factors[53] can bind 
to the SIRT1 promoter region that contains a cluster 
of five putative core binding repeat motifs (IRS-1) 
and a forkhead-like consensus-binding site (FKHD-L). 
As a result, forkhead transcription factors such as 
FoxO1 can govern SIRT1 transcription and increase 
SIRT1 expression[54]. AMP activated protein kinase 
(AMPK) represents another pathway for the control of 
SIRT1 activity. AMPK is a member of the mechanistic 
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of rapamycin (mTOR) pathway that phosphorylates 
tuberous sclerosis protein 2 and inhibits the activity of 
mTORC1[55,56]. AMPK can increase the cellular NAD+/
NADH ratio leading to the deacetylation of downstream 
SIRT1 targets that include the peroxisome proliferator-
activated receptor-gamma coactivator 1 α, FoxO1, 
and FoxO3a[57]. AMPK also can increase NAMPT during 
glucose restriction that results in increased NAD+ and 
decreased levels of nicotinamide[58], an inhibitor of 
SIRT1[59]. Resveratrol, a SIRT1 activator, also has been 
shown to activate AMPK through SIRT1 dependent or 
independent mechanisms[57,60]. 

STEM CELLS, SIRT1, APOPTOSIS, AND 
AUTOPHAGY
The impact of SIRT1 on cellular function is intimately 
associated with programmed cell death pathways that 
involve apoptosis and autophagy[61-63]. Apoptosis leads 
to DNA degradation and caspase activation through an 
early phase that involves the loss of plasma membrane 
lipid phosphatidylserine (PS) asymmetry and a later 
phase that results in genomic DNA degradation[64]. 
During the early phase of apoptosis, prevention 
of membrane PS externalization in injured cells is 
necessary to block the loss of functional cells that may 

be removed by activated inflammatory cells[56]. SIRT1 
activation limits external membrane PS exposure 
during the early phases of apoptosis in mature 
cells[22,23,65,66]. In endothelial progenitor cells, SIRT1 
activity can counteract the “pro-apoptotic” effects of 
tumor necrosis factor-α (TNF-α)[67]. During exposure 
to TNF-α, SIRT1 also has been shown to protect 
skeletal myoblast survival[68]. Loss of SIRT1 activity in 
human mesenchymal stem cells yields a reduction of 
proliferation rate with increased apoptosis[69]. During 
aging in the mouse auditory system, loss of SIRT1 
in cochlear neurons and in the auditory cortex is 
associated with hearing loss[70]. In addition, endothelial 
progenitor cell dysfunction with apoptotic cell death 
that can occur in smokers and chronic obstructive 
disease patients has been associated with the loss of 
SIRT1 expression[71]. 

Stem cell survival with SIRT1 can be reliant upon 
forkhead transcription factors and mTOR (Figure 1). 
Although several studies involving differentiated cells 
support the premise that down-regulation of forkhead 
transcription factors by SIRT1 activation can protect 
against apoptotic cell death especially during oxidant 
stress[22,23,65,72,73], other studies in embryonic stem cells 
suggest that SIRT1 down-regulation can lead to the 
acetylation/phosphorylation of forkhead transcription 
factor pathways such as FoxO1, and in association 
with phosphatase and tensin homolog (PTEN) and 
c-Jun N-terminal kinase (JNK), block oxidant stress 
induced apoptosis[74]. However, in embryonic stem 
cells, the presence of SIRT1 also can be protective and 
appears to have an inverse relationship with mTOR[35]. 
SIRT1 can depress mTOR mediated pathways as well 
as promote autophagy to preserve the integrity of 
embryonic stem cells during oxidant stress[75]. SIRT1 
can foster inhibition of mTOR signaling to promote 
neuronal growth[76]. In addition, during high glucose 
exposure to mesangial cells, the loss of SIRT1 activity 
is necessary for mTOR to arrest mesangial cell 
senescence[77].

It is important to note that during apoptotic cell 
injury with the induction of caspase activity, SIRT1 
is susceptible to degradation by caspases. Although 
SIRT1 degradation also may be mediated by apoptotic 
pathways associated with p38[78] and JNK1[79], loss of 
SIRT1 activity can be the result of caspase degradation 
of the SIRT1 protein[80] that can then accelerate further 
activation of caspases[80,81]. In some systems that 
involve the cysteine-rich protein 61, connective tissue 
growth factor, and nephroblastoma over-expressed 
gene (CCN) family (defined by the first three members 
of the family that include cysteine-rich protein 61, 
connective tissue growth factor, and nephroblastoma 
over-expressed gene)[12], the CCN member WISP1 
increases SIRT1 activity to protect cells from oxidative 
stress and apoptotic injury[28] (Figure 1). WISP1 also 
prevents SIRT1 degradation and oversees forkhead 
transcription activity with SIRT1 similar to other 
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Figure 1  Schematic of SIRT1 pathways that can influence stem cell 
maintenance, proliferation, and survival. Several pathways can control SIRT1. 
For example, NMNAT can modulate the deacetylating activity of SIRT1, FoxO1 
can govern SIRT1 transcription and increase SIRT1 expression, and AMPK can 
increase the cellular NAD+/NADH ratio leading to the deacetylation of downstream 
SIRT1 targets. SIRT1 subsequently can depress mTOR pathways and promote 
autophagy to preserve stem cell integrity during oxidant stress as well as 
promote neuronal growth. In addition, SIRT1 is necessary to initiate autophagy 
and transition cells from a quiescence state to an active state. WISP1 increases 
SIRT1 activity to protect cells from oxidative stress and apoptotic injury and blocks 
SIRT1 caspase degradation. NMNAT: Nicotinamide/nicotinic acid mononucleotide 
adenylyltransferase; mTOR: Mechanistic of rapamycin; AMPK: AMP activated 
protein kinase. 
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can limit expression of aged mesenchymal stem cell 
phenotypes[98]. Loss of SIRT1 in circulating endothelial 
progenitor cells that can occur during tobacco 
exposure or chronic obstructive pulmonary disease 
may lead to increased senescence and apoptotic cell 
death that presents increased risk for vascular disease 
or cardiac disease[71]. SIRT1 also may improve the 
function of aged stem cells that are senescent. Aged 
mesenchymal stem cells that were exposed to pre-
conditioning with glucose depletion exhibited increased 
expression of SIRT1 in addition to other proliferative 
entities such as growth factors and resulted in 
increased cardiac performance[100]. 

STEM CELLS, SIRT1, AND 
NEURODEGENERATION
In the nervous system, SIRT1 has been tied to the 
differentiation, maturation, and maintenance of neurons. 
Loss of SIRT1 expression with the concurrent induction 
of heat shock protein-70 promotes neural differentiation, 
maturation of embryonic cortical neurons[101], and the 
differentiation of human embryonic stem cells into 
motor neurons[102]. SIRT1 also is considered a negative 
regulator of subventricular zone and hippocampal 
neural precursors in murine animal models. Knockdown 
of SIRT1 does not eliminate neural precursor numbers 
or proliferation but increases the production of neurons 
in the subventricular zone and the hippocampus[103]. 
In the mouse cerebral cortex, repression of SIRT1 by 
the oncogene BCL6 leads to the conversion of neural 
stem cell/progenitor cells to become neurons[104]. Neural 
stem cell differentiation also can be controlled through 
alternate pathways that involve SIRT1. In mouse 
neural stem cells, neuronal differentiation can be driven 
through the microRNA miR-34a that leads to decreased 
SIRT1 expression and DNA-binding of p53[105]. 
Interestingly, in these studies, increased expression 
of SIRT1 enhanced the astrocytic subpopulation of 
cells[105]. 

STEM CELLS, SIRT1, AND CANCER
The cellular proliferative effects of SIRT1 also play 
a critical role in tumorigenesis. For example, SIRT1 
activity can maintain acute myeloid leukemia stem 
cells and confer resistance against chemotherapy[106], 
stimulate endometrial cell tumor growth through 
lipogenesis[107], maintain neural stem cells and promote 
oncogenic transformation[108], and foster hepatocellular 
carcinoma[109]. As a result, SIRT1 and agents that 
modulate SIRT1 activity may represent new therapeutic 
strategies against tumorigenesis. For example, down-
regulation of endoglin, a protein over-expressed in 
tumor associated endothelial cells, leads to apoptotic 
cell death, DNA damage, inhibition of several DNA repair 
genes including SIRT1, and enhanced chemotherapy 
sensitivity[110]. In addition, pathways linked to SIRT1 

cytoprotective pathways[20,73,82] to block FoxO3a activity 
and prevent caspase activation that would otherwise 
lead to the degradation of SIRT1[28,83-85].

In contrast to apoptosis, autophagy promotes 
tissue remodeling by recycling cytoplasmic components 
and eliminating no longer useful organelles[62]. 
Macroautophagy is the classification of autophagy most 
commonly described[86]. It involves the sequestration 
of cytoplasmic proteins into autophagosomes that fuse 
with lysosomes for degradation and are eventually 
recycled. In most cases, SIRT1 activation with 
the induction of autophagy appears to be vital to 
promote cell survival in mature cells. In differentiated 
chondrocytes during oxidant stress, knockdown of the 
forkhead transcription factors FoxO1 and FoxO3 result 
in cell death with decreased SIRT1 activity and reduced 
autophagic related proteins, suggesting that SIRT1 with 
the activation of autophagy is necessary for cellular 
protection[24]. SIRT1 also plays a role in autophagic 
flux and promoting autophagy in mitochondria[87] 
that may be required to maintain a healthy pool of 
mitochondria[88]. In endothelial cells exposed to oxidized 
low density lipoproteins that can lead to atherosclerosis, 
SIRT1 up-regulation in conjunction with AMPK results 
in autophagy that is necessary for cellular protection[89]. 
In models of cognitive loss with chronic intermittent 
hypoxia hypercapnia exposure, SIRT1 activation is able 
to block apoptotic cell injury, up-regulate autophagy, 
and improve cognitive performance[90]. However, 
in pulmonary models of oxidant stress such as the 
exposure to cigarette smoke in bronchial epithelial cells, 
SIRT1 has been shown to prevent cell injury through 
the inhibition of of autophagy[91,92]. In regards to stem 
cells and the autophagic pathway, stem cells rely upon 
SIRT1 to modulate autophagic flux[93]. In muscle stem 
cells, SIRT1 is necessary to initiate autophagy and 
transition muscle stem cells from a quiescence state 
to an active state[94]. In endothelial progenitor cells, 
SIRT1 blocks apoptotic cell injury during oxidative stress 
through the induction of autophagy[95].

STEM CELLS, SIRT1, AND THE 
CARDIOVASCULAR SYSTEM
In the cardiovascular system, SIRT1 expression 
can affect not only the survival of stem cells, but 
also the ability of stem cells to differentiate and the 
efficacy of these cells for therapeutic applications. 
Increased SIRT1 expression can improve the survival 
of cardiomyoblasts[96] and prevent senescence and 
impaired differentiation in endothelial progenitor 
cells[97]. In regards to treatment efficacy, mesenchymal 
stem cells that are subjected to SIRT1 over-expression 
exhibit increased blood vessel density in the area of 
cardiac infarcts, reduced cardiac remodeling, and 
improved cardiac performance in rodent models[98], 
factors that may be associated with cardiac stem 
migration that is vital to tissue repair[99]. SIRT1 also 
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also may provide new strategies against cancer. 
Activation of p53 through SIRT1 inhibition can result in 
apoptotic cell death for quiescent leukemia stem cells 
in chronic myelogenous leukemia[111]. In breast cancer, 
estrogen receptor-α can lead to SIRT1 expression that 
activates pro-survival genes in breast cancer cells, such 
as catalase and glutathione peroxidase, and inhibits 
tumor suppressor genes, such as cyclin G2 (CCNG2) 
and p53. In these breast cancer cells, if SIRT1 is 
inhibited, estrogen receptor-induced breast cell growth 
is blocked through apoptotic cell death[112].

FUTURE CONSIDERATIONS
Cardiac disease, vascular disorders, neurodegenerative 
disease, and cancer lead to significant disability and 
death in the global population. Development of stem 
cell strategies for these disorders and the targeting of 
SIRT1 to drive stem cell viability and function holds 
great promise for the future. In the cardiovascular 
system, SIRT1 through stem cell proliferation can 
drive angiogenesis, improve cardiac performance 
following ischemic injury, limit cell senescence, and 
enhance the function of aged stem cells. In the 
nervous system, SIRT1 can be a negative modulator 
of neural precursors with the loss of SIRT1 leading to 
differentiation and maturation of embryonic stem cells 
in the nervous system. During tumorigenesis, SIRT1 
foster the development of acute myeloid leukemia 
stem cells, promote oncogenic transformation of neural 
stem cells, and lead to hepatocellular cancer. Vital to 
the clinical outcomes controlled by SIRT1 is its level 
of activity overseen by pathways that include NMNAT, 
mammalian forkhead transcription factors, mTOR, and 
CCN family members such as WISP1 that determine 
cell survival through apoptosis and autophagy. Future 
work that can target SIRT1 and navigate stem cell 
proliferation under required conditions to either 
cellular proliferation or cellular death can open new 
avenues for the treatment of cardiovascular disorders, 
neurodegenerative disease, and cancer.
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