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Abstract
Pluripotent stem cells are unspecialized cells with 

unlimited self-renewal, and they can be triggered to 
differentiate into desired specialized cell types. These 
features provide the basis for an unlimited cell source 
for innovative cell therapies. Pluripotent cells also allow 
to study developmental pathways, and to employ them 
or their differentiated cell derivatives in pharmaceutical 
testing and biotechnological applications. Via  blastocyst 
complementation, pluripotent cells are a favoured tool 
for the generation of genetically modified mice. The 
recently established technology to generate an induced 
pluripotency status by ectopic co-expression of the 
transcription factors Oct4, Sox2, Klf4 and c-Myc allows 
to extending these applications to farm animal species, 
for which the derivation of genuine embryonic stem  
cells was not successful so far. Most induced pluripotent 
stem (iPS) cells are generated by retroviral or lentiviral 
transduction of reprogramming factors. Multiple viral 
integrations into the genome may cause insertional 
mutagenesis and may increase the risk of tumour 
formation. Non-integration methods have been reported 
to overcome the safety concerns associated with 
retro and lentiviral-derived iPS cells, such as transient 
expression of the reprogramming factors using episomal 
plasmids, and direct delivery of reprogramming 
mRNAs or proteins. In this review, we focus on the 
mechanisms of cellular reprogramming and current 
methods used to induce pluripotency. We also highlight 
problems associated with the generation of iPS cells. An 
increased understanding of the fundamental mechanisms 
underlying pluripotency and refining the methodology of 
iPS cell generation will have a profound impact on future 
development and application in regenerative medicine 
and reproductive biotechnology of farm animals. 
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in somatic cells by ectopic expression of core transcription 
factors allows to extending advanced genetic modifications 
and reproductive techniques to species, for which the 
derivation of genuine embryonic stem cells was not 
successful till now. The commonly employed viral gene 
transfer may be genotoxic and therefore non-viral 
methods for iPS cell derivation are intensively studied. 
In this review, we focus on the mechanisms of cellular 
reprogramming and current methods used to induce 
pluripotency. 

Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent 
stem cells: Mechanisms, achievements and perspectives in farm 
animals. World J Stem Cells 2015; 7(2): 315-328  Available from: 
URL: http://www.wjgnet.com/1948-0210/full/v7/i2/315.htm  
DOI: http://dx.doi.org/10.4252/wjsc.v7.i2.315

INTRODUCTION
Induced pluripotent stem (iPS) cells are defined as 
differentiated cells that have been experimentally 
reprogrammed to an embryonic stem (ES) cell-like 
state. The first generation of murine iPS cells was 
achieved[1] by retroviral transduction of four core 
reprogramming factors: Oct4, Sox2, Klf4, and c-Myc. 
Subsequently, human iPS cells were produced by viral 
transduction of adult fibroblasts[2,3]. Also a combination 
of Oct4, Sox2, Nanog and Lin28, was effective for 
the generation of human iPS cells[4]. An overview of 
reprogramming cells into iPS cells is shown in Figure 1.

Subsequently, the core reprogramming factors 
have been successfully used to derive pluripotent cells 
in various other species, including rhesus monkey[5], 
rat[6], pig[7], dog[8], cattle[9], horse[10], sheep[11], goat[12] 
and buffalo[13]. A summary of the generation of iPS 
cells from different species of livestock is enumerated 
in Table 1. Importantly, iPS cells could be isolated from 
several species, in which the isolation of authentic 
ES cells was not successful despite several attempts 
since many years[14,15]. In particular, for economically 
important species, such as farm animals, the availability of 
authentic iPS cells would have important consequences 
for reproductive biology and approaches for genetic 
modification. For agricultural purposes, iPS cells from 
farm animal species can serve as a valuable genetic 
engineering tool to boost the generation of livestock 
with advantageous genes that are important for 
economic, reproductive and disease resistant traits, or 
for the study of functional genomics in mammals.

So far, iPS cells have been successfully produced 
from fibroblasts[16], pancreas cells[17], leukocytes[18], 
hepatocytes[19], keratinocytes[20], neural stem cells[21], 
cord blood cells[22], and other cell types. Together these 
data suggest that most cell types can be reprogrammed 
to a pluripotent state, and that the unidirectional 
lineage commitment can be experimentally overwritten. 

Certain cell types, such as neuronal progenitors, 
which exhibit basal expression of one or more of the 
core reprogramming factors, seem to be ideal for 
reprogramming[21].

Rodent iPS cells are almost identical to their ES cell 
counterparts, sharing typical hallmarks of pluripotency 
such as colony morphology, unlimited self-renewal, 
in vitro and in vivo differentiation potentials, and 
contribution to the germline[23,24]. Most iPS lines from  
farm animal species have not been tested in chimera  
complementation assays; however some preliminary 
reports suggest that chimeras and germline transmission 
can be achieved in sheep and pig[25,26]. iPS cells 
derived from rodents, humans, monkeys and farm 
animals share the features of high telomerase activity, 
expression of alkaline phosphatase, and expression 
of stemness genes, such as OCT4, SOX2, UTF1 and 
REX1. The epigenetic status of murine iPS cells has 
been analysed by bisulfite sequencing and chromatin 
immuno-precipitation DNA-Sequencing (ChIP-Seq)[27]. 
Thus the hallmarks for iPS cell characterisation 
can be enumerated as (1) unlimited self-renewal; 
(2) in vitro differentiation capacity; (3) in vivo 
differentiation capacity; (4) chimera contribution; and 
(5) subsequently germline transmission. 

Apart from scientific and ethical hindrances, 
religious concerns restricted the derivation of human 
ES cells. To circumvent these concerns, alternative 
approaches to generate pluripotent cells have been 
assessed. The alternative approaches include culture 
of somatic cells with cell extracts isolated from ES 
cells[28] or oocytes[29], and fusion of somatic cell with 
pluripotent cell[30]. However, extremely low efficiencies, 
high technical difficulties and aberrant ploidies of 
the resulting cells[31,32] did reduce the enthusiasm for 
these attempts. At the moment, the derivation of 
iPS cells from human tissues seems to be the most 
promising alternative. Prior to clinical application of 
iPS-derivatives, cell survival, functional integration of 
the cellular transplant and safety of the cell products 
have to be assessed in informative animal models.

The progress in iPS cell development in farm 
animals lags behind those in rodents, but large 
mammalian models may be instrumental for pre-
clinical tests of novel cell therapies (Table 2), enhanced 
pharmaceutical studies and regenerative studies, 
including the restoration of fertility.

HISTORICAL PERSPECTIVE
Ontogenesis of an organism and cellular differ-
entiation were thought to be a unidirectional process, 
where stem and progenitor cells progressively develop 
to terminally differentiated cells, for example neurons, 
muscle, and epithelial cells. During ontogenesis the 
nuclear DNA of most cell types is unchanged, but 
different epigenetic marks, such as DNA methylation 
and histon modifications, are set, and lock the 
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cellular potency and cell lineage commitment. This is 
depicted by the “epigenetic landscape” proposed by 
Waddington[33].

Already in 1962, Gurdon[34] questioned this view 
by amphibian cloning; he transplanted nuclei from 
intestinal cells into irradiated oocytes and obtained vital 
tadpoles. More than three decades later, the successful 
cloning of a sheep (Dolly) by SCNT of a mammary 
epithelial cell to an enucleated oocyte, showed that 
even mammalian cells can be reprogrammed[35]. This 
success demonstrated that differentiated cells contain 
the genetic information to direct ontogenesis of an 
entire mammalian organisms, and that enucleated 
oocytes contain pivotal factors for reprogramming of 
differentiated cell nuclei. However, the identity of the 
oocyte reprogramming factors remained elusive.

The discoveries that ectopic expression of 
Antennapedia-a transcription factor was able and 
sufficient to induce leg structures in Drosophila[36], and 
that ectopic expression of the mammalian transcription 
factor MyoD1 converted fibroblasts into myocytes[37] 
led to the concept of ‘‘master genes’’. A master gene 
was defined as a key transcription factor that in a 
hierarchical manner regulates a cascade of critical 
genes, which in a concerted action induce the cell 
commitment. 

DISCOVERY OF INDUCED 
PLURIPOTENCY 
In 2006, Takahashi et al[1] proved that not a single 

master factor, but a a combination of four repro-
gramming factors, Oct4, Sox2, Klf4 and c-Myc, was 
sufficient to induce the pluripotent status in somatic 
mammalian cells. The resulting cells were called iPS 
cells[1]. This discovery offers new opportunities to study 
developmental biology, regenerative medicine, as well 
as reproductive biology and biotechnology of farm 
animals. 

IPS cells from farm animals will likely serve as a 
bridging link between well developed rodent iPS and 
poorly characterised human iPS (Table 2), supporting 
the translation of innovative cell therapies from 
experimental studies to curative treatments. At the 
moment, human iPS cell application seems to be too 
risky because of basic lack of knowledge and ethical 
consideration which forbid certain tests such as 
chimera assays. 

In contrast, research on iPS cells derived from farm 
animal species is not tainted with ethical concerns. 
Furthermore, the methodology for generation of iPS 
cells is relative simple and and is thought to be easily 
transferable to other mammalian species. Thus farm 
animal models may turn out to be ideally suited to 
determine required cell doses, to assess long-term 
performance, tumorigenicity, applications methods and 
fate of transplanted cells[38-41].

Recent advances in genetic engineering of farm animals 
allow the generation of precise genetic modifications[42-47], 
such as the production of immunodeficient pigs[48] which 
will be instrumental for further advances in preclinical 
testings of new cell therapies. A boost of recent 
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Somatic cells: (1) uni-to multipotent
                    (2) limited differentiation
                    (3) no teratoma capability

Reprogramming factors
OCT4, SOX2, NANOG, KLF4, 
C-MYC, LIN28, GLIS1

Factor delivery method

Viral Non-viral

Retrovirus

Lentivirus
Adenovirus

Recombinant proteins

Modified RNAs

Minicircle DNA

Episomal plasmids
piggyBac transposon

Sleeping Beauty 
transposon

Sendai virus

iPS cells: (1) pluripotent
             (2) in vitro differentiation
             (3) in vivo differentiation (teratoma)
             (4) chimera contribution
             (5) germline transmission

Endogenous expression of 
core reprogramming factors

ERK inhibitors

MEK inhibitors

Epigenetic modifiers

Small molecules Somatic stem cells

Auxillary methods

Figure 1  Methodological toolbox for generating induced pluripotent stem cells. iPS: Induced pluripotent stem.
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Virally-induced iPS cells
There has been extensive amount of work carried out 
to obtain virally-derived iPS cells employing either 
retroviruses, lentiviruses, and non-integrating viruses. 
The first iPS cells have been generated through 
retroviral transduction of Oct4, Sox2, Klf4 and c-Myc[1]. 
Disarmed, optimized retro- or lentiviruses can infect 
mammalian cells with high efficiencies. The use of the 
pantropic vesicular stomatitis virus G protein (VSVG) 
was instrumental for viral transduction of a broad 
spectrum of receptive cells. Interestingly, unstimulated 
T cells, B cells and hematopoietic stem cells could not 
be efficiently transduced with the VSVG lentiviruses[77].

Retro- and lentiviruses integrate into the host 
genome allowing for high expression of the encoded 
cargo genes. The expression can be temporally 
confined by employing viral promoters, such as the 
5’ long terminal repeat, which are usually silenced 
by epigenetic mechanisms. Disadvantages of the the 
viral approach include the limited cargo capacity of 
maximally 7 kb, the induction of immune responses 
and potential genotoxic effects. Retro- and lentiviral 
integrations do not happen randomly in the genome, 
but show a strong bias for promoter and exonic regions, 
which may result in dysregulation of endogenous genes. 
In a retrovirus-based clinical gene therapy of the X-linked 

publications describe iPS cells from buffalo[13], cattle[9,49-53], 
dog[8,54-56], goat[11,57], horse[10,58-62], pig[7,63-71], rabbit[72-74] 
and sheep[11,75,76]. The majority of these iPS cells from farm 
animals showed typical hallmarks of pluripotency, such as 
differentiation in vivo and teratoma formation. However, 
most farm animal iPS cultures were not assessed for 
chimera contribution so far. Preliminary results that porcine 
iPS cells can contribute to chimera formation in blastocyst 
complementation were provided recently[71]. Similarly, 
ovine iPS cells contributed moderately to chimeric 
lambs after injection into eight-cell stage embryos or 
blastocysts[25]. These experiments represent an important 
step in the understanding of mechanistic nature of 
pluripotency in farm animals. The iPS technology may 
become instrumental for advanced transgenesis in large 
mammals (Figure 2).

METHODS TO DERIVE IPS CELLS
In recent years, several methods have been established 
for iPS cell generation (Figure 1), employing the 
core reprogramming factors as genes, mRNAs or 
proteins, and auxillary chemical agents, which infer 
with the involved signalling pathways. Here, the 
main approaches for the generation of iPS cells are 
summarized.
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Table 1  Most advanced achievements in induced pluripotent stem cells from domestic animals

Domestic 
species

Cell type Transduction Reprogramming 
factors

Culture 
medium 

Differentiation Chimera Germline 
contribution

Ref.

In vitro In vivo

Buffalo Fetal fibroblasts Retrovirus OSKM A EBs Teratoma NA NA [13] 
Cattle Fetal fibroblasts Retrovirus OSKM, OSKMLN, 

OSKM
B EBs Teratoma NA NA [9]

Fetal fibroblasts Plasmid OSKM C EBs Teratoma NA NA [53]
Dog Skin fibroblasts Lentivirus Human OKSM J EBs Teratoma NA NA [56]

Skin fibroblasts Retrovirus Mouse OKSM K EBs Teratoma NA NA [54]
Goat Fibroblasts Inducible 

lentivirus
OSKM, SV40 large T 
and hTERT

A EBs Teratoma NA NA [12]

Horse Fetal
fibroblasts

PiggyBac
transposon

OSKM E EBs Teratoma NA NA [10]

Adult
fibroblasts

Retrovirus OSK F EBs Teratoma NA NA [61]

Pig Mesenchymal stem 
cells from bone marrow

Lentivirus OSNKLM G EBs NA Low grade Two offspring [26]

Fetal fibroblasts Sleeping Beauty 
transposon

Mouse OSKM I Neuronal 
lineage

Teratoma NA NA [91]

Rabbit Skin fibroblasts Retrovirus Human OKSM I EBs Teratoma NA NA [72]
Sheep Fetal fibroblasts Retrovirus MKOS D EBs Teratoma Low grade NA [25]

A: DMEM, ESC FBS, L-glutamine, NEAA, β-Me, bFGF, LIF and MEFs; B: DMEM, KSR, L-glutamine, NEAA, β-Me, bFGF and MEFs; C: DMEM/F12 + N2 
and Neurobasal with B27, L-glutamine, hLIF, PD0325901, CHIR99021 and MEFs; D: KO-DMEM, SR, L-glutamine, NEAA, 2-Me, human bFGF and MEFs; E: 
DMEM, FBS, L-Glutamine, NEAA, β-Me, Sodium Pyruvate, LIF, bFGF, Doxycycline, CHIR99021, PD0325901, A83-01, Thiazovivin, B431542 and 1:1 MEFs and 
EFFs; F: α-MEM, FBS, deoxyribonucleosides, ribonucleoside, glutamax, NEAA, β-Me, ITS, human LIF, βFGF, EGF and MEFs; G: DMEM/F12, KSR, L-glutamine, 
NEAA, β-Me, FGF and MEFs; H: KO DMEM, KSR, glutamax-L, NEAA, 2-Me, pLIF, forskolin and collagen I; I: DMEM/F12, KSR, L-glutamine, NEAA, β-Me, 
bFGF and MEFs or gelatinized plates; J: KO DMEM, ESC FBS, bFGF, hLIF and MEFs; K: DMEM/F12, KSR, bFGF, hLIF, PD0325901, CHIR99021 and MEFs. 
DMEM: Dulbecco’s modified Eagle´s medium; LIF: Leukemia inhibitory factor; IGF1: Insulin-like growth factor 1; NEAA: Nonessential amino acids; FBS: Fetal 
bovine serum; KO: Knockout; MEM: Minimum essential medium; ITS: Insulin-transferring selenium; bFGF: Basic fibroblastic growth factor; DOX: Doxycycline; 
EB: Embryonic body; FCS: Fetal calf serum; hSCF: Human stem cell factor; KSR: Knockout serum replacement; MEFs: Mouse embryonic fibroblasts; OKSM: 
Oct-4, Klf4, Sox2, and c-Myc; OKSMLN: Oct-4, Klf4, Sox2, c-Myc, Lin28 and Nanog; VPA: Valproic acid; Me: Mercaptoethanol.
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severe combined immunodeficiency (X-SCID), two of 
the treated children independently developed T-cell 
lymphomas due to viral integration in the neighborhood 
of the LIM domain only 2 gene[78]. These data highlight 
the risks of viral-based therapies[78]. Somatic cells 
derived from retrovirally reprogrammed iPS cells are 
apparently inconspicious, provided that the c-Myc 
transgene is silenced[19,79]. Retroviral reprogramming 
may evoke an immunogenicity of iPS cells[80]. Human 
iPS cell-like cells can be formed through transduction 
with lentiviruses, which do not carry reprogramming 
factors. The “pseudo” iPS cells were induced by viral 
encoded microRNA expression[81]. 

Alternative to integrating retroviruses, non-integrating 
adenoviruses can be used for reprogramming[17,82]. 
Another non-integrating virus is represented by the 
Sendai virus system. Sendai viruses enable efficient 
production of iPS cells and later on elimination of the viral 
vector[83]. Though viral mediated gene transfer offers 
high efficiency in generation of iPS cells, they require 
specific safety conditions for their handling. 

Non-virally-derived iPS cells 
The generation of iPS cells without viral transduction is 
preferable for regenerative medicine. Non-viral methods 
of reprogramming include episomal vectors[84], minicircle 
DNAs[85], plasmid vectors[86], small molecules[87], 
mRNAs[88], recombinant proteins[89] and transposons like 
piggyBac[90] and Sleeping Beauty[91]. In comparison to 
viral systems, non-viral approaches such as transposons 
are able to carry large DNA cargo into the host cell, they 
are non-infectious and do not evoke immune responses. 

Episomal vectors
Episomal vectors for reprogramming of somatic 
cells were recently described[84]. In this method, 
reprogramming of fibroblasts was carried out by 
transfecting with the episomal vector oriP/Epstein-Barr 
nuclear antigen-1. This vector was chosen because 
it can be removed after reprogramming by a drug 
selection method. The iPS cells generated through 
this method show similar morphology and expression 
patterns to ES cells. Further, they were able to form 
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Table 2  Achievements with induced pluripotent stem cells from rodents, farm animals and humans

Rodents Farm animals Human

iPS cells √√ √√ √√
In vivo differentiation √√ √√ √√
In vitro differentiation √√ √√ √√
Chimera √√ √/- Ethically not allowed
Germline transmission √√ √/- Ethically not allowed
Follow up generations √√ -- Ethically not allowed
Transplantation of iPS cell-derived cells √√ √/- No clinical studies to date1

√√: Fully proven; √/-: Partially proven; --: Not achieved yet; 1The first clinical study was recently initiated (http://www.
riken.jp/en/pr/press/2013/20130730_1). iPS: Induced pluripotent stem.

Enucleatedoocyte
Genetic modification

(A) Nuclear transfer

Genetically modified iPS cells 

Electrofusion and oocyte activation

In vitro culture

Blastocyst 

Transgenic offspring

Embryo transfer 
into surrogate

(B) Blastocyst complementation

iPS cells

Reconstructed embryo

Figure 2  Application of induced pluripotent 
stem cells for advanced generation of 
transgenic animals. iPS: Induced pluripotent 
stem.
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teratomas in immunocompromised mice. As there was 
no integration into the host genome, transgene free 
iPS cells may be selected through further sub-cloning. 
Despite these advantages, this method yields low 
reprogramming efficiency in human fibroblasts at about 
three to six iPS colonies per 106 input cells[84]. 

Minicircle vectors
Minicircle vectors are produced by the recombinatorial 
elimination of the bacterial backbone of the original 
plasmids. Minicircles containing the four reprogramming 
factors Oct4, Nanog, Lin28, and Sox2 in addition to an 
enhanced green fluorescent protein  were used to obtain 
human iPS cells[85]. The group excised the bacterial 
backbone from the plasmid by taking advantage of the 
PhiC31-based intramolecular recombination system, 
which cleaves away the undesired bacterial plasmid 
backbones, leaving minicircle DNA to be purified 
containing the desired reprogramming factors[85]. 

It was claimed that minicircle DNA benefited from 
higher transfection efficiency compared to the parental 
plasmids. They also have longer ectopic expression, 
which is due to the lower activation of exogenous 
silencing mechanisms. Later, other groups reproduced 
the minicircle approach for reprogramming[92,93].

Small molecules 
Nowadays, small molecules and chemicals are assessed 
to enhance reprogramming efficiency and iPS cell 
generation. The idea behind their use is to substitute 
core reprogramming factors with small molecules, 
which will serve to enhance the reprogramming. Shi 
et al[94] showed that neural progenitor cells, which 
endogenously express Sox2, were reprogrammed 
only by ectopic expression of Oct4 and Klf4. They 
also showed that this process was supported by the 
G9a histone methyltransferase inhibitor, BIX-01294 
(BIX). Ichida et al[95] used small molecules (RepSox2) 
for replacing transcription factors (Sox2) by inhibiting 
transforming growth factor-β signalling. In this 
direction, Lee et al[96] used magnetic nanoparticle-
based transfection method that employs biodegradable 
cationic polymer PEI-coated super paramagnetic 
nanoparticles for iPS cells generation. Recently, the 
L-channel calcium agonist, BayK8644, was assessed 
to improve generation of iPS cells[87] and it was 
claimed that BayK8644 does not directly cause 
epigenetic modifications as it works upstream in cell 
signalling pathways and can therefore avoid unwanted 
modifications. A more comprehensive list of small 
molecules involved in the iPS cells generation and their 
mechanism has been reviewed recently[97].

Transposon systems
The recent development of hyperactive transposase 
enzymes makes transposon systems an interesting 
alternative to viral based methods. The commonly 
employed Sleeping Beauty, piggyBac and Tol2 

transposon systems are relatively simple organized, 
and the essential components can be separated 
on two plasmids. One plasmid carries the inverted 
terminal repeats (ITR) flanking the transgene, the 
other plasmid carries an expression cassette for the 
respective transposase enzyme. Upon co-transfer of 
both plasmids into a cell, the transposase becomes 
expressed and subsequently transposes the ITR-
flanked transgene into the genome. Importantly, 
only the desired transgenes becomes integrated by 
a cut-and-paste mechanism, whereas the plasmid 
backbones are degraded. On a genomic scale 
transposon integrations appear to happen at random, 
without a bias for promoter and gene-containing 
regions. The integrated transposon can be removed 
seamlessly by supplying the transposase in trans[98], 
which makes the system more attractive and relevant 
in producing the safe and clean iPS cells. Up to six 
reprogramming factors have been connected by self-
cleaving peptide sequences allowing for coexpression 
from a single cassette[91,99-103]. Individual proteins are 
then produced by the self-cleaving peptide[104-106].

Reprogramming with protein factors
The discussed transposon and episomal systems still 
require the introduction of cargo DNA into the cells[106]. 
Delivery of reprogramming factors as proteins is 
an obvious alternative. In 2009, transgene-free iPS 
cells were produced with proteins of reprogramming 
factors[107]. Therefor recombinant reprogramming 
proteins were produced as fusion proteins containing 
cell penetrating peptides. Repeated supplementation 
of the culture media of fibroblasts converted them to 
iPS cells. However, the protein-based reprogramming 
approach has not found widespread use, mainly due to 
relative low reprogramming efficiencies, and high costs 
for repeated treatments with protein factors. 

mRNAs and microRNAs
The most recent trend in the field of non-viral iPS 
generation is reprogramming by using RNA molecules. 
Recently, modified mRNAs encoding reprogramming 
factors were employed to generate iPS cells with high 
efficiency[108]. Messenger RNAs are an ideal vehicle for 
reprogramming, because they do not bear the risk of 
integrational mutagenesis, they can be transduced to 
cells with high efficiency, and they can be combined 
in desired ratios of the individual factor encoding 
transcripts[108]. Disadvantages of mRNAs are the short 
half-life of -10 h, and that innate immune responses 
must be inhibited to allow for the full effects[109]. 

Recently, it was shown that micro RNAs (miR) 
expression is sufficient to induce pluripotency[110-112]. 
Two independent groups reported iPS cell generation 
by delivery of miR302, or miR200c, miR302, and 
miR369[113,114]. These miR-derived iPS cells were 
indistinguishable from conventionally generated iPS 
cells. MicroR reprogramming seems to have advantages 
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for cellular reprogramming[114-116], for example it avoids 
the need of transducing proto-oncogenic transcription 
factors[117,118]. However, it needs to be assessed whether 
this approach will be successful in other species, since 
the underlying mechanisms are not well understood[119]. 

MOLECULAR FACTORS REGULATING 
REPROGRAMMING 
The core factors for reprogramming are Oct4, Nanog, 
Sox2, Klf4, c-Myc and Lin28. These genetic factors 
reprogram cells by regulating critical signalling pathways, 
epigenetic modifications and micro RNAs[114]. 

Reprogramming by core transcription factors
Oct4 is the best studied regulator of pluripotency. 
Oct4 expression is confined to early embryonic cells, 
germ line cells and cultured pluripotent stem cells, 
where it activates the gene transcription of stemness 
gene[120]. Oct4 protein cooperates with stemness 
factors such as Nanog and Sox2, but it also interacts 
with Polycomb group proteins[120], which are important 
repressors of transcription. Sox2 is a transcription 
factor that acts as coactivator of Oct4[121]. Binding of 
Oct4/Sox2 dimers to the promoter sequences of Oct4 
and Nanog genes upregulate their transcription[122]. 
Nanog is a homeobox-containing transcription factor 
stabilizing the stemness network[122]. Klf4 is a zinc 
finger-containing transcription factor which regulates 
the expression of Oct4, Sox2 and Nanog[123-125]. Over-
expression of Klf4 in ES cells increased the expression 
of Oct4 which further improve the self-renewal 
ability[126]. c-Myc enhances the efficiency and speed of 
reprogramming[127]. LIN28 promotes the expression of 
Oct4 at the posttranscriptional level by direct binding 
to its mRNA[128]. Recently, Glis1 has been identified 
as a substitute for c-Myc[129]. Glis1 transactivate the 
genes of Wnt ligands, Lin28a, Nanog, Mycn, Mycl1, 
and Foxa2[129].

The aspect of whether the species-specificity 
of reprogramming factors is relevant for proper 
reprogramming, is not well understood. In principle, 
the essential domains of the reprogramming factors 
are highly conserved between mammalian species, 
and several publications showed successful repro-
gramming with human and murine sequences in other 
species[5-13,130].

APPLICATIONS OF IPS CELLS 
Modeling of human diseases and preclinical trials
The potential applications of iPS cells will impact 
regenerative medicine, pharmaceutical industry, and 
animal biotechnology[131]. Human iPS cells could be 
utilized for curative treatments, to studying onset 
and disease progression in vitro, and to test potential 
therapeutic in high throughput screens[114,131,132]. The 
production of disease-specific iPS cells has found 

widespread use in recent years[133-136]. Disease-
specific iPS cells provide a unique resource to obtain 
a molecular understanding of disease onset and 
progression[131,132]. Induced PS-derived differentiated 
cells will allow to carry out in vitro drug screening 
(Figure 3), and to test therapeutic interventions[131]. In 
mice, Fanconi anemia and sickle cell anemia have been 
successfully corrected by using iPS cells[131,133-136]. 

However with regard to potential curative treatments, 
the functionality, safety, and lack of tumorigenicity of 
iPS-derived cells have to be assessed in appropriate 
animal models bearing significant physiological and 
anatomical similarities to humans (Table 2). Hence, 
animal models could be contributed tremendously to 
a better understanding of disease mechanisms and 
therapeutic interventions. In addition, iPS cells from 
monkey[5], porcine[41,26], canine[8] and cattle[9] would be 
useful in animal biotechnology such as making precise 
genetic engineering for improved production traits and 
products[137,138]. 

Advanced transgenesis in large mammals
Transgenic farm animals can serve as excellent 
models of human diseases and during the past few 
years transgenic farm animals have gained renewed 
popularity. This is due to the availability of annotated 
genome depositories of the major domestic species 
and other organisms (for example: www.ensembl.
org; or www.ncbi.nlm.nih.gov/genome), and due the 
introduction of active methods of transgenesis, which 
dramatically increased the success rates[42,43]. The 
repertoire of molecular tools now allows the precise 
modification of large mammalian genomes at rapid 
pace and has led to a recent boost in this area. The 
development of genuine iPS cells from domestic species 
will contribute to these advances and allow to perform 
desired genetic modifications via high throughput 
screens in vitro, and then use either SCNT[47] or 
blastocyst complementation for the generation of 
transgenic offspring (Figure 3). However at the moment 
most of the iPS cells cultures from different domestic 
species have not been tested for their capability to 
contribute to chimera formation, and only preliminary 
data are available[25,26]. Thus reinforced efforts to 
assess the potential of current livestock iPS cell lines for 
chimera contribution and germ cell differentiation are 
required. The majority of current livestock iPS cell lines 
are generated with retro- or lentiviral reprogramming 
approaches (Table 1), and the opportunities to assess 
alternative non-viral approaches are not widely 
assessed[10,56,106]. Also the potential of auxillary small 
molecular inhibitors of stemness signaling pathway is 
not exploited for livestock iPS cells. Potentially, high 
throughput screens to identify small molecules with 
species-specific activity are required. It is anticipated 
that these approaches will lead to livestock iPS cells, 
which will make a significant impact for future genetic 
modifications of these species.
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Preservation of genetic resources and endangered 
breeds
The iPS technology has the potential to preserve 
endangered animals and highly valuable genotypes 
in the near future[139]. Cryopreservation of cells and 
tissues is an important and useful approach for genetic 
preservation of valuable breeds and for conservation 
of endangered wild and domestic species. For highly 
endangered species, the derivation of iPS cells may 
become a method to prevent extinction. For example, 
iPS cells have been produced from endangered snow 
leopard[140], drill and white rhinoceros[139]. The iPS 
cells generated can be easily expanded for banking 
of genetic material, or used as donor cells for SCNT. 
Potentially, iPS cells from endangered species may be 
differentiated into mature oocytes and spermatozoa 
(Figure 4), which might be employed for in vitro 
embryo production[139,140]. The differentiation of livestock 
iPS cells to functional gametes in vitro have not been 
achieved yet, however the current pace in developing 
fine-tuned protocols for in vitro differentiation of 
desired cell types, and the progress in inducing 
meiosis support the notion that the generation of fully 
functional spermatozoa and oocytes may be feasible. 
The possibility to obtain fully functional spermatozoa 
and oocytes from iPS cells of domestic and wild species 
would has far reaching consequences for maintenance 
of endangered species, as well as for breeding and 
genomic selection programs of domestic species. 
Even potential applications for infertility treatments in 
humans may become feasible[141,142].

PROSPECTS OF FARM ANIMAL IPS 
CELLS IN PRECLINICAL STUDIES
The generation of iPS cells has opened new vista to 

understand pluripotency, disease onset and progression, 
and to develop regenerative medicine[132]. However, 
before the clinical application of iPS cell-derived 
therapies can be envisioned, the low efficiency and 
kinetics of iPS cell formation, the risks of insertional 
mutagenesis, reactivation of silenced ectopic transgenes 
and potential tumor formation have to be assessed 
and solved[131]. An important aspect is the biosafety of 
transplanted derivatives of iPS cells[132]. A number of 
reports showed that iPS cell lines could contain genetic 
mutations, copy number variations, and epigenetic 
mutations[132,143-145]. These aberrant changes may 
increase the tumorigenicity of iPS and iPS-derived cells. 
Retro- and lentiviruses are commonly used to introduce 
the reprogramming factors into differentiated cells, 
which can increase the immunogenicity[146]. 

Farm animals represent informative model organisms, 
which seem to be suitable to assess obstacles and 
risks in longitudinal pre-clinical studies[147]. In contrast 
to rodent models, they are more similar to humans 
with respect to life-span, physiology, metabolism and 
pathophysiology[148,149]. Large mammalian models 
will allow to determining required cell doses to obtain 
therapeutic effects, to follow the fate of transplanted 
cells and their functional integration in the host 
tissue[150]. Thus the research on pluripotent stem cells 
from farm animals will contribute to the development of 
innovative cells therapies for human patients.
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