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Abstract
The tumor microenvironment (TME) is complex and 
constantly evolving. This is due, in part, to the crosstalk 
between tumor cells and the multiple cell types that 
comprise the TME, which results in a heterogeneous 
population of tumor cells and TME cells. This review 
will focus on two stromal cell types, the cancer-
associated adipocyte (CAA) and the cancer-associated 
fibroblast (CAF). In the clinic, the presence of CAAs 
and CAFs in the TME translates to poor prognosis in 
multiple tumor types. CAAs and CAFs have an activated 
phenotype and produce growth factors, inflammatory 
factors, cytokines, chemokines, extracellular matrix 
components, and proteases in an accelerated and 
aberrant fashion. Through this activated state, CAAs and 
CAFs remodel the TME, thereby driving all aspects of 
tumor progression, including tumor growth and survival, 
chemoresistance, tumor vascularization, tumor invasion, 
and tumor cell metastasis. Similarities in the tumor-
promoting functions of CAAs and CAFs suggest that a 
multipronged therapeutic approach may be necessary 
to achieve maximal impact on disease. While CAAs 
and CAFs are thought to arise from tissues adjacent 
to the tumor, multiple alternative origins for CAAs and 
CAFs have recently been identified. Recent studies 
from our lab and others suggest that the hematopoietic 
stem cell, through the myeloid lineage, may serve as 
a progenitor for CAAs and CAFs. We hypothesize that 
the multiple origins of CAAs and CAFs may contribute 
to the heterogeneity seen in the TME. Thus, a better 
understanding of the origin of CAAs and CAFs, how 
this origin impacts their functions in the TME, and the 
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temporal participation of uniquely originating TME cells 
may lead to novel or improved anti-tumor therapeutics. 
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Core tip: This review examines the roles of cancer-
associated adipocytes (CAAs) and cancer-associated 
fibroblasts (CAFs) in remodeling of the tumor micro-
environment (TME), presents evidence for a unique 
hematopoietic stem cell origin for both CAAs and CAFs, 
and discusses potential therapeutic implications of this 
novel origin. Studies highlighted herein emphasize the 
necessity of developing an understanding of the origins 
of cells in the TME and the importance of multipronged 
therapeutic targets directed at preventing both the 
incorporation and effects of stromal remodeling by the 
cells of the TME. 
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INTRODUCTION: THE TUMOR 
MICROENVIRONMENT
The “seed and soil” hypothesis suggests that an 
appropriate host microenvironment (“soil”) must 
be present for the optimal growth of tumor cells 
(“seed”)[1-3]. Although this paradigm was initially 
proposed by Stephen Paget in 1889, research 
efforts have predominantly focused on the epithelial 
component of solid tumors and tumor cell-intrinsic 
factors leading to tumorigenicity. However, in the 
last decade, Paget’s hypothesis has again come to 
focus and it has been recognized that the epithelial 
“seed” and stromal “soil” components co-evolve and 
interact during tumor progression[4]. Seminal works 
from Weinberg’s group have shown that this stromal 
compartment, often referred to as the reactive 
stroma or tumor microenvironment (TME), directly 
and indirectly supports tumor survival, growth, 
vascularization, escape from immune surveillance, 
drug resistance, and metastasis via extracellular 
matrix (ECM) remodeling and production of growth 
factors, cytokines, and chemokines (reviewed in[5-7]). 
The TME is comprised of a variety of cell types 
including endothelial cells, perivascular cells, immune 
cells, adipocytes, and fibroblasts/myofibroblasts. 

These cells interact with one another as well as with 
tumor cells to create an intricate network of cellular 
crosstalk and bidirectional regulation. 

This crosstalk results in a heterogeneous popu-
lation of tumor cells exhibiting varying degrees of 
differentiation, unregulated proliferation, the capacity 
to migrate and invade through surrounding tissue, 
and the ability to establish a dense irregular and 
leaky vascular network, all critical steps in metastatic 
tumor progression. Concomitantly, this crosstalk 
leads to changes in the local stromal populations, 
contributing to the heterogeneity of TME cells. The 
heterogeneity of the cells of the TME, the factors 
they contribute and their broad functional ability 
to promote all aspects of tumor progression make 
the “soil” a challenging and complex therapeutic 
target. Many factors contribute to the heterogeneity 
of these cell types, including exposure to the local 
tumor milieu, the plasticity between cells of the TME, 
and the multiple potential origins of each cellular 
population. Understanding the mechanisms behind 
this heterogeneity could lead to the identification of 
novel therapeutic targets for cancer. This review will 
focus on two stromal cell types, the cancer-associated 
adipocyte (CAA) and the cancer-associated fibroblast 
(CAF). The adipocyte is a stromal cell type that has 
recently been implicated in tumor initiation, growth, 
and metastasis (reviewed in[8]). Several epidemiologic 
studies have linked obesity with multiple types of 
cancer[9-11]. Recent clinical studies have reported a 
positive correlation between the presence of CAAs 
at the tumor margin and poor patient outcome, 
suggesting that CAAs contribute to the permissive 
pro-TME, particularly in adipocyte-rich tissues, such 
as the mammary gland[12,13] (and reviewed in[14]). 
CAFs, the most abundant cellular component of the 
TME in solid tumors, have a significant impact on 
tumor progression during multiple stages[5-7]. While 
more extensively studied than CAAs, the numerous 
roles of CAFs in tumor progression and metastasis 
are still under investigation. Like CAAs, CAFs have 
clinically been correlated with tumorigenesis and 
poor prognosis in many cancer types[15-18]. Similarities 
in the pro-tumorigenic functions of CAAs and 
CAFs suggest that these TME cell types may act in 
concert to promote tumor progression, indicating 
that therapeutic targeting of the TME may need to 
encompass both cell types. Herein, we will examine 
the phenotype and function of CAAs and CAFs in 
remodeling of the TME, present evidence for a unique 
hematopoietic stem cell origin for both CAAs and 
CAFs, and discuss potential therapeutic implications 
of this novel origin. 

CONTRIBUTIONS OF CAAS AND CAFS 
TO TME REMODELING
Cancer has been likened to a perpetual wound 
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healing process[19] since both processes begin with 
the formation of a reactive stroma. During wound 
healing the reactive stroma resolves rapidly, but, 
during cancer progression, this actively remodeling, 
inflammatory state is perpetuated. CAAs and CAFs 
have been shown to play a role in a variety of tumor 
promoting processes including ECM deposition/
degradation, inflammation and immune surveillance, 
tumor growth and survival, angiogenesis, invasion, 
and metastasis[5,6,20-24], suggesting similarities in 
the pro-tumorigenic functions of these cells. As 
summarized in Figure 1, this section will discuss the 
CAA and CAF phenotypes and their roles in generating 
and maintaining the reactive stroma associated with 
cancer progression and metastasis. 

The activated phenotype of CAAs and CAFs 
Adipocytes, surrounded by fibroblasts, preadipocytes, 
pluripotent stem cells, endothelial cells, and immune 
cells, are the major components of the adipose 
tissue. Apart from their traditional function in energy 
storage, adipocytes are also considered endocrine 
cells, producing hormones, growth factors, cytokines 
and adipokines, including leptin, adiponectin, resistin, 
vascular endothelial growth factor (VEGF), tumor 
necrosis factor-alpha (TNF-α), and interleukin-6 
(IL-6)[25]. During interaction with cancer cells, adipocytes 
acquire phenotypic changes and are reprogrammed 
to an activated state during which they are referred to 
as CAAs[26]. CAAs are generally located at the invasive 
front of tumors[21]. Several reports suggest that cancer 
cells can induce metabolic changes in adipocytes, 

resulting in enhanced lipolytic activity and an inability 
to properly store triglyceride[27]. Moreover, transforming 
growth factor-β (TGF-β), secreted by cancer cells 
or local stroma, is a potent inhibitor of adipocyte 
differentiation[28]. Thus, the associated morphological 
changes upon activation include loss of lipid content 
(delipidation) and acquisition of a fibroblast-like/
preadipocyte phenotype (de-differentiation)[21]. 
Functional alterations in CAAs include loss of terminal 
adipocyte markers and products (adiponectin, resistin, 
fatty acid binding protein-4 (FABP4), hormone sensitive 
lipase (HSL), and CCAAT/enhancer binding protein-
alpha (C/EBPα) and an increased production of pro-
inflammatory cytokines IL-6, IL-1β, plasminogen 
activator inhibitor-1 (PAI-1)[21]. As detailed below, in 
this activated state, CAAs produce adipokines and 
inflammatory factors that have been shown to promote 
tumor progression in adipocyte-rich environments.

In non-malignant tissues, fibroblasts provide 
structure and ECM scaffolding for tissues. In a wound 
environment, these fibroblasts become activated, 
produce increasing amounts of ECM proteins and 
migrate to wound interfaces to cause wound contraction 
and closure. In both wound healing and the TME, 
fibroblast activation is marked by increased α-smooth 
muscle actin (αSMA) protein expression, along with 
increased expression of vimentin, desmin, fibroblast 
specific protein, platelet-derived growth factor receptor 
α and β (PDGFRα and β), fibroblast activation protein 
(FAP), or a combination of these markers. TGF-β is 
present in both the wound and TMEs and has been 
shown to both induce and suppress differentiation and 
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Figure 1  Multifactorial contributions of cancer-associated adipocytes and cancer-associated fibroblasts to tumor progression and metastasis. Research in the 
last decade has highlighted the importance of the tumor microenvironment in cancer progression. While there are numerous stromal cell types that contribute to the tumor 
microenvironment, this illustration depicts roles for cancer-associated adipocytes (CAAs) and cancer-associated fibroblasts (CAFs) in promoting the multiple stages of 
tumor progression and metastasis. ECM: Extracellular matrix.
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state of the TME. As described above, CAAs have 
been shown to produce a variety of inflammatory 
cytokines including IL-6, IL-8, IL1-β and TNF-α[8,26]. 
Through production of factors such as IL-1β, IL-23, 
TGF-β, IL-6, and IL-8[42-44], CAFs exert considerable 
influence over the inflammatory state of the TME. CAF 
production of ECM components such as hyaluronic 
acid further drive the inflammatory state by recruiting 
tumor-associated macrophages[45] that promote 
tumor vascularization and proliferation. While the 
interactions between CAAs, CAFs and immune cells 
are only beginning to be explored, it is clear that 
cellular cross-talk modulates the inflammatory state 
of the TME, potentially influencing tumor-specific 
immunity.

Tumor growth and survival
Both CAAs and CAFs aid the tumor in meeting 
requirements for rapid growth by providing structural 
matrix as described above as well as directly 
promoting tumor cell proliferation and survival. Rapid, 
unchecked proliferation is characteristic of tumor 
cells, and as the cells of the TME remodel the reactive 
stroma, tumor cell proliferation is further accelerated. 
In addition to proteases and ECM constituents, CAAs 
provide their high energy content lipids to cancer 
cells resulting in accelerated tumor progression[46]. In 
support of this, morphologically, CAAs at the tumor 
invasive front are smaller than those observed at 
a distance, which implies lipolysis. In the case of 
ovarian cancer, the cancer cell-adipocyte interaction 
initiated HSL-mediated lipolysis in the adipocytes, 
releasing fatty acids, which were then taken up 
by the ovarian cancer cells for energy production 
through β-oxidation[46]. In a PC-3 model of prostate 
cancer, the translocation of lipid from adipocytes 
to prostate cancer cells was visualized by Fourier 
transform infrared spectroscopy[47]. Together these 
studies suggest that in multiple cancer types, CAAs 
supply the TME with energy rich lipids that may act to 
promote tumor growth by supplying tumor cells with 
essential metabolites.

Furthermore, adipocytes secrete adipokines 
into the TME, such as TNFα, IL-6, IL-8, monocyte 
chemoattractant protein-1 (MCP-1/CCL2), and 
leptin which have been shown to enhance tumor 
growth locally and systemically in a variety of cancer 
types (reviewed in[8]) including prostate[48,49] and 
breast[14,21] cancers. Another aspect of adipocyte pro-
tumorigenic activity is their contribution to chemo/
radio-therapy resistance. The antitumor effect of 
vincristine, daunorubicin and dexamethasone to 
acute lymphoblastic leukemia (ALL) was impaired 
under the influence of adipocytes, which augmented 
ALL cell survival due to increased expressions of 
Bcl-2 and Pim-2[50]. Likewise, breast tumor cells 
co-cultivated with adipocytes or recombinant IL-6 
exhibited radioresistance, an increase in the effector 

tumorigenesis in a dose and context specific manner[29]. 
With respect to fibroblasts, TGF-β has been shown to 
upregulate αSMA expression[30,31], induce expression of 
FAP[32], and promote collagen synthesis[33], hallmarks of 
activated fibroblasts. Like CAAs, activated fibroblasts in 
the TME are also characterized by increased and altered 
production of inflammatory cytokines, chemokines, 
ECM components, and growth factors. The clinical 
importance of this activated phenotype is highlighted by 
molecular profiling studies of CAFs and matched normal 
fibroblasts. Studies in non-small cell lung cancer[16] and 
breast cancer[34] revealed that the cancer-associated 
gene signatures in CAFs correlated to disease outcome. 

CAAs and CAFs in ECM remodeling and establishment 
of a reactive stroma
CAAs have been shown to play an important role 
in stromal remodeling during tumorigenesis. Type 
Ⅵ collagen, a soluble ECM protein, was reportedly 
up-regulated in peritumoral adipocytes during 
tumorigenesis[22] and was shown to promote early 
mammary tumor progression in vivo[23]. The α3 chain 
cleavage product of type Ⅵ collagen, endotrophin, 
augmented fibrosis, angiogenesis and inflammation 
through recruitment of macrophages and endothelial 
cells[23]. Rio and colleagues found that the native 
α3 chain of type Ⅵ collagen constituted a specific 
substrate for matrix metalloproteinase (MMP)-11, 
whose collagenolytic activity was functional in fat 
tissue ontogenesis as well as during cancer invasive 
steps[24]. Interestingly, they also reported that 
invasive breast cancer cells induced the expression of 
MMP-11 in the neighboring CAAs[20], suggesting that 
exposure to tumor cells promotes stromal remodeling 
abilities of CAAs. 

CAFs function to generate and remodel ECM through 
production of collagens, fibronectin, and laminin[30,35], 
and proteases such as MMPs[36,37]. Collagens, fibronectin, 
and laminin contribute to the stiffness and density 
of the stroma, give structural support to the tumor 
cells, and provide important mechano-signals in 
the TME. Additionally, the expression of αSMA by 
activated fibroblasts was shown to promote matrix 
contraction[38-40], suggesting a direct effect on matrix 
stiffness. Like CAAs, CAFs also produce MMPs 
that degrade matrix collagens, fibronectins, and 
proteoglycans, profoundly contributing to structural 
remodeling of the TME. It has also been demonstrated 
in vitro that fibroblast overexpression of FAP, a serine 
protease selectively produced by CAFs, remodeled 
the ECM by increasing expression levels of αSMA, 
fibronectin, and collagen Ⅰ[41]. These data indicate 
that, orchestrated by the tumor-stroma crosstalk, 
CAAs and CAFs actively remodel the ECM to favor local 
tumor progression.

In addition to elaboration and remodeling of 
matrix, CAAs and CAFs may also promote changes in 
the local stroma by contributing to the inflammatory 
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kinase Chk1, and a decrease in cell death[51]. Taking 
into account that CAAs secrete elevated levels of IL-6 
in the TME, CAAs could promote chemoresistance 
via multiple mechanisms. These studies shed light 
on a new role of CAAs in fostering a chemo/radio-
resistant phenotype in cancers and suggest targeting 
CAAs may increase effectiveness of conventional 
chemotherapy treatments.

CAFs also promote tumor growth through the 
production of factors that have been shown to be 
involved in proliferation of tumor cells, including 
TGF-α[52], TGF-β[53], hepatocyte growth factor (HGF)[54], 
and others (reviewed in[44,55]). Through production 
of MMPs, CAFs act to release stored growth factors 
from within the matrix, further contributing to an 
enriched host microenvironment and promoting 
proliferation of tumor cells (reviewed in[37]). Studies 
have identified a novel mechanism of cellular 
respiration, coined the “reverse Warburg effect” that 
involves an interplay and exchange between tumor 
cells and stromal cells whereby tumor cells take up 
energy-rich metabolites from CAAs[8] and CAFs[56] 
for use in the mitochondrial TCA cycle. This may 
contribute to the rapid proliferation of tumor cells by 
directing cellular energy towards cell division rather 
than cellular respiration. CAFs, like CAAs, have been 
implicated in promoting tumor chemoresistance. The 
expression and organization of collagen type I has 
been inversely correlated with intratumoral uptake 
of chemotherapeutic agents in vivo as it contributes 
to increased interstitial fluid pressure, forming a 
barrier to trans-capillary transport of agents[57]. DNA 
vaccine targeting of FAP on CAFs led to decreased 
deposition of a collagen Ⅰ rich matrix and improved 
chemotherapeutic drug uptake in pre-clinical animal 
studies[58]. Direct targeting of CAF-derived FAP also 
suppressed primary tumor cell growth in a pre-
clinical murine model of multi-drug resistant breast 
cancer[58]; however, this finding has not held in 
Phase Ⅱ clinical trials. In vitro studies revealed that 
adherence of melanoma cells to fibroblast monolayers 
allowed for reduction of the cytotoxic effects of 
cisplatin, supporting a role for the CAF-induced 
ECM[59] in tumor cell survival. CAFs from melanoma 
and prostate cancer were found to be less sensitive 
to etoposide and vincristine due to expression of a 
non-mutated but functionally deficient form of p53[60]. 
Together, these findings suggest CAFs promote tumor 
growth and survival through multiple mechanisms 
and these effects may contribute to both the primary 
tumor and metastatic site.

Tumor vascularization
Angiogenesis is a critical step in tumor progression, 
without which tumors cannot maintain growth beyond 
1-2 mm3[61]. Many of the key factors required to initiate 
the angiogenic switch in solid tumors are produced 
by CAAs and CAFs. Adipocytes are known to produce 
multiple angiogenic factors [VEGF, fibroblast growth 

factor-2 (FGF2)], adipokines (leptin, adiponectin, 
resistin) and cytokines (IL-6), all of which stimulate 
angiogenesis and contribute to an overall pro-
angiogenic microenvironment for tumor progression[62]. 
CAFs have been shown to produce angiogenic factors 
including stromal derived factor-1 (SDF-1)[63], TGF-β[64], 
IL-6[65] and VEGF[66,67], which support endothelial cell 
proliferation and tumor vascularization. In addition 
to their production of angiogenic cytokines, CAFs 
may play a more direct role in tumor vascularization 
through their ability to serve as vascular support cells. 
CAF and myofibroblast expression of αSMA closely 
links this cell type with the pericyte, a fibroblast-like 
cell, which plays a supportive role for endothelial cells 
in both normal and tumor systems. Thus, CAAs and 
CAFs are a source for critical angiogenic factors and 
may be involved in flipping the hypothetical switch to 
a vascularized tumor site, thereby acting to support an 
essential early step in tumorigenesis. 

Invasion and metastasis
One of the initial steps in metastasis of solid tumor is 
the migration and invasion of the tumor cell through 
the ECM and through the basement membrane. This 
is followed by intravasation of tumor cells into a local 
blood vessel and the extravasation of the tumor cell 
to colonize and proliferate at a distant site. CAAs 
secrete similar levels of MMP-2 and MMP-9 compared 
to normal adipocytes[21], whereas MMP-11 is highly 
expressed by CAAs in the proximity of invading 
cancer cells, but not in normal resting adipocytes[24]. 
The role of MMP-11 (stomelysin-3) in tumor biology is 
still unclear (reviewed in[37,68]). However, MMP-11 has 
been shown to promote tumorigenesis and function 
through its proteolytic activity[69,70], but only weakly 
degrades matrix molecules. CAFs have been shown 
to produce a variety of matrix metalloproteinasese 
(MMP), including MMP-1, MMP-2, MMP-3, MMP-9, 
MMP-11, MMP-13, and MMP-14 (reviewed in[36,37]). 
Degradation of ECM allows tumor cells to cross the 
structural barrier of the basement membrane, a 
key step in tumor metastasis (reviewed in[37]). In an 
elegant imaging study, Gaggioli[35], demonstrated 
that CAFs are able to degrade matrix to form tracks 
through the ECM that allow invading tumor cells to 
efficiently follow behind. 

CAAs and CAFs also directly affect the migratory 
and invasive abilities of tumor cells through 
production of adipokines, cytokines, and chemokines. 
Adipocyte/CAA-secreted IL-6 has been shown to play 
a key role in mediating adipocyte-dependent invasive 
activity of both breast cancer cells and melanoma 
cells[21,71]. FAP production by fibroblasts was linked to 
the increased invasion of pancreatic cancer cells in a 
β1-integrin/FAK mediated fashion[41]. In breast cancer, 
CAFs were shown to increase the invasive ability of 
DCIS epithelial cells and this was related to their 
production of MMP-9 and MMP-14[72,73]. In addition, 
these factors secreted by CAAs and CAFs may flood 
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the circulation with signals for distant metastatic sites 
to initiate their own expression of chemokines that 
will aid the tumor cell in homing to the metastatic 
site and preparing the site for colonization once the 
tumor cell arrives[74]. Research conducted on human 
omental adipocytes indicates they secrete IL-6 and 
IL-8 and that antibody-mediated inhibition of either 
factor resulted in reduced homing of ovarian cancer 
cells in vitro and in vivo, although inhibition of IL-8 
was more efficient at reducing homing of cancer cells 
in vivo[46]. Once ovarian tumors are established on the 
omentum, they may convert adjacent adipocytes into 
CAAs, which results in a positive feedback loop leading 
to increased IL-6 production and further recruitment 
of cancer cells to the omentum. It has also been 
suggested that tumor cells do not metastasize alone, 
rather, they “travel” with stromal cells. Studies from 
Duda et al[75] demonstrated by cannulating primary 
tumor bearing mice, that tumor cells are shed with 
stromal cells in heterotypic “clumps” from the primary 
tumor. The stromal component, which included 
fibroblasts, acted to support the viability of the tumor 
cells while traveling through the circulation to the 
metastatic site. Together, these studies suggest that 
CAAs and CAFs promote the migratory and invasive 
phenotype in a variety of solid tumors and highlight 
the importance of elucidating mechanisms to target 
both CAAs and CAFs. 

ORIGINS OF CAAS AND CAFS IN THE 
TME
Both CAAs and CAFs are generally thought to arise 
from tissues adjacent to the tumor; however, recent 
studies have begun to demonstrate alternative sources, 
including other resident stromal cells, epithelial cells, 
and bone marrow. This complex and ever-growing 
understanding of the origins for CAAs and CAFs can 
be appreciated in Figure 2. It is possible that these 

multiple sources are reflected in the morphological, 
phenotypic, and functional heterogeneity described 
for adipocytes from different fat depots[76] and for 
CAFs[77,78]. Given that this heterogeneity is a significant 
hurdle in therapeutically targeting the TME populations, 
it will be essential to elucidate the multiple origins for 
these cells as well as to examine the impact these 
origins may have on cellular function. 

Origins of CAAs
The expansion of adipose tissue is achieved via 
increases in size (hypertrophy) and/or number 
(hyperplasia) of adipocytes. Mature adipocytes are 
postmitotic, therefore, adipocyte hyperplasia requires 
new adipocytes be produced from their adipogenic 
precursors. A long-standing paradigm of adipocyte 
generation is that all adipocytes are differentiated 
from mesenchymal progenitor cells resident in the 
vascular stroma, referred to as adipose stem cells 
(ASCs), where the regional fat depots eventually 
form[79,80]. However, these progenitor cells are found 
associated with adipose vessels[79], bringing up the 
possibility that circulating progenitors, such as those 
provided by bone marrow, home to adipose tissue 
through the bloodstream followed by extravasation 
across the endothelium of blood vessels, subsequently 
undergoing adipogenic conversion. To test this 
hypothesis, several groups transplanted GFP-labeled 
bone marrow into wild-type mice[81-83]. Two of these 
groups detected GFP-expressing adipocytes in the 
major adipose depots[81,82], while one failed to detect 
these cells[83], perhaps due to low marker expression 
or limited engraftment. When engrafted mice were 
treated with rosiglitazone or a high fat diet that 
stimulated adipogenesis, the number of GFP-expressing 
adipocytes was elevated, and cells were often found in 
clusters, suggesting clonal growth from bone marrow-
derived progenitors[81]. While these studies support a 
bone marrow origin for CAAs, it is unclear which bone 
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Figure 2  Origins of cancer-associated adipocytes 
and cancer-associated fibroblasts. This drawing 
illustrates the complex and ever-growing understanding 
of the origins for cancer-associated adipocytes (CAAs) 
and cancer-associated fibroblasts (CAFs). CAAs and 
CAFs are generally thought to arise from resident 
tissue cells, the adipose stem cell (ASC) and resident 
fibroblast, respectively. However, alternative sources 
for adipocytes and CAAs have been demonstrated 
including cells of the bone marrow, specifically those 
of the myeloid lineage (e.g., macrophages, CFPs, 
and fibrocytes). In addition to resident fibroblasts, 
CAFs have been shown to be derived from myeloid 
progenitors (CFPs, fibrocytes), mesenchymal stromal 
cells (MSCs), ASCs, CAAs, epithelial cells, tumor cells, 
and endothelial cells. It is possible that these multiple 
sources are reflected in the morphological, phenotypic, 
and functional heterogeneity described for adipocytes 
and for CAFs. HSC: Hematopoietic stem cell; CFPs: 
Circulating fibroblast precursors.
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marrow stem cell serves as the CAA progenitor.
It is commonly held that the bone marrow contains 

two types of stem cells, the mesenchymal stromal cell 
(MSC) and the hematopoietic stem cell (HSC). MSCs 
are defined by their adherence to plastic and potential 
to differentiate into mesenchymal tissue cells such 
as bone, fat, muscle, cartilage, and fibroblasts[84-87]. 
HSCs are defined by their capability of hematopoietic 
reconstitution in vivo and have also been shown to 
give rise to other tissue cell types including mast 
cells and osteoclasts. Our laboratory has developed a 
method for transplantation of a clonal population from 
a single sorted HSC defined as an EGFP+Lin-Sca-1+c-
Kit hiCD34- cell. Using this single cell transplantation 
model, we have demonstrated that HSCs give rise 
to a variety of mesenchymal cell types including 
adipocytes[88], osteocytes and chondrocytes[89], 
cardiac valve interstitial cells[90]; circulating fibroblast 
precursors[91], and fibroblasts and myofibroblasts in 
multiple tissues[92-94] (reviewed in[95]). Further use of 
our unique clonal cell transplantation model revealed 
the generation of adipocytes in vivo from clonally 
derived bone marrow HSCs[88]. Similar to findings from 
Crossno et al[81], we found that rosiglitazone stimulated 
adipogenesis from the HSC[88]. In vitro, clones giving 
rise to monocytes/macrophages under hematopoietic 
conditions were also able to generate adipocytes under 
adipogenic conditions, suggesting a differentiation 
pathway from HSCs-myeloid precursors-adipocytes[88]. 
Similar results were obtained from the Klemm group 
who confirmed the de novo generation of a subset 
of adipocytes from bone marrow myeloid progenitor 
cells using a non-transplant transgenic mouse model 
in which LacZ expression was restricted to the myeloid 
lineage[96]. Moreover, Sterieter and colleagues reported 
that circulating fibrocytes were capable of adipogenic 
differentiation both in vitro and in vivo[97]. Due to 
the dual hematopoietic/mesenchymal nature of 
fibrocytes, they may be considered as an intermediate 
for myeloid-derived adipocyte population. These 
studies demonstrate the ability of the HSC to give 
rise to adipocytes through the myeloid lineage. While 
studies have not yet directly examined the role of 
HSC-derived CAAs in tumor progression, findings from 
our laboratory suggest that they can enhance tumor 
growth and tumor cell motility in breast cancer and 
melanoma models (unpublished data).

Origins of CAFs
Traditionally, CAFs are thought to arise from resident 
tissue fibroblasts[98]. However, recent studies have 
suggested alternative sources including other 
resident stromal cells, epithelial cells, epithelial-
mesenchymal transition or endothelial-mesenchymal 
transdifferentiation (EndoMT), and adipose tissue. 
Several studies have also suggested a bone marrow 
origin for myofibroblasts and CAFs[99] (and reviewed 
in[100-102]). As described above, the bone marrow 
provides a rich source for both MSCs and HSCs. Using 

our model for transplantation of a clonal population 
from a single sorted HSC in conjunction with a variety 
of solid tumor models, we have demonstrated the 
presence of HSC-derived fibroblasts in tumor sections 
from mice transplanted with a clonal population of 
cells derived from a single, sorted HSC[91,103]. Analysis 
of sections from Lewis lung carcinoma (LLC) and 
melanoma (K1735-M2) tumors harvested from clonally 
engrafted animals showed the presence of HSC-
derived CAFs[91,103]. These EGFP-expressing cells had 
a fibroblastic morphology and constituted 8%-28% of 
the tumor stromal cells[103]. Characterization of these 
HSC-derived cells indicated that they were activated 
fibroblasts, based on expression of αSMA and mRNA 
expression of collagen Ⅰ[103]. Also prevalent in the 
specimens were EGFP+ pericyte-like perivascular 
cells, suggesting that HSCs contribute to tumor 
vasculature[103].

Work from our laboratory has also identified a 
population of circulating fibroblast precursors (CFPs) 
that express markers of both hematopoietic cells (CD34, 
CD45) and fibroblasts [collagen Ⅰ (Col Ⅰ), discoidin 
domain receptor-2 (DDR2; a collagen 1 recpetor)]([91] 
and unpublished data). The CD45+DDR2+ population 
was shown to differentiate along the monocyte/
macrophage lineage, contain the CD34+Col Ⅰ+ fibrocyte 
and rapidly differentiate to collagen 1+, αSMA+ cells with 
fibroblastic morphology. Using our clonal hematopoietic 
stem cell transplantation model, we conducted an 
in vitro examination of CFPs/fibrocytes derived from 
peripheral blood cells of clonally engrafted mice[92]. In 
these studies, nucleated blood cells were cultured and 
the appearance of EGFP+ (HSC-derived), spindle-shaped 
or polygonal cells was detected by the seventh day. 
Flow cytometric time course analysis of the cultured 
cells demonstrated decreasing CD45 expression 
and increasing DDR2 expression. Our studies have 
demonstrated that CFPs may be stimulated to express 
markers of activated fibroblasts including collagen, 
vimentin, and αSMA by exposure to tumor conditioned 
media. This demonstrates a possible differentiation 
pathway from the HSCs-myeloid precursors-CFP and 
with exposure to tumor, HSCs-myeloid precursors-CFP-
CAF[91]. These findings are supported by our in vivo 
data demonstrating the activated fibroblast phenotype 
of HSC-derived cells recruited from the bone marrow to 
the tumor stroma[91].

CAA and CAF common origins and plasticity
As summarized in Figure 2, multiple origins for CAAs 
and CAFs have been proposed. Evidence also suggests 
that CAAs and CAFs may share a common origin. 
Data from our laboratory using clonal cell lineage 
tracing demonstrated a monocyte lineage origin for 
adipocytes, specifically the Mac1lo fraction of bone 
marrow[88]. Similarly, lineage and gene expression 
analyses demonstrated that adipocytes and adipocyte 
progenitors arise from the hematopoietic stem cell 
via the myeloid lineage[96]. Our studies of CAFs 
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and their circulating precursors demonstrated that 
these cells originate in the Mac1hi population of 
peripheral blood and that their participation in tumor 
may be regulated by MCP-1[91]. Additional evidence 
suggests plasticity between preadipocytes and 
macrophages, with preadipocytes being a source for 
macrophages[104] and tissue macrophages being a 
source for preadipocytes[105]. Histological evidence of 
a high ratio of adipocytes to fibroblasts at the tumor 
invasive front and an extremely high fibroblast-like 
cell to adipocyte ratio observed at the tumor center, 
suggests that CAAs may transition and/or give rise to 
CAFs as tumor progresses[14]. Breast cancer cells were 
also shown to induce de-differentiation of adipocytes 
to a more fibroblastic phenotype[21]. Human adipose 
tissue derived stem cells (hASCs) were found to give 
rise to CAF-like cells when cultured with conditioned 
media from MDA-MB-231 or MCF-7 breast cancer cell 
lines[106]. Under tumor conditions, the hASC-derived 
CAF-like cells were shown to have a myofibroblastic 
phenotype, with increased expression of aSMA and 
tenascin C. This change in phenotype was found to 
be dependent upon TGFβ signaling in the hASCs. 
Studies have yet to directly demonstrate a CAF to 
CAA conversion, however, we have observed in vitro 
that non-adherent bone marrow cells, enriched for 
hematopoietic progenitors, cultured in the presence 
of M-CSF and mouse serum give rise to lipid laden 
cells with a fibroblast-like morphology (unpublished 
observation). Together, these studies support an 
HSC origin for both CAAs and CAFs, suggesting 
plasticity exists between adipocytes, CAAs, and CAFs. 
This plasticity may be one mechanism by which 
heterogeneity of the TME is generated. 

CONCLUSION 
Evidence suggests that CAAs and CAFs play a critical 
role in tumor progression as well as patient prognosis 
and survival. It is thought that the metabolic changes 
associated with obesity underlie the increased risk 
of cancer and cancer-related mortalities. It has been 
estimated that excess weight and obesity were 
responsible for 20% of all cancer deaths in women in 
the United States[107], consistent with poor outcome 
of cancer in overweight/obese patients (reviewed 
in[108]). While no direct comparisons of CAAs derived 
from distinct sources have been conducted, it is 
clear that HSC-derived adipocytes represent a 
subpopulation distinct from conventional white and 
brown adipocytes based on their low expression level 
of leptin, low mitochondrial/peroxisomal content 
and oxidative capacity, and elevated inflammatory 
cytokine production[96]. HSC-derived adipocytes also 
share numerous features with CAAs including low 
expression of terminal adipocyte markers and high 
expression levels of inflammatory cytokines, indicating 
that HSC-derived adipocytes may be considered 
“activated” contributors to the TME. Like CAAs, HSC-

derived adipocytes were found to be smaller in size 
than “resident” adipocytes ([81] and our unpublished 
observation), but whether, as with CAAs, this is 
related to a higher rate of lipolysis in these cells 
requires further exploration. It has been noted that 
HSC-derived adipocytes preferentially accumulate in 
visceral adipose tissue (VAT) rather than subcutaneous 
adipose tissue (SAT)[96]. Excess adiposity in VAT is 
specifically linked to type 2 diabetes and certain 
forms of cancer[76]. As compared to adipocytes from 
SAT, VAT adipocytes exhibited higher rates of fatty 
acid turnover and lipolysis[109] and produced more 
IL-6 and less adiponectin and leptin[110]. These data 
could indicate that VAT and SAT adipocytes are 
generated from different progenitors, or functional 
changes in different depots are due to differential 
accumulation of adipocytes arising from distinct 
progenitors. Furthermore, the accumulation of HSC-
derived adipocytes was increased in female mice over 
males, which may have important inference in human 
biology[96], as women generally possess a higher 
percentage of body fat and tend to disproportionally 
gain fat in VAT following menopause. Coupled with 
preferential accumulation of HSC-derived adipocytes 
in VAT, this pattern of adiposity represents a higher 
risk of adipose-related gynecological cancers for 
postmenopausal women and suggests HSC-derived 
CAAs may represent a novel target these patients. 

Several studies suggest that CAFs and their 
unique phenotypes are associated with increased 
malignant potential. In the case of breast cancer, 
women with denser breast tissue have an increased 
tendency to develop cancer[15]. The presence of a 
fibrous stroma was found to be associated with poor 
prognosis in squamous cell carcinoma[18]. In non-
small cell lung carcinoma, molecular analysis revealed 
a gene signature for CAFs that was associated 
with patient prognosis[16]. Interestingly, recent pre-
clinical studies in pancreatic ductal adenocarcinoma 
have demonstrated a protective role for CAFs[111,112], 
suggesting that the role of these cells is tumor-type 
dependent. CAFs are a heterogeneous population of 
cells that can differ based on both location within the 
tumor and between tumor types and demonstrate 
different phenotypes, activation states, and/or 
functions throughout tumor progression. This diversity 
may, in part, be due to the multiple proposed origins 
of CAFs, which have led to CAFs being referred to 
as a “cell state” rather than a specific cell type[113]. A 
more in depth understanding of the origins of CAFs 
may shed light on the array of markers expressed 
by these cells, help to better define the “CAF”, and 
elucidate their roles based on origin and tumor type. 

Given the essential roles of the TME in tumor 
development, progression and metastasis, it is clear 
that successful anti-tumor therapeutics should include 
those directed at the support cells of the TME. A key 
step towards this goal is the gaining knowledge of 
the role(s) of the different TME cell types (e.g., CAAs 
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and CAFs), their origins, their temporal participation 
and mechanisms by which they influence tumor. 
However, the complexity of the crosstalk between 
the cells of the TME, the broad impact of CAAs/CAFs 
on the reactive stroma and their contribution to the 
evolving TME has made therapeutically targeting 
individual stromal cell derived factors difficult. For 
example, targeting fibroblast activation protein 
alpha (FAPα) produced by activated CAFs, while 
showing promise in preclinical studies[58,114,115], was 
demonstrated to have no beneficial response in 
Phase Ⅱ clinical trials for metastatic colorectal cancer 
and soft-tissue sarcoma patients[116] (and reviewed 
in[117]). However, we propose that targeting CAAs, 
CAFs and their precursors based on their origin may 
lead to significant advances in treatment by directly 
targeting the cells before their incorporation into 
tumor rather than targeting their varied products 
and multiple effects (Figure 3). We and others 
have shown that HSCs give rise to adipocytes via 
the myeloid lineage[88,96]. Likewise, our studies 
demonstrate an HSC origin for CAFs via the same 
myeloid lineage[91]. Studies have also demonstrated 
a myeloid lineage origin for the fibrocyte[118] that also 
gives rise to adipocytes[97] and fibroblasts[92,119]. These 
HSC-derived CAAs (unpublished observation) and 
CAFs[91,103] (and unpublished observation) contribute 

to the TME and have a significant impact on tumor 
progression in mouse models. Identification of 
pathways from the HSC to the CAA or CAF provides 
a potential opportunity to target CAAs and CAFs both 
early in their differentiation and at multiple points 
in their maturation. For example, early inhibition of 
CFP/fibrocyte differentiation from the myeloid lineage 
would lead to fewer CAA and CAF precursors available 
for incorporation in the TME. Likewise, directly 
targeting CFPs/fibrocytes in circulation may prevent 
their incorporation into the local and metastatic TME 
as both CAAs and CAFs, essentially hitting two arms 
of pro-tumorigenic stromal cells. Given their ability 
to invade, circulate and extravasate, therapeutically 
targeting HSC-derived CFPs/fibrocytes may also 
directly affect the population of CAFs demonstrated to 
chaperone cancer cells to metastatic sites. Finally, the 
ability to isolate HSC-derived CAA/CAF progenitors 
in circulation, combined with their intrinsic ability 
to home to tumor[91], may provide a novel modality 
for drug delivery vehicles for chemotherapy. Thus, 
targeting the precursors of CAAs and CAFs may lead 
to a more inclusive and encompassing downstream 
inhibition of their multiple contributions to tumor 
progression and metastasis. Taken together, these 
studies highlight the necessity of developing an 
understanding of the differences and similarities 
between TME cell types of multiple origins as well as 
research directed at elucidating the differentiation 
pathway of these populations for the ultimate goal of 
TME-based anti-tumor therapy. 
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